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ABSTRACT

The realistic dynamics mathematical model of a system is very important for analyzing

a system. The mathematical system model can be derived by applying physical,

thermodynamic, and chemistry laws. But this method has some drawbacks, among

which is difficult for complex systems, sometimes is untraceable for nonlinear behavior

that almost all systems have in the real world, and requires much knowledge. Another

method is system identification which is also called experimental modeling. System

identification can be made offline, but this method has a disadvantage because the

features of a dynamic system may change over time. The parameters may vary as

environmental conditions change. It requires big data and consumes a long time. This

research introduces a developed method for online system identification based on the

Hammerstein and Wiener nonlinear block-oriented structure with the artificial neural

networks (NN) advantages and recursive weighted least squares algorithm for optimizing

neural network learning in real-time. The proposed method aimed to obtain a maximally

informative mathematical model that can describe the actual dynamic behaviors of a

system, using the DC motor as a case study. The goodness of fit validation based on

the normalized root-mean-square error (NRMSE) and normalized mean square error, and

Theil’s inequality coefficient are used to evaluate the performance of models. Based on

experimental results, for best Wiener parallel NN model and series-parallel NN model

are 93.7% and 89.48%, respectively. Best Hammerstein parallel NN polynomial based

model and series-parallel NN polynomial model are 88.75% and 93.9% respectively,

for best Hammerstein parallel NN sigmoid based model and series-parallel NN sigmoid

based model 78.26% and 95.95% respectively, and for best Hammerstein parallel NN

hyperbolic tangent based model and series-parallel NN hyperbolic tangent based model

70.7% and 96.4% respectively. The best model of the developed method outperformed the

conventional NARX and NARMAX methods best model by 3.26% in terms of NRMSE

goodness of fit.
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ABSTRAK

Model matematik yang dinamik pada sesuatu sistem adalah sangat penting untuk

menganalisis sistem tersebut. Sistem model matematik dapat diterbitkan dengan

menerapkan hukum fizik, termodinamik dan kimia. Tetapi kaedah ini mempunyai

beberapa kelemahan, antaranya sukar untuk sistem yang kompleks, kadangkala tidak

dapat dikesan untuk tingkah laku tidak linear yang hampir semua sistem ada di dunia

nyata, dan memerlukan banyak pengetahuan. Kaedah lain ialah dengan menggunakan

pengenalan sistem, dan ia juga dipanggil pemodelan secara eksperimen. Pengenalpastian

sistem boleh dibuat di luar talian, tetapi kaedah ini mempunyai kelemahan kerana ciri

sistem dinamik mungkin berubah dari semasa ke semasa. Parameter mungkin berbeza

apabila keadaan persekitaran berubah. Ia memerlukan data yang besar dan memakan

masa yang lama. Penyelidikan ini memperkenalkan kaedah yang dikembangkan untuk

pengenalpastian sistem dalam waktu nyata berdasarkan struktur berorientasikan blok

tidak linear Hammerstein dan Wiener dengan kelebihan rangkaian neural tiruan (NN) dan

algoritma kuadrat terkecil rekursif untuk mengoptimumkan pembelajaran rangkaian saraf

di waktu sebenar. Kaedah yang dicadangkan bertujuan untuk mendapatkan maklumat

model matematik maksimum yang dapat menggambarkan tingkah laku dinamik sebenar

sesuatu sistem dengan menggunakan DC motor sebagai kajian kes. Pengesahan kebaikan

fit berdasarkan ralat punca-punca persegi normal, ralat segiempat sama normal, dan pekali

ketaksamaan Theil digunakan untuk menilai prestasi model berbanding dengan keluaran

sebenar. Berdasarkan keputusan eksperimen, untuk model NN selari Wiener terbaik

dan model NN selari-siri masing-masing ialah 93.7% dan 89.48%. Model berasaskan

polinomial NN selari Hammerstein terbaik dan model polinomial NN selari siri masing-

masing ialah 88.75% dan 93.9%, untukmodel berasaskan sigmoid NN selari Hammerstein

terbaik dan model berasaskan sigmoid NN selari siri masing-masing 78.26% dan 95.95%,

dan untuk model berasaskan hiperbolik tangen NN selari Hammerstein terbaik dan model

berasaskan hiperbolik tangen NN selari siri masing-masing 70.7% dan 96.4%. Model

terbaik bagi kaedah yang dibangunkan melebihi model terbaik kaedah NARX dan

NARMAX konvensional sebanyak 3.26% dari segi kesesuaian NRMSE.
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CHAPTER 1

INTRODUCTION

1.1 Background of the study

System identification is a tool used to construct a mathematical model that defines

characteristics of a system (or process’s characteristics) by establishing a relationship

between its parameters and variables built on finding the relation between the actual input

of the system and the related measurable output data [1]. The appropriate model, for a

specific system, is determined according to the function which is intended to perform.

Therefore, there are many models for the same physical system, each with varying levels

of accuracy according to the phenomena under study. The importance of models is emitted

from giving a description of a system and making predictions about how a system will

behave [2].

The mathematical model for a dynamic system can be derived by applying a first

principle modeling method known as the white-box modeling method [3]. It is founded

on prior knowledge of the phenomena being represented as well as universal equations

that may be used to construct the model. The models of this type are underpinned by the

conservation of energy, mass, and momentum principles, e.g., heat and mass transfer rates

and chemical or biological processes that are used to develop mathematical formulations

for these conservation laws [4]. The general nature of those mathematical relationships

is commonly considered. Nevertheless, they are restricted by understanding fundamental

concepts, and their mathematical solution methods are often complicated, necessitating

simplifying assumptions. Furthermore, the data required is frequently enormous, the

model’s uncertainties cannot be included, and the environmental error that comes in the

system is usually ignored [5, 6].

On the other hand, deriving a mathematical model for a dynamic system from

monitored data (input/output data) is named system identification [7], which are not
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2

depending on prior knowledge for a specific system, such as data-driven modeling

methods known as black-box modeling methods. Or there is a certain amount of prior

knowledge but not entirely for a particular system, known as gray-box modeling methods.

There are two types of system identification: offline system identification, which can

not be used before all system data are accumulated and preprocessed, then divided to be

training and validation data sets [8, 9]. However, a dynamic system changes over time,

leaving an offline identification technique vulnerable to these changes. The parameters

may vary as environmental conditions change; this is the offline method’s major drawback

[10, 11]. The second type of system identification is online system identification, where

the model processes the new input data synchronously with the actual system to predict

the output in real-time. Then it takes the actual output to correct the estimated parameters

[12–14].

Nowadays, researchers tend to use artificial neural networks (ANN), which are

biologically inspired, in the system identification field to solve many system problems

like nonlinearity, time-varying, and ambiguity or inaccessibility because of their ability to

learn and update the model’s parameters from obtained data [15, 16]. The ANN are based

on the learning concept, weights that belong to a specific perceptron start with random

values, and then these weights are tuned up to be suitable values. The efficacy of the neural

networks depends largely on the training method with the network configuration and the

type of activation function. However, the sluggish learning pace of a pure ANN with

traditional learning methods (such as backpropagation and decent methods) in the online

system identification area is the primary drawback of this technique [17]. The recursive

regression techniques used as optimization procedures and learning methods are adopted

to overcome this drawback in the online system identification. The recursive weighted

least squares (RWLS) is a superior optimization and learning method that fulfills online

system identification [18, 19].

The system can be modeled as a linear system, which assumes that the system

has linear fixed features [20–23]. However, many real-world systems are with outside

disturbances or nonlinear function faults because most physical systems are nonlinear

[24–28]. A modeling analysis from a nonlinear perspective for system identification is

necessary to avoid losing the generality (valid for all inputs) and considering the system’s

unmeasured inputs, such as disturbances and errors [29–32]. Traditional nonlinear system

identification has taken two approaches to this problem: specialized nonlinear models for

specific issues based on knowledge of the mapping structure or universal nonlinear models
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with significant computing restrictions in their implementation [33].

This thesis introduces a systematic and practical system modeling process to

develop a nonlinear model starting from principle laws using the input/output data as

graybox system identification. The developed nonlinear parametric model structure is

based on nonlinear block-oriented multilayer perceptron (MLP) with time-delay neural

networks. Hammerstein and Wiener neural networks with RWLS optimization and

learning algorithm are used to tackling the drawbacks of traditional methods and offline

system identification approach and identify the PMDC motor in real-time as a case study.

1.2 Problem statement

Identifying any actual system or process allows scientists and engineers to understand

that system or process behavior. Consequently, it provides the ability to control or extend

knowledge about that system or process to develop its applications. Linear analysis

identification methods are matured over the past decades to cover some nonlinear systems

(under linearity assumption) [20–23]. However, from an engineering standpoint, nonlinear

systems are extremely important in control andmodeling systems. Because, in practice, all

systems are nonlinear in nature (including the DC motor, the case study of this research),

and applying linearity assumptions to a nonlinear system leads to a deceptivemathematical

model and loses the model’s generality [34, 35]. This is the primary motivation for

considering the nonlinearity of the system in this research.

Offline system identification approaches rely impractically on vast empirical data

sets to assess the dynamics of a complicated growing process with a certain accuracy

[36]. Another shortcoming of offline system identification methods is that they cannot

take into consideration the feedback of the variations that the parameterization generates

for the parameterizing process itself [37].

Although if the model is developed as a nonlinear to be more realistic, using

the traditional methods for a nonlinear system, to estimate the parameters, is still a

complex calculation and not a general solution, i.e., it is for a particular case [38–40]. In

addition, Traditional approaches’ mathematical models are vulnerable to modeling errors,

parameter fluctuation, disturbance, and noise [41].

The ANN techniques already have the ability to overcome the calculation

complexity and vulnerability to system error and noise that traditional system

identification methods suffer from. In the system identification field, the ANN methods
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