7,377 research outputs found

    The Research Object Suite of Ontologies: Sharing and Exchanging Research Data and Methods on the Open Web

    Get PDF
    Research in life sciences is increasingly being conducted in a digital and online environment. In particular, life scientists have been pioneers in embracing new computational tools to conduct their investigations. To support the sharing of digital objects produced during such research investigations, we have witnessed in the last few years the emergence of specialized repositories, e.g., DataVerse and FigShare. Such repositories provide users with the means to share and publish datasets that were used or generated in research investigations. While these repositories have proven their usefulness, interpreting and reusing evidence for most research results is a challenging task. Additional contextual descriptions are needed to understand how those results were generated and/or the circumstances under which they were concluded. Because of this, scientists are calling for models that go beyond the publication of datasets to systematically capture the life cycle of scientific investigations and provide a single entry point to access the information about the hypothesis investigated, the datasets used, the experiments carried out, the results of the experiments, the people involved in the research, etc. In this paper we present the Research Object (RO) suite of ontologies, which provide a structured container to encapsulate research data and methods along with essential metadata descriptions. Research Objects are portable units that enable the sharing, preservation, interpretation and reuse of research investigation results. The ontologies we present have been designed in the light of requirements that we gathered from life scientists. They have been built upon existing popular vocabularies to facilitate interoperability. Furthermore, we have developed tools to support the creation and sharing of Research Objects, thereby promoting and facilitating their adoption.Comment: 20 page

    Drag it together with Groupie: making RDF data authoring easy and fun for anyone

    No full text
    One of the foremost challenges towards realizing a “Read-write Web of Data” [3] is making it possible for everyday computer users to easily find, manipulate, create, and publish data back to the Web so that it can be made available for others to use. However, many aspects of Linked Data make authoring and manipulation difficult for “normal” (ie non-coder) end-users. First, data can be high-dimensional, having arbitrary many properties per “instance”, and interlinked to arbitrary many other instances in a many different ways. Second, collections of Linked Data tend to be vastly more heterogeneous than in typical structured databases, where instances are kept in uniform collections (e.g., database tables). Third, while highly flexible, the problem of having all structures reduced as a graph is verbosity: even simple structures can appear complex. Finally, many of the concepts involved in linked data authoring - for example, terms used to define ontologies are highly abstract and foreign to regular citizen-users.To counter this complexity we have devised a drag-and-drop direct manipulation interface that makes authoring Linked Data easy, fun, and accessible to a wide audience. Groupie allows users to author data simply by dragging blobs representing entities into other entities to compose relationships, establishing one relational link at a time. Since the underlying representation is RDF, Groupie facilitates the inclusion of references to entities and properties defined elsewhere on the Web through integration with popular Linked Data indexing services. Finally, to make it easy for new users to build upon others’ work, Groupie provides a communal space where all data sets created by users can be shared, cloned and modified, allowing individual users to help each other model complex domains thereby leveraging collective intelligence

    A Framework for Semi-automated Web Service Composition in Semantic Web

    Full text link
    Number of web services available on Internet and its usage are increasing very fast. In many cases, one service is not enough to complete the business requirement; composition of web services is carried out. Autonomous composition of web services to achieve new functionality is generating considerable attention in semantic web domain. Development time and effort for new applications can be reduced with service composition. Various approaches to carry out automated composition of web services are discussed in literature. Web service composition using ontologies is one of the effective approaches. In this paper we demonstrate how the ontology based composition can be made faster for each customer. We propose a framework to provide precomposed web services to fulfil user requirements. We detail how ontology merging can be used for composition which expedites the whole process. We discuss how framework provides customer specific ontology merging and repository. We also elaborate on how merging of ontologies is carried out.Comment: 6 pages, 9 figures; CUBE 2013 International Conferenc

    Onto Collab: Strategic review oriented collaborative knowledge modeling using ontologies

    Get PDF
    Modeling efficient knowledge bases for improving the semantic property of the World Wide Web is mandatory for promoting innovations and developments in World Wide Web. There is a need for efficient and organized modeling of the knowledge bases. In this paper, a strategy Onto Collab is proposed for construction of knowledge bases using ontology modeling. Ontologies are visualized as the basic building blocks of the knowledge in the web. The cognitive bridge between the human conceptual understanding of real world data and the processable data by computing systems is represented by Ontologies. A domain is visualized as a collection of similar ontologies. A review based strategy is proposed over a secure messaging system to author ontologies and a platform for retracing the domain ontologies as individuals and as a team is proposed. Evaluations for ontologies constructed pertaining to a domain for non-wiki knowledge bases is carried out

    Technology Integration around the Geographic Information: A State of the Art

    Get PDF
    One of the elements that have popularized and facilitated the use of geographical information on a variety of computational applications has been the use of Web maps; this has opened new research challenges on different subjects, from locating places and people, the study of social behavior or the analyzing of the hidden structures of the terms used in a natural language query used for locating a place. However, the use of geographic information under technological features is not new, instead it has been part of a development and technological integration process. This paper presents a state of the art review about the application of geographic information under different approaches: its use on location based services, the collaborative user participation on it, its contextual-awareness, its use in the Semantic Web and the challenges of its use in natural languge queries. Finally, a prototype that integrates most of these areas is presented

    An Ontology for Product-Service Systems

    Get PDF
    Industries are transforming their business strategy from a product-centric to a more service-centric nature by bundling products and services into integrated solutions to enhance the relationship between their customers. Since Product- Service Systems design research is currently at a rudimentary stage, the development of a robust ontology for this area would be helpful. The advantages of a standardized ontology are that it could help researchers and practitioners to communicate their views without ambiguity and thus encourage the conception and implementation of useful methods and tools. In this paper, an initial structure of a PSS ontology from the design perspective is proposed and evaluated

    A Survey of Volunteered Open Geo-Knowledge Bases in the Semantic Web

    Full text link
    Over the past decade, rapid advances in web technologies, coupled with innovative models of spatial data collection and consumption, have generated a robust growth in geo-referenced information, resulting in spatial information overload. Increasing 'geographic intelligence' in traditional text-based information retrieval has become a prominent approach to respond to this issue and to fulfill users' spatial information needs. Numerous efforts in the Semantic Geospatial Web, Volunteered Geographic Information (VGI), and the Linking Open Data initiative have converged in a constellation of open knowledge bases, freely available online. In this article, we survey these open knowledge bases, focusing on their geospatial dimension. Particular attention is devoted to the crucial issue of the quality of geo-knowledge bases, as well as of crowdsourced data. A new knowledge base, the OpenStreetMap Semantic Network, is outlined as our contribution to this area. Research directions in information integration and Geographic Information Retrieval (GIR) are then reviewed, with a critical discussion of their current limitations and future prospects

    Geospatial information infrastructures

    Get PDF
    Manual of Digital Earth / Editors: Huadong Guo, Michael F. Goodchild, Alessandro Annoni .- Springer, 2020 .- ISBN: 978-981-32-9915-3Geospatial information infrastructures (GIIs) provide the technological, semantic,organizationalandlegalstructurethatallowforthediscovery,sharing,and use of geospatial information (GI). In this chapter, we introduce the overall concept and surrounding notions such as geographic information systems (GIS) and spatial datainfrastructures(SDI).WeoutlinethehistoryofGIIsintermsoftheorganizational andtechnologicaldevelopmentsaswellasthecurrentstate-of-art,andreïŹ‚ectonsome of the central challenges and possible future trajectories. We focus on the tension betweenincreasedneedsforstandardizationandtheever-acceleratingtechnological changes. We conclude that GIIs evolved as a strong underpinning contribution to implementation of the Digital Earth vision. In the future, these infrastructures are challengedtobecomeïŹ‚exibleandrobustenoughtoabsorbandembracetechnological transformationsandtheaccompanyingsocietalandorganizationalimplications.With this contribution, we present the reader a comprehensive overview of the ïŹeld and a solid basis for reïŹ‚ections about future developments

    at the 14th Conference of the Spanish Association for Artificial Intelligence (CAEPIA 2011)

    Get PDF
    Technical Report TR-2011/1, Department of Languages and Computation. University of Almeria November 2011. JoaquĂ­n Cañadas, Grzegorz J. Nalepa, Joachim Baumeister (Editors)The seventh workshop on Knowledge Engineering and Software Engineering (KESE7) was held at the Conference of the Spanish Association for Artificial Intelligence (CAEPIA-2011) in La Laguna (Tenerife), Spain, and brought together researchers and practitioners from both fields of software engineering and artificial intelligence. The intention was to give ample space for exchanging latest research results as well as knowledge about practical experience.University of AlmerĂ­a, AlmerĂ­a, Spain. AGH University of Science and Technology, KrakĂłw, Poland. University of WĂŒrzburg, WĂŒrzburg, Germany
    • 

    corecore