411,372 research outputs found

    An Application of the Mobile Transient Internet Architecture to IP Mobility and Inter-Operability

    Get PDF
    We introduce an application of a mobile transient network architecture on top of the current Internet. This paper is an application extension to a conceptual mobile network architecture. It attempts to specifically reinforce some of the powerful notions exposed by the architecture from an application perspective. Of these notions, we explore the network expansion layer, an overlay of components and services, that enables a persistent identification network and other required services. The overlay abstraction introduces several benefits of which mobility and communication across heterogenous network structures are of interest to this paper. We present implementations of several components and protocols including gateways, Agents and the Open Device Access Protocol. Our present identification network implementation exploits the current implementation of the Handle System through the use of distributed, global and persistent identifiers called handles. Handles are used to identify and locate devices and services abstracting any physical location or network association from the communicating ends. A communication framework is finally demonstrated that would allow for mobile devices on the public Internet to have persistent identifiers and thus be persistently accessible either directly or indirectly. This application expands IP inter-operability beyond its current boundaries

    An IoT-based solution for monitoring a fleet of educational buildings focusing on energy efficiency

    Get PDF
    Raising awareness among young people and changing their behaviour and habits concerning energy usage iskey to achieving sustained energy saving. Additionally, young people are very sensitive to environmental protection so raising awareness among children is much easier than with any other group of citizens. This work examinesways to create an innovative Information & Communication Technologies (ICT) ecosystem (including web-based, mobile, social and sensing elements) tailored specifically for school environments, taking into account both theusers (faculty, staff, students, parents) and school buildings, thus motivating and supporting young citizenś behavioural change to achieve greater energy efficiency. A mixture of open-source IoT hardware and proprietary platforms on the infrastructure level, are currently being utilized for monitoring a fleet of 18 educational buildings across 3 countries, comprising over 700 IoT monitoring points. Hereon presented is the system's high-level architecture, as well as several aspects of its implementation, related to the application domain of educational building monitoring and energy efficiency. The system is developed based on open-source technologies andservices in order to make it capable of providing open IT-infrastructure and support from different commercial hardware/sensor vendors as well as open-source solutions. The system presented can be used to develop and offer newapp-based solutions that can be used either for educational purposes or for managing the energy efficiency ofthebuilding. The system is replicable and adaptable to settings that may be different than the scenarios envisionedhere (e.g., targeting different climate zones), different IT infrastructures and can be easily extended to accommodate integration with other systems. The overall performance of the system is evaluated in real-world environment in terms of scalability, responsiveness and simplicity

    On developing open mobile fault tolerant agent systems

    Get PDF
    The paper introduces the CAMA (Context-Aware Mobile Agents) framework intended for developing large-scale mobile applications using the agent paradigm. CAMA provides a powerful set of abstractions, a supporting middleware and an adaptation layer allowing developers to address the main characteristics of the mobile applications: openness, asynchronous and anonymous communication, fault tolerance, and device mobility. It ensures recursive system structuring using location, scope, agent, and role abstractions. CAMA supports system fault tolerance through exception handling and structured agent coordination within nested scopes. The applicability of the framework is demonstrated using an ambient lecture scenario - the first part of an ongoing work on a series of ambient campus applications. This scenario is developed starting from a thorough definition of the traceable requirements including the fault tolerance requirements. This is followed by the design phase at which the CAMA abstractions are applied. At the implementation phase, the CAMA middleware services are used through a provided API. This work is part of the FP6 IST RODIN project on Rigorous Open Development Environment for Complex Systems

    A Smartphone-Based System for Outdoor Data Gathering Using a Wireless Beacon Network and GPS Data: From Cyber Spaces to Senseable Spaces

    Get PDF
    Information and Communication Technologies (ICTs) and mobile devices are deeply influencing all facets of life, directly affecting the way people experience space and time. ICTs are also tools for supporting urban development, and they have also been adopted as equipment for furnishing public spaces. Hence, ICTs have created a new paradigm of hybrid space that can be defined as Senseable Spaces. Even if there are relevant cases where the adoption of ICT has made the use of public open spaces more “smart”, the interrelation and the recognition of added value need to be further developed. This is one of the motivations for the research presented in this paper. The main goal of the work reported here is the deployment of a system composed of three different connected elements (a real-world infrastructure, a data gathering system, and a data processing and analysis platform) for analysis of human behavior in the open space of Cardeto Park, in Ancona, Italy. For this purpose, and because of the complexity of this task, several actions have been carried out: the deployment of a complete real-world infrastructure in Cardeto Park, the implementation of an ad-hoc smartphone application for the gathering of participants’ data, and the development of a data pre-processing and analysis system for dealing with all the gathered data. A detailed description of these three aspects and the way in which they are connected to create a unique system is the main focus of this paper.This work has been supported by the Cost Action TU1306, called CYBERPARKS: Fostering knowledge about the relationship between Information and Communication Technologies and Public Spaces supported by strategies to improve their use and attractiveness, the Spanish Ministry of Economy and Competitiveness under the ESPHIA project (ref. TIN2014-56042-JIN) and the TARSIUS project (ref. TIN2015-71564-C4-4-R), and the Basque Country Department of Education under the BLUE project (ref. PI-2016-0010). The authors would also like to thank the staff of UbiSive s.r.l. for the support in developing the application

    A Formal Object Model for Layered Networks to Support Verification and Simulation

    Get PDF
    This work presents an abstract formal model of the interconnection structure of the Open Systems Interconnection Reference Model (OSI-RM) developed using Object-Oriented modeling principles permitting it to serve as a re-usable platform in supporting the development of simulations and formal methods applied to layered network protocols. A simulation of the object model using MODSIM III was developed and Prototype Verification System (PVS) was used to show the applicability of the object model to formal methods by formally specifying and verifying a Global Systems for Mobile communications (GSM) protocol. This application has proved to be successful in two aspects. The first was showing the existence of discrepancies between informal standard protocol specifications, and the second was that communication over the layered GSM network was verified. Although formal methods is somewhat difficult and time consuming, this research shows the need for the formal specification of all communication protocols to support a clear understanding of these protocols and to provide consistency in their implementations. A domain for the application of this model is mobile cellular telecommunications systems. Mobile Communications is one of the most rapidly expanding sectors of telecommunications. Expectations of what a mobile cellular phone can do have vastly increased the complexity of cellular communication networks, which makes it imperative that protocol specifications be verified before implementation
    corecore