
Kent Academic Repository
Full text document (pdf)

Copyright & reuse

Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all

content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions

for further reuse of content should be sought from the publisher, author or other copyright holder.

Versions of research

The version in the Kent Academic Repository may differ from the final published version.

Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the

published version of record.

Enquiries

For any further enquiries regarding the licence status of this document, please contact:

researchsupport@kent.ac.uk

If you believe this document infringes copyright then please contact the KAR admin team with the take-down

information provided at http://kar.kent.ac.uk/contact.html

Citation for published version

Arief, Budi and Iliasov, Alexei and Romanovsky, Alexander (2007) On developing open mobile
fault tolerant agent systems. In: Choren, R. and Garcia, A. and Giese, H. and Leung, H.-f. and
Lucena, C. and Romanovsky, A., eds. Software Engineering for Multi-Agent Systems V. Lecture
Notes in Computer Science . Springer, Shanghai, pp. 21-40. ISBN 9783540731306.

DOI

http://doi.org/10.1007/978-3-540-73131-3_2

Link to record in KAR

http://kar.kent.ac.uk/58694/

Document Version

Author's Accepted Manuscript

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kent Academic Repository

https://core.ac.uk/display/74208603?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

On Developing Open Mobile Fault Tolerant

Agent Systems

Budi Arief, Alexei Iliasov, and Alexander Romanovsky

School of Computing Science, University of Newcastle upon Tyne,
Newcastle upon Tyne NE1 7RU, England.

{L.B.Arief, Alexei.Iliasov, Alexander.Romanovsky}@newcastle.ac.uk

Abstract. The paper introduces the Cama (Context-Aware M obile
Agents) framework intended for developing large-scale mobile applica-
tions using the agent paradigm. Cama provides a powerful set of ab-
stractions, a supporting middleware and an adaptation layer allowing
developers to address the main characteristics of the mobile applications:
openness, asynchronous and anonymous communication, fault tolerance,
and device mobility. It ensures recursive system structuring using loca-
tion, scope, agent, and role abstractions. Cama supports system fault
tolerance through exception handling and structured agent coordination
within nested scopes. The applicability of the framework is demonstrated
using an ambient lecture scenario – the first part of an ongoing work on a
series of ambient campus applications. This scenario is developed start-
ing from a thorough definition of the traceable requirements including
the fault tolerance requirements. This is followed by the design phase at
which the Cama abstractions are applied. At the implementation phase,
the Cama middleware services are used through a provided API. This
work is part of the FP6 IST RODIN project on Rigorous Open Devel-
opment Environment for Complex Systems.

Keywords: Mobile agents, exception handling, system structuring, coordina-
tion, middleware, Linda, ambient lecture

1 Introduction

The mobile agent paradigm is now used in developing a variety of complex ap-
plications as it supports systems structuring using decentralised, distributed and
autonomous entities cooperating to achieve their individual aims. These appli-
cations include smart house, urban traffic management, information search and
retrieval, Internet trading, network monitoring, load balancing, healthcare sys-
tems and enterprise quality management. The mobile agent paradigm promotes
system openness, flexibility and scalability, and naturally supports mobility of
code and devices. Very often the applications developed using agents must meet
various dependability requirements. This, in particular, includes various busi-
ness (money, information) and safety critical applications. This is why ensur-
ing system fault tolerance is becoming imperative for successful deployment of

modern agent applications. Although there have been a number fault tolerance
frameworks developed for agent systems, we have found that they have limited
applicability due to several reasons. First of all, they typically focus on tolerating
hardware faults, which, as a matter of fact, is not the main source of modern
system failures. Secondly, they often provide means which are not adequate for
achieving fault tolerance as they do not take into account the defining character-
istics of the agent systems: agent mobility, autonomy and asynchronous commu-
nication, and system openness and dynamicity, which create new challenges for
ensuring agent system fault tolerance. A typical example here is a naive assump-
tion that the native Java and RMI exception handling is completely adequate
for developing complex agent systems.

In this work, we are focusing on coordination mobile environments, which
have become very popular in developing mobile agent applications. These envi-
ronments rely on the Linda approach to coordination of distributed processes.
Linda [1] provides a set of language-independent coordination primitives that
can be used for communication-between and coordination-of several indepen-
dent pieces of software. Linda is now becoming the core component of many
mobile software systems because it fits in nicely with the main characteristics of
mobile systems.

Linda coordination primitives support effective inter-process coordination
using the concepts of tuples and tuple spaces. A tuple is a data object that
holds several objects; it can be seen as a vector of typed data values, some of
which can be empty, in which case they match any value of a given type. A
tuple space is an implementation of the content-addressable memory, providing
a repository of tuples that can be accessed concurrently. It provides operations
to allow processes to put tuples in it, get tuples out if they match the requested
types, and test for them. Certain operations, like get (or in) can be blocking,
whereas others, such as test (or inp) are non-blocking.

A number of Linda-based mobile coordination systems have been developed
recently; these include Lime [2], Klaim [3], and TuCSoN [4].

Lime is one of the most developed, supported and widely-used examples of
such environments. It supports both physical mobility, such as a device with a
running application travelling along with its user across network boundaries, and
logical mobility, when a software application changes its platform and resumes
execution in a new one. To do that, Lime employs a distributed tuple space.
Each agent has its own persistent tuple space that physically or logically moves
with it. When an agent is in a location where there are other agents or where
there is a network connectivity to other Lime hosts, a new shared tuple space
can be created, thus allowing agents to communicate. If connection is lost or
some agents leave, parts of the shared tuple space became inaccessible. Lime
middleware – implemented in Java – hides all the details and complexities of
the distributed tuple space control and allows agents to treat it as normal tuple
space using conventional Linda operations.

Klaim is a Linda-based process algebra with a notion of explicit locations.
Absolute or relative location addresses can be attached to Linda operations

to specify the execution site of an operation. Klaim also has a type system
extension used for control access. It is one of the few systems supporting strong
code mobility [5].

TuCSoN [4] is another agent coordination system which is designed to be
used with the existing mobile agent infrastructures. It mainly focuses on solving
communication problems, but it ignores agent mobility and security. Coordina-
tion is based on the Linda tuple space paradigm. Each host provides a set of
named tuple space which can be used for both local and remote coordination.
A destination for a remote operation is specified using a tuple space name and
a globally unique host name.

Exception handling [6] is widely accepted to be the most general approach to
ensuring fault tolerance of complex applications facing a broad range of faults.
It provides a sophisticated set of features for developing effective fault tolerance
using handlers specially tailored for the specific exception and system state in
which the error is detected. It ensures nested system structuring and separates
normal system behaviour from the abnormal one. Our analysis [7] shows that the
existing Linda-based mobile environments do not provide sufficient support for
development of fault tolerant mobile agent systems. The real challenge here is to
develop general mechanisms that smoothly combine Linda-based mobility with
exception handling. The two key features of mobile agents are asynchronous
communication and agent anonymity. This is what makes mobile agents such
a flexible and powerful software development paradigm. However, traditional
fault tolerance and exception handling schemes are not directly applicable in
such environments.

In this paper, we discuss a novel framework for disciplined development of
open fault tolerant mobile agent systems and show how it is being applied in
developing an ambient campus application. This framework offers a set of pow-
erful abstractions to help developers by supporting exception handling, system
structuring and openness. These abstractions are supported by an effective and
easy-to-use middleware which ensures high system scalability and agent compat-
ibility. The plan of the paper is as follows. In the next section we introduce our
Cama framework in detail by describing the main abstractions offered to sys-
tem developers, a novel exception handling mechanism and our current work on
Cama implementation. This is followed by a section discussing our experience
in applying Cama in the development an ambient lecture scenario as a part of
our ongoing work on ambient campus applications. The last section of the paper
outlines our plans for the future work.

2 Context-aware mobile agents

We have developed a framework called Cama (Context-Aware Mobile Agents),
which encourages disciplined development of open fault tolerant mobile agent
applications by supporting a set of abstractions ensuring exception handling,
system structuring and openness. These abstractions are backed by an effective

and easy-to-use middleware allowing high system scalability and guaranteeing
agent compatibility.

2.1 Cama Abstractions

Any Cama system consists of a set of locations. A location is a container for
scopes. A scope provides a coordination space within which compatible agents
can interact using the scoping mechanism described below. Agents are the active
entities of the system. Each agent is executed on a platform; several agents may
reside on a single platform. A platform provides an execution environment for
agents as well as an interface to the location middleware. Fig. 1 shows how these
abstractions are linked.

Scope

Platform

Agent

Keys:

Location

Fig. 1. Location, scopes, platforms and agents in Cama

An agent is built using one or more roles. A role is a specification of one
specific functionality of an agent. A composition of all agent roles forms its
specification.

A location can be associated with a particular physical location (such as a
lecture theatre, a warehouse or a meeting room) and can have certain restric-
tions on the types of supported scopes. Location is the core part of the system
as it provides means of communication and coordination among agents. We as-
sume that each location has a unique name. This roughly corresponds to the IP
address of the host in a network (which are usually unique) on which it resides.
A location must keep track of the agents present and their properties in order
to be able to automatically create new scopes and restrict access to the existing
ones. Locations may provide additional services that can vary from one instance
to another. These are made available to agents within what appears to be a
normal scope where some of the roles are implemented by the location system
software. As with all the scopes, agents are required to implement specific roles
in order to connect to a location-provided scope. Few examples of such services

include printing on a local printer, accessing the internet, making a backup to a
location storage, and migrating to another location.

Agent context represents the circumstances in which an agent find itself [8].
Generally speaking, a context includes all information from an agent environ-
ment which is relevant to its activity. The context of an agent in Cama consists
of the following parts: the state connections to the engaged locations; the names,
types and states of all the visible scopes in the engaged locations; and the state
of scopes in which the agent is currently participating, including the tuples con-
tained in these scopes. A set of all locations defines global structuring of the
agent context. This context changes when an agent migrates from one location
to another.

Agents represent the basic structuring unit in Cama applications. To deal
with various functionalities that any individual agent provides, Cama introduces
agent role as a finer unit of code structuring. A role is a structuring unit of an
agent, and being an important part of the scoping mechanism, it allows dynamic
composition of multi-agent applications, as well as being used to ensure agent
interoperability and isolation.

Scope structures the activity of several agents in a specific location by dy-
namically encapsulating roles of these agents. Scope also provides an isolation
of several communicating agents thus structuring the communication space.

A set of agents playing different roles can dynamically instantiate a multi-
agent application. A simple example is a client-server model where a distributed
application is constructed when agents playing two roles meet and collaborate.
An agent can have several roles and use them in different scopes. A server agent
can provide the same service in many similar scopes. In addition, it can also
implement a client role and act as a client in some other scopes.

Supporting system openness is one of the top design objectives of Cama.
Openness is understood here as the ability to create distributed applications
composed of agents developed independently. To this end, Cama provide pow-
erful abstractions that help to dynamically compose applications from individual
agents, an agent isolation mechanism and a service discovery based on the scop-
ing mechanism.

Scoping mechanism. The Cama agents can cooperate only when they partic-
ipate in the same scopes. This abstraction is supported by a special construct of
coordination space called scope. Scoping is a means to structure agent activity by
arranging agents into groups according to their intentions. Scoping also allows
agent communication to be configured to meet the requirements of the individ-
ual groups. Reconfigurations happen automatically, thus allowing agents (and
their developers) to focus solely on collaboration with other agents participating
in the same scope. There are several benefits of agent system structuring using
scopes:

– scopes provide higher-level abstractions of communication structuring;
– they reduce the risk of creating ad hoc structures that maybe incorrect,

malfunctioning or cyclic;

– this structuring enforces strong relationship among agents supporting inter-
operability and exception handling;

– scopes support simple semantics thus facilitating formal development;
– scopes become units of fault tolerant system ensuring error confinement and

supporting error recovery at the scope level.

A scope is a dynamic data container that provides an isolated coordination
space for compatible agents. This is done by restricting the visibility of the tuples
contained in the scope only to these agents. We say that a set of agents is
compatible if there is a composition of their roles that forms an instance of an
abstract scope model.

Agents can issue a request to create a scope, and when all the preconditions
are satisfied, a scope is atomically instantiated by the hosting location. The scope
creation request includes a scope identifier (a string) and a scope requirement
structure. The request returns the name of the newly created scope. The agent
creating the scope can use this name to join the scope, to make the scope public
(visible to other agents), to leave the scope and to delete it.

A scope has a number of attributes divided into two categories: scope require-
ments and scope state. Scope requirements essentially define the type of a scope,
or, in other words, the kind of activities supported by it. Scope requirements are
derived from a formal model of a scope activity and, together with agent roles,
form an instance of the abstract scope model. State attributes characterise a
unique scope instance. In addition to these attributes, scope contains data rep-
resented as tuples in the coordination space. Along with these data, there may
be subscopes which define nested activities that may happen inside the scope.

Nested scopes are used to structure large multi-agent applications into smaller
parts which do not require participation of all agents. Such structuring has a
number of benefits. It isolates agents into groups, thus enhancing security. It
also links coordination space structuring with activity structuring, which sup-
ports localised error recovery and scalability. There is no hard rule when to use
nested scopes. However, for reasons stated above, any application incorporat-
ing different modes of communication or different types of activities should use
subscopes. An online shop is an example of such application. A seller publicly
communicate with buyers while the latter are looking around for some products.
However, payment must be a private activity involving only the seller and the
buyer. In addition to obvious security benefits, a dedicated payment subscope
helps to determine which agents must be involved into recovery should a failure
happen during payment.

Restrictions on roles dictate the roles that are available in the scope, and
how many agents are allowed for any given role. The latter is defined by two
numbers: the minimum number of agents required for a given role and the maxi-
mum number of agents allowed for a given role. A scope-state tracks the number
of currently-taken roles and determines whether the scope is ready for agent
collaboration or whether more agents are allowed to join.

The existing scoping mechanisms (e.g. [9, 10]) are not explicitly developed
to support data and behaviour encapsulation or isolation, which are crucial for

error confining and recovery. None of them is directly applicable for dealing with
mobile agents interacting using coordination spaces (see our analysis in [7]). Also,
these schemes do not support the set of abstractions which we have identified as
crucial for Cama.

Basic Operations in Cama. In Cama, all the communication within a loca-
tion happens through a single shared tuple space. This leads to an asymmetrical
design of the middleware where the tuple space operations are implemented in a
location middleware while agents only carry a lightweight adaptation layer. On
top of the coordination primitives derived from Linda, the Cama middleware
provides the following operations:

– engage(id) - issues a new location-wide name that is unique and unforge-
able for agent id. This name is used as an agent identifier in all other role
operations.

– disengage(a) - makes the issued name a invalid.
– create(a, n, R)@s (n 6∈ l.s) - agent a creates a new subscope within scope

s called n with given scope requirements R at location l. The created scope
becomes a private scope of agent a.

– delete(a, n)@l.s (n ∈ l.s∧ a is owner of l.s.n) - agent a deletes a sub-
scope called n contained in scope s. This operation always succeeds if the
requesting agent is the owner of the scope. If the scope is not in the pending
state then all the scope participants shall receive CamaExceptionNotInScope
exception notifying the scope’s closure. This procedure is executed recur-
sively for all the subscopes contained in the scope.

– join(a, n, r)@s (n ∈ l.s∧r ∈ n∧n is pending or expanding) - adds agent
a into scope n contained in l.s with role r. This operation succeeds if scope
l.s.n exists and agent a is allowed to take the specified role in the scope.
This operation may cause the scope to change state.

– leave(a, n, r)@s (a is in l.s.n with role(s) r) - removes agent a with
roles r from scope l.s.n. The calling agent must be already participating
in the scope. This operation may also change the state of the scope.

– put(a, n)@s - agent a advertises scope n contained in scope s, thus making
it a public scope. A public scope is visible and accessible by other agents.

– get(a, r)@s: enquires the names of the scopes contained in scope l.s and
supporting role(s) r.

An agent always starts its execution by looking for available locations nearby.
Once it has become engaged to a location, it can join a scope or create a new
one. An agent needs to know the name of the scope it intends to join. It can be
the name of an existing scope or the name of a new scope created by this agent.
When joining a scope, an agent specifies its role in the scope. In the current
implementation of the middleware, an agent can choose a role in a scope from
one of the roles it implements. The join operation returns a handle for a scope,
which can be used by an agent to collaborate with other agents through Linda
coordination primitives. To create a scope, an agent must specify the name of

the scope and the scope requirements, which define the possible roles within the
scope and their restrictions.

Physical and Logical Mobility. Physical mobility allows devices carrying the
agent code to move between locations. Logical mobility allows agent code and
state to be moved from one location to another.

Physical mobility in Cama is implemented using connectivity of the devices
to the locations. When such a connectivity is established, the agent running
on the device receives a special event notifying it about the discovery of the
new location. Cama allows any agent to access the list of active locations it is
connected to at any time. An agent receives a predefined disconnection excep-
tion when the connectivity is lost. To support this functionality, the location
middleware periodically sends heart-beats messages in the proximity.

The Cama middleware does not support logical mobility as the first class
concept since the Cama architecture does not allow locations to see each other.
Nevertheless, agent migration can be provided through the standard inter-agent
communication. Data can be moved between locations in Cama by agents work-
ing at both locations at the same time, or by an agent physically migrating be-
tween two locations or by using some other capability supporting data transfer
between locations. In particular, we have implemented a simple proof-of-concept
support ensuring weak code mobility. In this implementation, a dedicated agent
provides a service of data transfer between locations using internet or LAN net-
working. Using this service, any agent can transfer itself or another agent to
another location.

2.2 Fault Tolerance

The Cama framework supports application-level fault tolerance by providing a
set of abstractions and a supporting middleware that allow developers to de-
sign effective error detection and recovery mechanisms. The main means for
implementing fault tolerance in Cama is a novel exception handling mechanism
which associates scopes with the exception contexts. Scope nesting provides re-
cursive system structuring and error confinement. In addition to this, the Cama

middleware supports a number of predefined exceptions (such as the connection-
disconnection exceptions and the violation of the scope constraints exceptions).

In developing the exception handling support for Cama, we relied on our
previous work reported in [7], in which we proposed and evaluated a novel ex-
ception handling scheme developed for coordination-based agent applications.
Here we give a brief overview of our exception handling mechanism; the full
description can be found in [11]. The main novelty of the Cama mechanism is
that it explicitly links nested scopes with the exception contexts.

Exception handling in Cama allows fast and effective application recovery by
supporting flexible choice of the handling scope and of the exception propagation
policy. The mechanism of the exception propagation is complimentary to the
application-level exception handling. All the recovery actions are implemented

by application-specific handlers attached to the agents. The ultimate task of
the propagation mechanism is to transfer the exceptions between agents in a
reliable and secure way. However, the freedom of agent behaviour in agent-based
systems does not allow any guarantees of reliable exception propagation to be
given in a general case. In particular, the situations can be clearly identified when
exceptions may be lost or not delivered within a predictable time period. This
is the case for Cama as well. To alleviate this, for example, in a mobile agent
application requiring cooperative exception handling involving several agents,
agents behaviour must be constrained in some way to prevent any unexpected
migrations or disconnections. In our ongoing work we are developing techniques
supporting formal analysis of exception handling behaviour of the multi-agent
systems.

There are three basic operations available to the Cama agents for catching
and raising inter-agent exceptions. These functionalities are complementary and
orthogonal to the application-level mechanism used for programming internal
agent behaviour.

The raise operation propagates an exception to an agent or a scope. There
are two variants of this operation:

– raise(m, e) - raises exception e as a reaction to message m. The message is
used to trace the producer and to deliver an exception to it. The operation
fails if the destination agent has already left the scope in which the message
was produced.

– raise(s, e) - raises exception e in all participants of scope s.

The crucial requirement for the propagation mechanism is to preserve all the es-
sential properties of agent systems such as anonymity, dynamicity and openness.
The exception propagation mechanism does not violate the concept of anonymity
since we prevent the disclosure of agent names at any stage of the propagation
process. Note that the raise operation does not deal with names or addresses
of agents. Moreover, we guarantee that our propagation method cannot be used
to learn the names of other agents.

Two other operations, check and wait are used to explicitly poll and wait
for inter-agent exceptions:

– check - raises exception E(e) if there are any pending exceptions for the
calling agent.

– wait - waits until any inter-agent exception appears for the agent and raises
it in the same way as the check operation.

Systematic use of exception handling should allow developers to design mo-
bile agent applications tolerating a broad range of faults, including disconnec-
tions, agent mismatches, malicious or unanticipated agent activity, violations
of system properties, potentially harmful changes in the system environment,
reduced amount of resource available, as well as users’ mistakes.

Unfortunately, there has not been much work carried out in this area. Tri-
pathi and Miller [12] introduces a guardian model in which each agent has a

dedicated guardian responsible for handling all agent exception. This model is
general enough to be applied in many types of mobile systems but it does not di-
rectly address the specific characteristics of the coordination paradigm. Another
relevant work is on exception handling in a concurrent object-oriented language
called Oz [13]. In this system, exceptions can be propagated between the mo-
bile callee and caller objects. The approach proposed is not applicable to the
coordination- based mobile systems. Moreover, the main intention behind this
work is not to support the development of open dynamic agent applications.

2.3 Cama Implementation

In the current version of the Cama system, the location middleware is imple-
mented in C (we call it cCama). This allows us to achieve the best possible
performance of the coordination space and to effectively implement numerous
extension, such as the scoping mechanism. The location middleware implemen-
tation is quite compact - it consists of approximately 6000 lines of C code and
should run on most Unix platforms. We have so far tested it on Linux FC2 and
Solaris 10. The full implementation of the location middleware is available at
SourceForge [14].

The Cama middleware does not suffer from scalability problems inherent to
system for distributed tuples spaces or a remote tuple access features. Due to
the local nature of coordination in Cama, the complexity of coordination rises
linearly and has a small coefficient.

Fig. 2. The performance of Lime compared to that of Cama

Fig. 2 compares the performance of Lime and Cama systems. Results for
both systems are given on the same scale. In each run, a given number of agents

perform non-destructive read on 1000 distinct tuples (each tuple is around 1000
bytes in size). The Y-axis represents the execution time in seconds and the X-axis
represents the number of agents simultaneously reading from the tuple space.

Fig. 3. Comparative performance of Cama and other Linda-style tuple space systems

Fig. 3 presents another set of results from our experiment. Different bar
shades correspond to different test cases. Test cases are made of a fixed number
of out and rd operations with different tuple sizes and number of tuples. This
experiment shows that Cama performance compares favourably against several
other Linda-style tuple space systems, such as LighTS [15] (which is a part of
Lime), TSpaces [16] and GigaSpaces [17].

In order to use the location middleware mentioned above, we have developed
a Cama adaptation layer in Java1 called jCama. This adaptation layer defines
several classes for representing – among others – the abstract notions of Location,
Scope and Linda coordination primitives. jCama provides an interface through
which mobile agents or applications can be developed easily.

A diagrammatical representation of the Cama-based system architecture can
be seen in Fig. 4. Each platform carries a copy of jCama. Agents residing on a
platform uses the features provided by jCama to connect over the wireless or
wired network to the cCama location middleware.

It is possible to construct other adaptation layers for different platforms
and languages. For now, the jCama Java adaptation layer outlined above per-
mits agent development for PocketPC-based PDAs. It has a very small footprint
(˜60Kb) and can be used with both standard Java and J2ME. In the future we
plan to develop adaptation layers for other languages such as Python and Visual
Basic, as well as versions compatible for smartphone devices.

3 Ambient Lecture Application

This case study provides a demonstration on how the Cama framework can
be used in developing open, dynamic and pervasive systems involving people
carrying hand held devices (e.g. PDAs) to help them in their daily activities.

1 We use Java for developing the applications for PDAs.

cCAMA

CAMA Middleware

Platform

Agent

Adaptation Layer (jCAMA)

Keys:

N e t w o r k

Fig. 4. Cama architecture

3.1 Introduction

We focus on the activities performed by students and teachers during a lecture
(the ambient lecture scenario – see [18] for more details) and consider a set
of requirements that define this scenario. This set will be extended to cover
more general ambient campus scenarios (i.e. location-aware activities that can
be performed on campus) such as interactive/smart map, events announcer,
library application and students organiser.

There are several other projects aiming to integrate software systems – in-
cluding mobile applications – into education or campus domain. The Active-
Campus project [19] aims to provide location-based services such as Map service
(showing outdoor and indoor map of the user’s vicinity along with activities
happening there) and Buddies service (showing colleagues and their locations,
as well as sending messages to them). The ActiveCampus system is implemented
as a web server using PHP and MySQL. ActiveClass [20] is a client-server ap-
plication for encouraging in-class participation using PDAs allowing students to
ask questions regarding the lecture in anonymous manner, hence overcoming the
problem of shyness among many students.

Gay et. al. carried out an experiment investigating the effects of wireless
computing in classroom environment [21]. Students were given laptop comput-
ers with wireless or wired connection to the internet, allowing them to use any
existing tools and services such as web browsers, word processors, instant mes-
saging software – as well as any additional software they wish to install. The
results suggest that the introduction of wireless computing in learning environ-
ments can potentially affect the development, maintenance and transformation
of learning communities, but not every teaching activity or learning community
can or should successfully integrate mobile computing applications.

Classtalk [22] is a classroom communication system that allows teacher to
present questions for small group work, collect the answers and display the his-
tograms showing how the class answered those questions. Up to four students
can be in one group, sharing one input device (a palmtop), which is wired to the
central computer controlled by the teacher.

Similar to Classtalk, our system allows students to be grouped together in or-
der to carry out some task given by the teacher. The novelty of our approach lies
in the communication channel (wireless instead of wired connection) as well as in
using the framework for supporting scoping and fault tolerance (the mechanisms
described in Sect. 2).

3.2 Traceable Requirements

We started our work on the scenario by producing a requirements document [23],
which consists of an explanatory text, diagrams, and requirements definitions.
The requirements definitions are arranged using a specially-developed taxon-
omy which allows us to structure them according to various views on system
behaviour, including: environment (EN), agent states (ST), service requirements
and restrictions (SV), security (SE) and fault tolerance (FT). Each requirement
is given a number within the group, for example:

EN 1: The scenario is composed of users, locations and ambient

computing environment (ACE)

ST 5: Lecture state has two sub-states: individual state and

group state

SV 1: For ACE-supported lecture to begin, there should be one

teacher agent and several student agents in the same location

SE 5: Each student agent belongs to only one group at any

given time during a lecture

FT 14: Migration activity must tolerate wireless disconnection

and loss of ACE support

At the high level, the system consists of users (people participating in the
scenario, i.e. teachers and students), locations (rooms with wireless connectiv-
ity) and ambient computing environment (ACE). ACE is composed of wire-
less hotspots, software agents and computing platforms (desktop computers or
PDAs) on which the agents are run.

The interactions among users are done through agents. Each location pro-
vides a Cama location middleware through which agents exchange information.
Agents connect to the location middleware using the wireless hotspot available
in each room.

Each teacher and student has an agent associated with him/her and assist-
ing his/her participation in the lecture. During a lecture, the teacher and the
students can be engaged in the following activities: lecture initiation, material
dissemination, organisation of students into groups, individual or group student
work, and questions and answers session.

3.3 Design

The ambient lecture system is being designed to meet the requirements in [23].
In this design, each classroom is a location with a wireless support, in which a
lecture is conducted. An agent can take one of the two roles: teacher or student.
The teacher agent runs on a desktop computer available in the classroom, while
student agents are executed on PDAs (each student is given a PDA).

We use the scoping mechanism described in Sect. 2.1 to structure the system.
The teacher agent creates the outer scope constituting the lecture which student
agents join. A lecture starts when there is one teacher agent and a predefined
number of student agents joining this scope.

To support better system structuring, data and behaviour encapsulation,
as well as fault tolerance, all major activities during the lecture are conducted
within subscopes (nested scopes). The group work is one of the activities per-
formed as a nested scope. The teacher – through his/her agent – arranges stu-
dents into groups, so that only students belonging to the same group can com-
municate with each other through their agent. Each group is then given a task to
solve – in this case, a B specification [24]. Students within the same group work
together towards a solution, using a shared editor to modify the specification,
and carrying out B operations such as proving and type-checking (which are
provided by the system).

At the beginning of any lecture, all agents (teacher and students alike) are
placed in the main scope. The teacher agent keeps a list of all students joining
the lecture, and through the application’s graphical user interface (GUI), the
teacher can select which students to be placed within each group.

Each group is given a unique name and the groups are mutually exclusive,
i.e. a student cannot belong to more than one group. The teacher agent creates a
subscope for each group, assigns a B project for this group to work on, and issues
a StartGroup tuple to the student agents involved so that they automatically
join the subscope they are assigned to. This is achieved by executing the Cama

JoinScope operation that uses the group name as a parameter. This structuring
guarantees that while within a group, a student can send messages to other
students belonging to the same group, but he/she will also receive any message
sent in the main lecture scope. To achieve this, the Cama middleware creates a
separate thread for each role inside a subscope.

The full details of the operations that can be carried out by both the teacher
and the student agents during the ambient lecture can be seen in [18]. Here we
outline the operations for the group work:

Teacher

The teacher prepares the group work by organising the students into
groups, assigning a B project for each group to work on, and monitoring
each group.
– Assigns a B project to a group

Each group will be given a B project to work on, which contains at
least one B machine specification that the students need to edit and
run B commands on.

– Watches the activity of each student
This monitoring activity is useful to measure each student’s par-
ticipation during the group work. A passive student might require
further help or different group arrangements might be needed.

– Inspects edited files
The teacher can check the progress of the group work by inspecting
the changes that the students made on the files and by checking the
status of the B commands already issued.

– Assists by editing files
The teacher may modify the B machine specification files in order
to make it clearer for the students how to solve the problem, or to
”reset” the file if the students made too many mistakes.

– Takes part in a discussion
The teacher may help the students to understand the problem they
are trying to solve by asking probing questions as well as giving hints
and advice.

– Forces unlocking of resources
If a student appears to hold a file for too long (this could happen,
say if the student agent crashes), the teacher can manually unlock
the file to allow other students to edit it.

Student

The students’ actions during group work mostly concern with editing B
machine specification and carrying out the B commands such as proving
and type-checking. They can also communicate with other student agents
within their group, the teacher, as well other student agents in the global
lecture scope. We are thinking about disabling the communication with
other student agents in the global scope.

– Chooses a file to work on within a project
Each project will have a list of associated files, and the student can
choose which file to work on. This file represents a B machine spec-
ification and each student is allowed to work with only one file at a
time.

– Edits a file
There is a shared editor window that provides concurrency control
(multiple readers, one writer) for editing a file. A student agent needs
to obtain a lock before it can edit a file. We decided to use a non-
blocking mechanism for obtaining the lock, so that the student can
carry on with other activities if somebody else possesses the lock at
that time. Only one agent can edit each file at any one time, although
other agents can read the content of this file and see the update in
real time. The lock must be released by the writing agent upon the
completion of the editing process.

– Proves/model checks/type-checks/does interactive proving
The Ambient Lecture software allows the students to carry out these
commands on the B machine specification they are working with.

With the current implementation, the student agents are not re-
quired to obtain the editing lock first before carrying out these com-
mands. We agree that this is not a desirable feature, and we will fix
this in the later implementation.

– Takes part in a discussion
During the discussion, students may ask questions, and other stu-
dents in the group may provide the answer. If the questions remain
unanswered, the group may ask the teacher for assistance.

– Asks teacher’s assistance
The teacher monitors group work, and from time to time, students
may ask the teacher for clarification on the task they are working at.

– Sends messages to other students
Students can send messages to other students in the same group.

Students cannot explicitly leave a group; only the teacher can decide
whether a student must leave a group, for example at the end of the
group work. Students can leave the Ambient Lecture setting altogether
though, and when this happens, they will automatically leave the group
subscope as well.

Following the fault tolerance requirements, the agents handle a number of
potentially erroneous conditions. Some of them are detected by the agents them-
selves, others are detected by the middleware which raises predefined exceptions
declared in the signatures of the Cama operations. One example of these ex-
ceptions is the CamaExceptionNoRights exception, indicating that the agent
concerned has no right to be in a particular scope, hence it cannot send or
receive messages from the tuple space.

3.4 Implementation

We developed an application for the group work activity described in Sect. 3.3.
There are two sets of agent software: Teacher and Student. Commands and
data are passed as tuples through the tuple space provided by the location
middleware.

Each agent runs at least two threads of execution: one thread handles the
GUI and provides a means for sending tuples to the tuple space; another thread
polls tuples from the tuple space and interprets the command contained in them.
More threads are created when subscoping is used, so that an agent can also poll
tuples from within the subscopes.

Fig. 5 shows a snippet of the code for the Teacher agent, demonstrating how
the lecture scope is initiated. Agents can join as a Teacher or a Student. In
this example, only one Teacher agent is allowed, along with up to ten Student

agents. An exception will be raised if this restriction is violated.
Fig. 6 shows the ”Lecture Overview” screen-capture of the Teacher agent.

The icon S represents a student, the icon G represents a group, and the icon R

represents a resource or a file containing B specification. It shows that there are

try {

// Connect to the location middleware

Connection connection = new Connection("Teacher",

server, portNo);

Scope lambda = connection.lambda();

// Create a lecture scope that allows 1 Teacher

// agent and up to 10 Student agents.

ScopeDescr sd = new ScopeDescr(2, "lectureScope").

add(new RoleRest("Teacher", 1,1)).

add(new RoleRest("Student", 0,10));

workScope = lambda.CreateScope("lectureScope", sd);

// Join the scope and make the scope public

workScope = workScope.JoinScope("Teacher");

workScope.PutScope();

}

catch(CamaExceptionInvalidReqs e) { ... }

catch(CamaExceptionNoRoles e) { ... }

...

Fig. 5. Sample code: scope creation by the Teacher agent

three Student agents: ”Bob” and ”Alice” (these agents are run from a desktop
computer) and ”John” (run from a PDA).

At some stage, the Teacher agent places Alice and John into ”Group1”. Alice
is shown viewing a specification file called ”Chat” while John is editing it. Fig.
7 on the left shows the screen-capture of the PDA used by John as he edits the
Chat specification. Alice then asks John (through the group messenger) to carry
out type-checking on this specification, as can be seen on the right hand side of
Fig. 7.

4 Future Work

Our long-term goal is to support formal development of fault tolerant mobile
agent systems. To achieve this goal, we are developing a number of formal no-
tations and models defining the Cama abstractions and the Cama middleware
(some initial results are reported in [25]). We are now working on a top-down de-
sign methodology that insures that these systems are correct-by-construction. To
ensure the application security, we will use an appropriate encryption mechanism
that allows messages to be securely sent between PDAs and the location server.
Our other plan is to implement the Cama location middleware for PDAs to sup-
port applications in which locations are physically mobile. In our future work
on Cama for smartphone devices, we will address the facts that smartphones
have capabilities that are different from PDAs. For example, smartphones utilise
other means for connectivity (such as bluetooth and gprs), which might imply
the need to adapt the communication support provided by Cama.

Fig. 6. Screen capture of the Teacher agent’s Lecture Overview

Fig. 7. Screen capture of John editing Chat specification and receiving a group message
from Alice

5 Acknowledgements

This work is supported by the IST RODIN Project [26]. A. Iliasov is partially
supported by the ORS award (UK).

References

1. Gelernter, D.: Generative Communication in Linda. ACM Transactions on Pro-
gramming Languages and Systems 7(1) (1985) 80–112

2. Picco, G.P., Murphy, A.L., Roman, G.C.: Lime: Linda Meets Mobility. In: Proceed-
ings of 21st Int. Conference on Software Engineering (ICSE’99). (1999) 368–377

3. Bettini, L., Bono, V., Nicola, R.D., Ferrari, G., Gorla, D., Loreti, M., Moggi, E.,
Pugliese, R., Tuosto, E., Venneri, B.: The Klaim Project: Theory and Practice.
In Priami, C., ed.: Global Computing: Programming Environments, Languages,
Security and Analysis of Systems, LNCS 2874, Springer-Verlag (2003) 88–150

4. Omicini, A., Zambonelli, F.: Tuple Centres for the Coordination of Internet Agents.
In: SAC ’99: Proceedings of the 1999 ACM symposium on Applied computing, New
York, NY, USA, ACM Press (1999) 183–190

5. Bettini, L., Nicola, R.D.: Translating Strong Mobility into Weak Mobility. In Picco,
G., ed.: Proceedings of 5th IEEE International Conference on Mobile Agents (MA),
LNCS 2240, Springer (2001) 182–197

6. Cristian, F.: Exception Handling and Fault Tolerance of Software Faults. In Lyu,
M., ed.: Software Fault Tolerance. Wiley, NY (1995) 81–107

7. Iliasov, A., Romanovsky, A.: Exception Handling in Coordination-based Mobile
Environments. In: Proceedings of the 29th Annual International Computer Soft-
ware and Applications Conference (COMPSAC 2005), IEEE Computer Society
Press (2005) 341–350

8. Roman, G.C., Julien, C., Payton, J.: A Formal Treatment of Context-Awareness.
In Wermelinger, M., Margaria, T., eds.: Fundamental Approaches to Software Engi-
neering, 7th International Conference, FASE 2004, part of the Joint European Con-
ferences on Theory and Practice of Software, ETAPS 2004, LNCS 2984. Springer
(2004) 12–36

9. Satoh, I.: MobileSpaces: A Framework for Building Adaptive Distributed Appli-
cations using a Hierarchical Mobile Agent System. In: Proceedings of the ICDCS
2000. (2000) 161–168

10. Merrick, I., Wood, A.: Coordination with Scopes. In: Proceedings of the ACM
Symposium on Applied Computing 2000. (2000) 210–217

11. Iliasov, A., Romanovsky, A.: Structured Coordination Spaces for Fault Tolerant
Mobile Agents. In Dony, C., Knudsen, J.L., Romanovsky, A., Tripathi, A., eds.:
LNCS 4119. (2006) 181–199

12. Tripathi, A., Miller, R.: Exception Handling in Agent-oriented Systems. In: Pro-
ceedings of the 21st IEEE Symposium on Reliable Distributed Systems (SRDS’02),
ACM Press (2002) 304–315

13. van Roy, P., Haridi, S., Brand, P., Smalka, G., Mehl, M., Scheidhauer, R.: Mobile
Objects in Distributed Oz. ACM Transactions on Programming Languages and
Systems 19(5) (1997) 804–851

14. Iliasov, A.: Implementation of Cama Middleware.
http://sourceforge.net/projects/cama (Last accessed: 3 Jan 2007)

15. Balzarotti, D., Costa, P.: LighTS: A Lightweight, Customizable Tuple Space
Supporting Context-Aware Applications. In: Proceedings of the 20th An-
nual ACM Symposium on Applied Computing (SAC 2005), ACM Press (2005)
http://lights.sourceforge.net/ (Last accessed: 3 Jan 2007).

16. IBM: TSpaces. http://www.almaden.ibm.com/cs/TSpaces/ (Last accessed: 3 Jan
2007)

17. GigaSpaces: Grid Computing - Distributed Computing Application Server.
http://www.gigaspaces.com/ (Last accessed: 3 Jan 2007)

18. Troubitsyna, E., ed.: Rodin Deliverable D18: Intermediate Report on Case Study
Development. Project IST-511599, School of Computing Science, University of
Newcastle (2006)

19. Griswold, W.G., Shanahan, P., Brown, S.W., Boyer, R., Ratto, M., Shapiro, R.B.,
Truong, T.M.: ActiveCampus - Experiments in Community-Oriented Ubiquitous
Computing. IEEE Computer 37(10) (2004) 73–81, http://activecampus.ucsd.edu/
(Last accessed: 3 Jan 2007).

20. Ratto, M., Shapiro, R.B., Truong, T.M., Griswold, W.G.: The ActiveClass Project:
Experiments in Encouraging Classroom Participation. In: Computer Support for
Collaborative Learning 2003, Kluwer (2003) 477–486

21. Gay, G., Stefanone, M., Grace-Martin, M., Hembrooke, H.: The Effects of Wire-
less Computing in Collaborative Learning Environments. International Journal of
Human-Computer Interaction 13(2) (2001) 257–276

22. Dufresne, R.J., Gerace, W.J., Leonard, W.J., Mestre, J.P., Wenk, L.: Classtalk: A
Classroom Communication System for Active Learning. Journal of Computing in
Higher Education 7 (1996) 3–47

23. Arief, B., Coleman, J., Hall, A., Hilton, A., Iliasov, A., Johnson, I., Jones, C.,
Laibinis, L., Leppanen, S., Oliver, I., Romanovsky, A., Snook, C., Troubitsyna,
E., Ziegler, J.: Rodin Deliverable D4: Traceable Requirements Document for Case
Studies. Technical report, Project IST-511599, School of Computing Science, Uni-
versity of Newcastle (2005)

24. Abrial, J.R.: The B-Book: Assigning Programs to Meanings. Cambridge University
Press (2005)

25. Iliasov, A., Laibinis, L., Romanovsky, A., Troubitsyna, E.: Towards Formal De-
velopment of Mobile Location-based Systems, Presented at REFT 2005 Workshop
on Rigorous Engineering of Fault-Tolerant Systems, Newcastle Upon Tyne, UK
(http://rodin.cs.ncl.ac.uk/events.htm) (June 2005)

26. Rodin: Rigorous Open Development Environment for Complex Systems. IST FP6
STREP project, http://rodin.cs.ncl.ac.uk/ (Last accessed: 3 Jan 2007)

