3 research outputs found

    Predictive modeling of PV energy production: How to set up the learning task for a better prediction?

    Get PDF
    In this paper, we tackle the problem of power prediction of several photovoltaic (PV) plants spread over an extended geographic area and connected to a power grid. The paper is intended to be a comprehensive study of one-day ahead forecast of PV energy production along several dimensions of analysis: i) The consideration of the spatio-temporal autocorrelation, which characterizes geophysical phenomena, to obtain more accurate predictions.ii) The learning setting to be considered, i.e. using simple output prediction for each hour or structured output prediction for each day. iii) The learning algorithms: We compare artificial neural networks, most often used for PV prediction forecast, and regression trees for learning adaptive models. The results obtained on two PV power plant datasets show that: taking into account spatio/temporal autocorrelation is beneficial; the structured output prediction setting significantly outperforms the non-structured output prediction setting; and regression trees provide better models than artificial neural networks

    Online system identification development based on recursive weighted least square neural networks of nonlinear hammerstein and wiener models.

    Get PDF
    The realistic dynamics mathematical model of a system is very important for analyzing a system. The mathematical system model can be derived by applying physical, thermodynamic, and chemistry laws. But this method has some drawbacks, among which is difficult for complex systems, sometimes is untraceable for nonlinear behavior that almost all systems have in the real world, and requires much knowledge. Another method is system identification which is also called experimental modeling. System identification can be made offline, but this method has a disadvantage because the features of a dynamic system may change over time. The parameters may vary as environmental conditions change. It requires big data and consumes a long time. This research introduces a developed method for online system identification based on the Hammerstein and Wiener nonlinear block-oriented structure with the artificial neural networks (NN) advantages and recursive weighted least squares algorithm for optimizing neural network learning in real-time. The proposed method aimed to obtain a maximally informative mathematical model that can describe the actual dynamic behaviors of a system, using the DC motor as a case study. The goodness of fit validation based on the normalized root-mean-square error (NRMSE) and normalized mean square error, and Theil’s inequality coefficient are used to evaluate the performance of models. Based on experimental results, for best Wiener parallel NN model and series-parallel NN model are 93.7% and 89.48%, respectively. Best Hammerstein parallel NN polynomial based model and series-parallel NN polynomial model are 88.75% and 93.9% respectively, for best Hammerstein parallel NN sigmoid based model and series-parallel NN sigmoid based model 78.26% and 95.95% respectively, and for best Hammerstein parallel NN hyperbolic tangent based model and series-parallel NN hyperbolic tangent based model 70.7% and 96.4% respectively. The best model of the developed method outperformed the conventional NARX and NARMAX methods best model by 3.26% in terms of NRMSE goodness of fit

    Deep Learning Applied to PMU Data in Power Systems

    Get PDF
    With the advent of Wide Area Measurement Systems and the consequent proliferation of digital measurement devices such as PMUs, control centers are being flooded with growing amounts of data. Therefore, operators are craving for efficient techniques to digest the incoming data, enhancing grid operations by making use of knowledge extraction. Driven by the volumes of data involved, innovative methods in the field of Artificial Intelligence are emerging for harnessing information without declaring complex analytical models. In fact, learning to recognize patterns seems to be the answer to overcome the challenges imposed by processing the huge volumes of raw data involved in PMU-based WAMS. Hence, Deep Learning Frameworks are applied as computational learning techniques so as to extract features from electrical frequency records collected by the Brazillian Medfasee BT Project. More specifically, the work developed proposes a classifier of dynamic events such as generation loss, load shedding, etc., based on frequency change
    corecore