11,200 research outputs found

    City Data Fusion: Sensor Data Fusion in the Internet of Things

    Full text link
    Internet of Things (IoT) has gained substantial attention recently and play a significant role in smart city application deployments. A number of such smart city applications depend on sensor fusion capabilities in the cloud from diverse data sources. We introduce the concept of IoT and present in detail ten different parameters that govern our sensor data fusion evaluation framework. We then evaluate the current state-of-the art in sensor data fusion against our sensor data fusion framework. Our main goal is to examine and survey different sensor data fusion research efforts based on our evaluation framework. The major open research issues related to sensor data fusion are also presented.Comment: Accepted to be published in International Journal of Distributed Systems and Technologies (IJDST), 201

    Integrative Use of Information Extraction, Semantic Matchmaking and Adaptive Coupling Techniques in Support of Distributed Information Processing and Decision-Making

    No full text
    In order to press maximal cognitive benefit from their social, technological and informational environments, military coalitions need to understand how best to exploit available information assets as well as how best to organize their socially-distributed information processing activities. The International Technology Alliance (ITA) program is beginning to address the challenges associated with enhanced cognition in military coalition environments by integrating a variety of research and development efforts. In particular, research in one component of the ITA ('Project 4: Shared Understanding and Information Exploitation') is seeking to develop capabilities that enable military coalitions to better exploit and distribute networked information assets in the service of collective cognitive outcomes (e.g. improved decision-making). In this paper, we provide an overview of the various research activities in Project 4. We also show how these research activities complement one another in terms of supporting coalition-based collective cognition

    Proximal business intelligence on the semantic web

    Get PDF
    This is the post-print version of this article. The official version can be accessed from the link below - Copyright @ 2010 Springer.Ubiquitous information systems (UBIS) extend current Information System thinking to explicitly differentiate technology between devices and software components with relation to people and process. Adapting business data and management information to support specific user actions in context is an ongoing topic of research. Approaches typically focus on providing mechanisms to improve specific information access and transcoding but not on how the information can be accessed in a mobile, dynamic and ad-hoc manner. Although web ontology has been used to facilitate the loading of data warehouses, less research has been carried out on ontology based mobile reporting. This paper explores how business data can be modeled and accessed using the web ontology language and then re-used to provide the invisibility of pervasive access; uncovering more effective architectural models for adaptive information system strategies of this type. This exploratory work is guided in part by a vision of business intelligence that is highly distributed, mobile and fluid, adapting to sensory understanding of the underlying environment in which it operates. A proof-of concept mobile and ambient data access architecture is developed in order to further test the viability of such an approach. The paper concludes with an ontology engineering framework for systems of this type – named UBIS-ONTO

    Integrating an agent-based wireless sensor network within an existing multi-agent condition monitoring system

    Get PDF
    The use of wireless sensor networks for condition monitoring is gaining ground across all sectors of industry, and while their use for power engineering applications has yet been limited, they represent a viable platform for next-generation substation condition monitoring systems. For engineers to fully benefit from this new approach to condition monitoring, new sensor data must be incorporated into a single integrated system. This paper proposes the integration of an agent-based wireless sensor network with an existing agent-based condition monitoring system. It demonstrates that multi-agent systems can be extended down to the sensor level while considering the reduced energy availability of low-power embedded devices. A novel agent-based approach to data translation is presented, which is demonstrated through two case studies: a lab-based temperature and vibration monitoring system, and a proposal to integrate a wireless sensor network to an existing technology demonstrator deployed in a substation in the UK

    Self-managed cells and their federation

    Get PDF
    Future e-Health systems will consist of low-power, on-body wireless sensors attached to mobile users that interact with a ubiquitous computing environment. This kind of system needs to be able to configure itself with little or no user input; more importantly, it is required to adapt autonomously to changes such as user movement, device failure, the addition or loss of services, and proximity to other such systems. This extended abstract describes the basic architecture of a Self-Managed Cell (SMC) to address these requirements, and discusses various forms of federation between/among SMCs. This structure is motivated by a typical e-Health scenario

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications
    corecore