
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Deep Learning Applied to PMU Data
in Power Systems

Pedro Emanuel Almeida Cardoso

Mestrado Integrado em Engenharia Eletrotécnica e de Computadores

Supervisor: Prof. Dr. Vladimiro Henrique Barrosa Pinto de Miranda

Second Supervisor: Dr. Ricardo Jorge Gomes de Sousa Bento Bessa

July 2017

c© Pedro Cardoso, 2017

Abstract

The analysis of power system disturbances is fundamental to ensure the reliability and security of
the supply. In fact, capturing the sequence of system states over a disturbance is an increased value
to understand its origin. Phasor Measurement Units (PMUs) have the ability to record these fast
transients with high precision, by providing synchronized measurements at high sampling rates.
Indeed, these events can occur in a few seconds, which hampers their detection by the traditional
SCADA (Supervisory Control and Data Acquisition) systems and emphasizes the uniqueness of
PMUs. With the advent of Wide Area Measurement Systems (WAMS) and the consequent deploy-
ment of such monitoring devices, control centers are being flooded with massive volumes of data.
Therefore, transforming data into knowledge, preferably automatically, is an actual challenge for
system operators.

Under abnormal operating conditions, the data collected from several PMUs scattered across
the grid can shape a sort of a "movie" of the disturbance. The importance of WAMS is therefore
sustained on their ability to capture the sequence of events resulting from a disturbance, helping
the further analysis procedures. Driven by the amounts of data involved, this dissertation proposes
the application of Deep Learning frameworks to perform automatic disturbance classification. In
order to do so, a set of measurements from several PMUs - installed in the Low Voltage grid of an
interconnected system - is used, from which representative patterns are extracted so as to endow a
classifier of knowledge related to system disturbances.

In particular, the strategies herein adopted consist of the application of Multilayer Perceptrons,
Deep Belief Networks and Convolutional Neural Networks, the latter having outperformed the
others in terms of classification accuracy. Additionally, these architectures were implemented in
both the CPU and the GPU to ascertain the resulting gains in speed.

Index terms: Artificial Neural Network, Convolutional Neural Network, Deep Belief Neural
Network, Deep Learning, Power System Disturbance Classification, PMU, WAMS.

i

ii

Resumo

A análise de perturbações severas num sistema elétrico de energia é fundamental para assegurar a
fiabilidade e segurança do fornecimento de energia eléctrica. Efetivamente, capturar a sequência
de impactos decorrentes de uma perturbação constitui um passo importante para a determinação
da sua origem. As PMUs (Phasor Measurement Units) têm a capacidade de registar estas vari-
ações rápidas com elevada precisão, providenciando medições sincronizadas obtidas com elevada
taxa de amostragem. Este tipo de eventos pode ocorrer em poucos segundos, o que dificulta a sua
deteção através dos tradicionais sistemas SCADA (Supervisory Control and Data Acquisition),
evidenciando as características únicas deste aparelho de medição. Com o advento dos sistemas de
medição sincronizada - referidos na literatura anglo-saxónica como WAMS (Wide Area Measure-
ment System) - e a consequente proliferação das PMUs, os centros de controlo veem-se inundados
por uma quantidade infindável de dados. Por conseguinte, a transformação desses dados em con-
hecimento, preferencialmente de forma automática, representa um desafio atual para os operadores
do sistema.

Numa situação de funcionamento anormal do sistema, os dados fornecidos por diversas PMUs
espalhadas pela rede configuram uma espécie de filme que ilustra a perturbação ocorrida. A im-
portância dos WAMS é, então, aferida na capacidade que estes têm para capturar a sequência
de eventos resultantes da referida perturbação, sendo uma mais-valia para análises posteriores.
Decorrente da quantidade de dados envolvida, a presente dissertação propõe a aplicação de ar-
quiteturas de Deep Learning para classificação automática de perturbações. Para tal, são utilizadas
medições registadas por PMUs instaladas na Baixa Tensão, das quais são extraídos padrões repre-
sentativos de forma a dotar um classificador de conhecimento relativo a perturbações do sistema.

Mais especificamente, as estratégias adotadas consistem na aplicação the Multilayer Percep-
trons, Deep Belief Networks e Convolutional Neural Networks, tendo estas últimas superado as
restantes em termos de precisão na classificação. Adicionalmente, as arquiteturas mencionadas
foram implementadas não só no CPU mas também com recurso a uma GPU, de forma a avaliar as
acelerações daí decorrentes.

iii

iv

Acknowledgments

I would first like to thank my thesis supervisor, Prof. Dr. Vladimiro Miranda, for the opportunity,
constant motivation and cutting-edge ideas to steer this research in the right direction. A word
must also be addressed to Dr. Ricardo Bessa, as co-supervisor, for his valuable contribution to the
work developed.

I am also very thankful to all my friends who took part in this journey. It would not have been
this good without you all.

A special word goes to Mariana, for being by my side everyday, providing me with unfailing
support and continuous encouragement.

Finally, I must express my very profound gratitude to my parents, for their loving support
throughout my years of study and through the process of researching and writing this thesis. This
accomplishment would not have been possible without them.

Thank you.

Pedro Emanuel Almeida Cardoso

v

vi

“Without data, you’re just another person with an opinion.”

W. Edwards Deming

vii

viii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Main Contribution . 3

2 Phasor Measurement Units 5
2.1 Brief Overview . 5
2.2 Historical Background . 5
2.3 Fundamentals of Synchrophasors . 6
2.4 Generic Configuration of a PMU . 6
2.5 Measurement System Hierarchy . 8
2.6 Communication Infrastructures . 9
2.7 Output Data . 10
2.8 Harnessing PMU data . 10

2.8.1 Oscillation Detection and Control . 11
2.8.2 Load Modeling Validation . 12
2.8.3 Voltage Stability Monitoring and Control 12
2.8.4 System Restoration and Event Analysis 13
2.8.5 Improvement on State Estimation . 13

2.9 WAMS Implementations . 14
2.10 PMUs as a Big Data issue . 14

3 Deep Learning 15
3.1 Why Deep Learning? . 15
3.2 Learning from Training . 16

3.2.1 Backpropagation . 17
3.2.2 Gradient-based Optimization . 17
3.2.3 Problems with Training . 18

3.3 Deep Learning Frameworks . 18
3.3.1 Multilayer Perceptron . 19
3.3.2 Autoencoders . 20
3.3.3 Deep Belief Networks . 21
3.3.4 Convolutional Neural Networks . 23
3.3.5 Spatio-Temporal Deep Learning . 25

3.4 Final Remarks . 27

4 Context of The Work 29
4.1 The Medfasee BT Project . 29
4.2 The Importance of Frequency in Disturbance Detection 31

ix

x CONTENTS

4.2.1 Generation Tripping . 32
4.2.2 Load Shedding . 32
4.2.3 Transmission Line Tripping . 33
4.2.4 Oscillations . 34

4.3 Existing Disturbance Identification Methods . 34
4.4 Proposed Classifier . 35

5 Methodology 37
5.1 Data Preprocessing . 37
5.2 Logistic Regression . 38
5.3 Loss Functions . 38

5.3.1 Zero-One Loss . 39
5.3.2 Negative Log-Likelihood . 39

5.4 Multilayer Perceptron . 40
5.5 Deep Belief Network . 41
5.6 Convolutional Neural Network . 42

5.6.1 Regularization Methods . 45
5.7 Introducing GPU Computing . 47

6 Results 49
6.1 Dataset Splitting . 49
6.2 Hardware Specifications . 50
6.3 Selection of Hyperparameters . 51
6.4 Classification Results . 51

6.4.1 Classification Details . 53
6.5 The Outcome of GPU Implementation . 54

6.5.1 Mini-batch Size and its Influence on GPU Computing 54
6.5.2 CPU versus GPU Time Results . 55

7 Conclusions and Future Work 57
7.1 Conclusions . 57
7.2 Future Work . 58

A Python as a Deep Learning Tool 61

B Architecture Settings 63
B.1 Multilayer Perceptron . 63

B.1.1 MLP with 1 hidden layer . 63
B.1.2 MLP with 4 hidden layer . 64
B.1.3 MLP with 8 hidden layer . 64

B.2 Deep Belief Network . 65
B.3 Convolutional Neural Network . 66

B.3.1 20x60 case . 66
B.3.2 30x40 case . 66

C Ancillary Results 67
C.1 Accuracy as a Percentage of the Test Set . 67
C.2 Confusion Matrices . 67

C.2.1 Expected Confusion Matrices . 68

CONTENTS xi

C.2.2 MLP with 1 hidden layer . 70
C.2.3 MLP with 4 hidden layers . 72
C.2.4 MLP with 8 hidden layers . 73
C.2.5 DBN . 74
C.2.6 CNN 20x60 . 75

D Brazillian Medfasee BT Project - Complementary Information 77

References 79

xii CONTENTS

List of Figures

1.1 Frequency variation resulting from a generator tripping, registered with a PMU
sampling at 60 Hz (blue) and a traditional SCADA acquisition device sampling at
0.5 Hz (red) . 2

2.1 Phasor representation of a sinusoidal signal. (a) Phasor representation; (b) Sinu-
soidal Signal . 7

2.2 Elements of a PMU [1] . 7
2.3 Measurement system hierarchy [1] . 9

3.1 Performance of learning algorithms on available data [2] 16
3.2 An example of the typical architecture of an MLP: input layer, a series of n hidden

layers and an output layer . 19
3.3 The structure of a classic Autoencoder. The network is trained to reconstruct the

inputs x into x1, capturing the most salient features of the inputs in the smaller
dimension hidden layer . 21

3.4 Individual RBMs (left) can be stacked to create the corresponding DBN (right).
For classification tasks, an output layer is also added 22

3.5 Connectivity pattern between neurons of adjacent layers - how CNNs emulate
the neuron response to stimulus only within its receptive field: units in layer m
are connected to 3 adjacent units in layer m-1, therefore having receptive fields
of width 3; the unit in layer m+1 is also connected to 3 adjacent units in layer
m, therefore having a receptive field of width 3 with respect to that layer and a
receptive field of width 5 with respect to layer m-1 (input) [3] 23

3.6 Parameter sharing technique: the three units of layer m form a feature map and the
connections of the same color are constrained to be equal (shared) [3] 24

3.7 Architecture of the LeNet-5, a well-known convolutional neural network example
[4] . 25

3.8 Hierarchical structure and signal flow of a DeSTIN architecture[5] 26

4.1 Geographical disposal of PMUs implemented in Medfasee Project [6] - details in
Appendix D . 30

4.2 Typical frequency change in the presence of a Generation Tripping. Details about
the PMUs that caught the event in Appendix D 32

4.3 Typical frequency change in case of a load shedding - details in Appendix D . . . 33
4.4 Typical frequency change in case of a transmission line tripping off - details in

Appendix D . 34
4.5 Typical frequency change in case of an oscillation - details in Appendix D 35

xiii

xiv LIST OF FIGURES

5.1 Generation Tripping: the input pattern of the CNN and the corresponding original
frequency variation . 43

5.2 Load Shedding example: the input pattern of the CNN and the original frequency
variation . 43

5.3 Line Tripping example: the input pattern of the CNN and the original frequency
variation . 44

5.4 Oscillation example: the input pattern of the CNN and the original frequency
variation . 44

5.5 CNN designed for performing classification in 30x40 images (adapted from [4]) . 45
5.6 Evolution of the training and generalization errors along with training epochs [7] 46
5.7 How the division of code sections is made between the GPU and the CPU [8] . . 47
5.8 CPU versus GPU regarding the number of cores [8] 48

List of Tables

1.1 Main attributes of traditional SCADA systems and PMU-based WAMS 2

4.1 List of extracted events . 30

5.1 Specifications of the several Multilayer Perceptrons developed 40
5.2 Specifications of the Deep Belief Network designed 41
5.3 CNN settings defined for processing the input 30x40 and 20x60 images 46

6.1 List of cases regarding each possible combination of 2, 3 and 4 events 50
6.2 Accuracy of each architecture developed in each event distinction 51
6.3 Predicted vs real events . 53
6.4 Speed-ups obtained with using the GPU: ratio time(CPU) / time(GPU) 55

B.1 Hyper-parameters defined for the application of the 1 hidden layer MLP 63
B.2 Hyper-parameters defined for the application of the 4 hidden layer MLP 64
B.3 Hyper-parameters defined for the application of the 8 hidden layer MLP 64
B.4 Hyper-parameters defined for the application of the Deep Belief Network 65
B.5 Hyper-parameters defined for the application of the 20x60 Convolutional Neural

Network . 66
B.6 Hyper-parameters defined for the application of the 30x40 Convolutional Neural

Network . 66

C.1 Accuracy obtained as a percentage of the total examples in each dataset 67
C.2 Number of examples of each class in the dataset GT vs LS 68
C.3 Number of examples of each class in the dataset GT vs LT 68
C.4 Number of examples of each class in the dataset GT vs OS 68
C.5 Number of examples of each class in the dataset LS vs LT 68
C.6 Number of examples of each class in the dataset LS vs OS 68
C.7 Number of examples of each class in the dataset LT vs OS 68
C.8 Number of examples of each class in the dataset GT vs LS vs LT 69
C.9 Number of examples of each class in the dataset GT vs LS vs OS 69
C.10 Number of examples of each class in the dataset GT vs LT vs OS 69
C.11 Number of examples of each class in the dataset LS vs LT vs OS 69
C.12 Number of examples of each class in the dataset GT vs LS vs LT vs OS 69
C.13 Confusion matrix for the MLP of 1 hidden layer applied to the dataset GT vs OS 70
C.14 Confusion matrix for the MLP of 1 hidden layer applied to the dataset LS vs OS . 70
C.15 Confusion matrix for the MLP of 1 hidden layer applied to the dataset LT vs OS . 70
C.16 Confusion matrix for the MLP of 1 hidden layer applied to the dataset GT vs LS

vs LT . 70

xv

xvi LIST OF TABLES

C.17 Confusion matrix for the MLP of 1 hidden layer applied to the dataset GT vs LS
vs OS . 70

C.18 Confusion matrix for the MLP of 1 hidden layer applied to the dataset LS vs LT
vs OS . 71

C.19 Confusion matrix for the MLP of 1 hidden layer applied to the dataset GT vs LS
vs LT vs OS . 71

C.20 Confusion matrix for the MLP of 4 hidden layer applied to the dataset GT vs OS 72
C.21 Confusion matrix for the MLP of 4 hidden layer applied to the dataset LS vs OS . 72
C.22 Confusion matrix for the MLP of 4 hidden layer applied to the dataset GT vs LS

vs OS . 72
C.23 Confusion matrix for the MLP of 4 hidden layer applied to the dataset GT vs LS

vs LT vs OS . 72
C.24 Confusion matrix for the MLP of 8 hidden layer applied to the dataset GT vs OS 73
C.25 Confusion matrix for the MLP of 8 hidden layer applied to the dataset GT vs LS

vs OS . 73
C.26 Confusion matrix for the MLP of 8 hidden layer applied to the dataset GT vs LS

vs LT vs OS . 73
C.27 Confusion matrix for the DBN applied to the dataset GT vs OS 74
C.28 Confusion matrix for the DBN applied to the dataset LS vs OS 74
C.29 Confusion matrix for the DBN applied to the dataset LT vs OS 74
C.30 Confusion matrix for the DBN applied to the dataset GT vs LS vs OS 74
C.31 Confusion matrix for the DBN applied to the dataset GT vs LS vs LT vs OS . . . 74
C.32 Confusion matrix for the CNN 20x60 applied to the dataset GT vs LS vs LT vs OS 75

Abbreviations

AE Autoencoder
AI Artificial Intelligence
ANN Artificial Neural Network
CI Communication Infrastructure
CNN Convolutional Neural Network
CPU Central Processing Unit
dAE Denoising Autoencoder
DBN Deep Belief Network
DeSTIN Deep Spatio-Temporal Inference Network
DNN Deep Neural Network
FFNN Feed-Forward Neural Network
GPS Global Positioning System
GPU Graphics Processing Unit
GT Generation Tripping
LS Load Shedding
LT Line Tripping
MLP i Multilayer Perceptron with i hidden layers
NLL Negative Log-Likelihood
OS Oscillation
PDC Phasor Data Concentrator
PLC Power-line Communication
PMU Phasor Measurement Unit
RBM Restricted Boltzmann Machine
RMS Root Mean Square
ROCOF Rate Of Change Of Frequency
SdA Stacked Denoising Autoencoder
SGD Stochastic Gradient Descent
SCADA Supervisory Control and Data Acquisition
SPDC Super Phasor Data Concentrator
UTC Coordinated Universal Time
WAMS Wide Area Measurement System

xvii

Chapter 1

Introduction

This chapter presents a brief overview on the main topics addressed to in this work. It intro-

duces the benefits resulting from the integration of Phasor Measurement Units (PMUs) in power

system operation and the corresponding usefulness of Deep Learning as a computational tool for

harnessing the resulting surplus of data.

The purpose and main contribution of the developed work are then described.

1.1 Motivation

Electrical Power Systems are dynamic infrastructures facing significant changes nowadays. The

growth of decentralized energy sources penetration in the system is boosting the modifications

required for improvements in both monitoring and control of power systems. The operation

paradigm has changed, evolving from a load-driven to a generation-driven mode. That is, gen-

eration is now leading the operation paradigm of power systems, since the increase of renewable

energy sources leads to generation profiles that cannot be absolutely controlled. Therefore, a need

arises for new solutions and technologies to improve the operation of the power system, with its

growing complexity requiring more advanced and sophisticated monitoring capabilities.

Currently, transmission networks are endowed with more advanced solutions than distribution

systems. In addition, the large presence of distributed energy resources connected at distribution

levels is enhancing the role of this infrastructure in power system operation and emphasizing the

lack of active distribution grids. The improvement of the monitoring resources for both transmis-

sion and distribution networks is conceived as the employment of new measurement technologies

and the development of new algorithms for data management. Phasor Measurement Units (PMUs)

represent a significant upgrade in the measurement devices being used to improve the monitoring

of power systems. Its uniqueness relies on providing measurements of both Root Mean Square

(RMS) and phase of an electrical signal, with high sampling rates and synchronized with very

accurate time-stamps provided by the Global Positioning System (GPS).

1

2 Introduction

More specifically, PMUs provide 10-60 samples per second (10-60 Hz), which is very high

when compared to the traditional SCADA acquisition devices that sample every 2-4 seconds (0.25-

0.5 Hz). This significant difference is illustrated in Figure 1.1, where the frequency variation

resulting from an actual generation tripping, registered by both technologies, is shown.

59.3

59.4

59.5

59.6

59.7

59.8

59.9

60

60.1

60.2

0 1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

f
(H

z)

time (s)
PMU Traditional SCADA

Figure 1.1: Frequency variation resulting from a generator tripping, registered with a PMU sam-
pling at 60 Hz (blue) and a traditional SCADA acquisition device sampling at 0.5 Hz (red)

It is evident that the adoption of PMUs can have significant impacts in the operation of the sys-

tem. To better understand the resulting changes, a comparison between both paradigms regarding

their main attributes is presented in Table 1.1.

Table 1.1: Main attributes of traditional SCADA systems and PMU-based WAMS

Attribute Traditional SCADA System PMU-based WAMS

Resolution 1 sample every 2-4 seconds 10-60 samples per second
Observability Steady State Dynamic / Transient

Measured Quantities Magnitude Magnitude + Phase
Time Synchronization No Yes

Monitoring Local Global

By replicating several PMUs across the system and creating a Wide Area Measurement System

(WAMS), the directly measured phasor data can help to infer the state of the power system, at a

given instant, enhancing several control functionalities that the system operator has to deal with.

So, PMUs are able to play a critical role in real-time operation, namely in stability surveillance

throughout the electrical grid. The high precision knowledge PMUs can provide is required to

minimize and control power outages and avoid problems such as cascading blackouts. This new

paradigm results in a high resolution situational awareness, described perfectly by Terry Boston -

CEO of PJM Interconnection, a USA region transmission organization - "It’s like going from an

X-ray to an MRI of the grid.".

1.2 Main Contribution 3

Indeed, the time-synchronization of geographically dispersed measurements provides a better

real-time operational awareness. This becomes particularly relevant in cases of abnormal operating

conditions, in which the collection of measurements with high sampling rates captures the dynamic

behaviour of the system, providing a deeper knowledge of the transients involved. Having the

measurements duly synchronized, the sequence of grid states over an occurrence represents a kind

of a "film" of the event, that can be reproduced and used for improving examination methods such

as post-mortem analysis.

As PMUs are deployed in larger numbers, the transmission and distribution operators will

need practical tools to efficiently deal with the arising amounts of data. Consequently, the im-

portance of developing innovative methods for harnessing the data collected from PMUs becomes

evident. Indeed, the workload imposed by the stream of data generated by those devices suggests

the application of Artificial Intelligence (AI) methods. In particular, the recent interest in Deep

Learning is partly due to the availability of large amounts of data and also the improvement of

computational power. Driven by these assumptions, this dissertation suggests the application of

Deep Learning frameworks to extract knowledge from patterns present in raw data generated by a

real, PMU-based, measurement system.

1.2 Main Contribution

There is a willingness to bring closer the concepts of computer science and power systems, with

the objective of using breakthrough strategies from the field of AI to leverage the way everyday

problems of an electrical grid are solved. Since it is a very recent research subject, this dissertation

represents a novelty with an added value for the state of the art of power systems.

The methodologies proposed intend to demonstrate how efficiently Deep Learning frameworks

can perform on power system disturbance analysis, applied to a set of PMU measurements. The in-

cursion herein conducted aims at developing disturbance classifiers based on the frequency change

during a given occurrence - for instance, the one previously illustrated in Figure 1.1. The distinc-

tiveness of such an approach is to model the power system dynamics as a movie from which

snapshots are taken and duly evaluated with the help of new computational tools.

In general, the main contributions are:

• Application of Deep Learning frameworks for extracting patterns from PMU frequency

measurements: development of disturbance classifiers for post-mortem analysis;

• Performance evaluation of three classifiers: Multilayer Perceptron, Deep Belief Network

and Convolutional Neural Network;

• Demonstration of the usefulness of Convolutional Neural Networks as a classifier on non-

image data;

• Assessment of gains in the processing time of the methodologies proposed by harnessing

the properties of GPU computing.

4 Introduction

Chapter 2

Phasor Measurement Units

This is the first of two chapters reviewing the literature on the concepts related to this thesis. Here,

the main features regarding Phasor Measurement Units are addressed. The chapter starts by pre-

senting the basic concepts and moves towards the explanation on how PMU-based measurement

systems are designed. Then, the most important subjects harnessing the data collected by the

PMUs are described. The chapter ends with the incentive for the application of Deep Learning to

PMU data.

2.1 Brief Overview

A Phasor Measurement Unit (PMU), which can be a dedicated device or as a function inte-

grated in other devices such as protective relays, measures electrical waveforms in a power system,

specifically voltage and current signals. Moreover, PMUs provide frequency and rate of change of

frequency (ROCOF) of local measurements. With the use of a common time source provided by

a Global Positioning System (GPS) clock, voltage and current measurements are time-stamped

with high precision, enabling synchronization. This synchronized phasor measurements, also

called synchrophasors, are becoming an important element of Wide Area Measurement Sys-

tems (WAMS). Synchrophasors are enabling more advanced real-time monitoring, protection and

control applications, therefore improving the electric power system operation.

2.2 Historical Background

The development of PMUs can be traced back to the field of computer relaying of transmission

lines. The first works dedicated to transmission line microprocessor-based relaying (around the

1970s) were hindered by the insufficient computational capabilities to perform the calculations of

all relaying functions. The research for reducing that computational effort came out with a solu-

tion based on symmetrical component analysis of line voltages and currents [9]. The calculation

of positive-sequence voltages and currents using the algorithms presented in 1977 [9] represented

a great contribution for modern phasor measurement systems. Effectively, the importance and

5

6 Phasor Measurement Units

applications of such an advent were identified in 1983 by [10]. These developments matched

the beginning of the GPS project (1978), which offered the possibility of synchronizing measure-

ments. In the early 1980s, the first PMU prototype using GPS was designed at Virginia Tech.

However, the commercial manufacture of PMUs only started in 1991, in a collaboration between

Virginia Tech and Macrodyne. This initiative and the further growth of PMUs manufacturers led

to a series of "IEEE Standards for Synchrophasor Measurements for Power Systems" governing

all issues related to phasor measurements.

2.3 Fundamentals of Synchrophasors

Charles Proteus Steinmetz, back in 1893, revolutionized the AC circuit theory and analysis when

he introduced a way to describe a sinusoidal signal, using a complex number that referred to its

RMS value and phase-angle - a phasor. The classical mathematical definition of a phasor can be

depicted considering a sinusoidal waveform with constant frequency and magnitude, x(t):

xptq “ Xm cospwt`φq (2.1)

where Xm is the signal peak value, w“ 2π f is the angular frequency and φ the phase-angle of

the signal. The corresponding phasor representation can be determined in both polar and rectan-

gular coordinates, respectively:

xptq “
Xm
?

2
e jφ “

Xm
?

2
pcosφ ` jsinφq “ Xr` jXim (2.2)

where the module of the phasor is the RMS value Xm?
2

of the sinusoid waveform and Xr and

Xim are the real and imaginary rectangular components of the complex phasor. Positive phase

angles are measured in a counterclockwise direction from the real axis. However, phase is actually

dependent of the initial time instant used as a reference, so it has to be referred correctly to that

reference. Both phasor and sinusoidal representations are illustrated in Figure 2.1.

Synchrophasors are as simple as synchronized phasors. More specifically, the phase-angle of

a synchrophasor is calculated using the Coordinated Universal Time (UTC), provided by a GPS

signal, as time reference. In doing so, a unique time reference is defined for all measured signals

in a wide area, at a given instant, thus being synchronized.

2.4 Generic Configuration of a PMU

The purpose of a PMU is to provide phasor measurements of voltages and currents, clearly refer-

enced to a time source, besides the additional frequency and ROCOF measurements. So, despite

the existence of different manufacturers, a generic configuration of a PMU can be described and its

2.4 Generic Configuration of a PMU 7

Figure 2.1: Phasor representation of a sinusoidal signal. (a) Phasor representation; (b) Sinusoidal
Signal

key elements are presented in Figure 2.2. This structure is based on the first PMU built at Virginia

Tech.

Figure 2.2: Elements of a PMU [1]

So as to compute positive-sequence measurements, all three-phase currents and voltages must

be obtained from the respective current and voltage transformers. These can be acquired from

several places in a substation and are identified as the analog inputs. To avoid aliasing errors, it is

customary to use anti-aliasing filters, the frequency response of which is dictated by the sampling

rate chosen for the sampling process. A common choice is to use analog-type filters with a cut-off

frequency less than half the sampling frequency, meeting the Nyquist criterion [1]. Nevertheless,

using a high sampling rate (thus oversampling) with a high cut-off frequency has some benefits.

In fact, a digital decimation filter must be added so as to reduce the sampling rate, resulting in

a digital anti-aliasing filter concatenated with the analog ones. In doing so, all analog signals

have the same phase shift and attenuation, assuring that the phase-angle differences and relative

magnitudes of different signals remain unchanged. Additionally, the oversampling technique can

enable digital fault recording if raw data storage is available. It is important to note that current

and voltage signals must be converted to appropriate voltages that match the requirements of the

8 Phasor Measurement Units

analog-to-digital converters. The GPS receiver main task is to provide the UTC clock time used

for time-tagging the sampled measurements. The phase locked oscillator converts the one pulse

per second provided by the GPS into a sequence of high-speed timing pulses used in the waveform

sampling. The microprocessor determines the positive-sequence of current and voltage signals. In

phasor representations, the frequency of the sinusoidal signal is considered constant, implying

stationary sinusoidal waveforms. Consequently, in practical applications where frequency does

not remain constant, phasor representations must be handled carefully. This is usually surpassed

considering the input signal over a finite data window, normally corresponding to one period of

its fundamental frequency. Such a procedure can be conducted by several techniques depend-

ing on the instantaneous system frequency. Since that frequency is seldom equal to the nominal

frequency, the PMU must use a frequency-tracking step so as to estimate the period of the funda-

mental frequency before the phasor is determined. Additionally, in order to do so, the PMU has to

filter the input signal, separating the fundamental frequency from the harmonic or non harmonic

components. The most commonly used technique for determining the phasor representation of an

input signal relies on the application of the Discrete Fourier Transform (DFT) to a moving window

over the sampled data. Considering N samples taken over one period and xk

k “ 1,2, ...,N´ 1
(

as the kth sample, the phasor representation is given by:

X “

?
2

N

ÿ

xke´ jk 2π

N (2.3)

Finally, the output files of the PMU are transferred over the available communication facilities

to a higher level in the measurement system hierarchy.

2.5 Measurement System Hierarchy

The architecture supporting modern measurement systems is commonly referred to as Wide Area

Measurement System (WAMS). This term implies a set of new digital metering devices (e.g.

PMUs), along with communication infrastructures, designed to acquire, transmit and process data

over a wide geographic area.

Regarding PMUs as the quintessential example of metering devices, they are typically installed

in power system substations. Despite local applications, the main use of PMUs information is

carried out remotely at control centers. Therefore, a proper measurement system architecture is

required, featuring, apart from the individual PMUs, dedicated communication channels and data

concentrators. An illustrative scheme is shown in Figure 2.3.

The PMUs provide time-stamped measurements of positive-sequence voltages and currents of

all monitored buses and feeders in the respective substation, in addition to frequency and ROCOF.

These measurements can be stored for further exploration, like post-mortem analysis. Since the lo-

cal data storage is limited, relevant events are to be flagged for permanent storage. Besides storage,

2.6 Communication Infrastructures 9

Figure 2.3: Measurement system hierarchy [1]

a stream of information flows upwards being available for other applications. At a higher hierar-

chical level, data from several remote PMUs is gathered in Phasor Data Concentrators (PDCs).

The role of these devices depends on the application. For non-real-time scenarios, PDCs usually

reject bad data and store all the information for future analysis. For real-time applications, such

as network monitoring, PDCs align measurements according to each time-stamp. Subsequently,

sorted measurements can be streamed to upper hierarchical levels such as control centers, where

primary PDCs or Super Phasor Data Concentrators (SPDC) are placed. This hierarchical architec-

ture enables information to flow from local to global entities.

The great advantage of such an architecture is that measurements coming from different sub-

stations can be correlated in respect to the common time reference. Consequently, the status of a

wide network-area can be directly obtained.

2.6 Communication Infrastructures

The deployment of a Wide Area Measurement System regarding Phasor Measurement Units re-

quires robust communication infrastructures. In fact, real-time applications rely on the effective-

ness of information flow between all elements of the measurement system. Therefore, commu-

nication tasks should provide small latency - time lag between the instant of data creation and

its availability for the desired application. In addition, an adequate channel capacity should be

guaranteed, which is, in fact, rarely a limiting factor in PMUs applications.

Currently, optical-fiber is the physical medium of choice for communications, due to their

unique channel capacity, high data transfer rates and immunity to electromagnetic interference

[1], therefore meeting the requirements imposed. However, many existing applications are still

using the conventional Power-line Communication (PLC) owing to its simplicity and low cost of

implementation. Moreover, wireless infrastructures are emerging, with some applications using

10 Phasor Measurement Units

the Internet via Virtual Private Network (VPN) systems. This is especially applied when large

distances between the PMUs and the PDCs are involved, as seen in the Brazilian Synchronized

Phasor Measurement System (SPMS) [11]. However, many existing applications are still using

PLC.

With the advent of smart grids, significant investments are being made in the distribution grid,

particularly in what regards the communication infrastructures (wired and/or wireless). This recent

paradigm requires an almost absolute monitoring and control of the network, which is inherently

dependent on the performance of the communication system. Therefore, it must be guaranteed

a high level of robustness, with the infrastructure having some redundancy, high availability and

speed, interoperability and security - especially cyber security, nowadays.

2.7 Output Data

The development of the synchrophasor technology and the corresponding need to transmit infor-

mation over the network led to the establishment of several communication standards by the IEEE

working group. Most recently, the IEEE C37.118-2 standard was developed, covering the com-

munication framework and requirements for transmission of synchrophasors. Concretely, without

imposing restriction on the communication media itself, the standard defines four file types for

data transmission to and from PMUs:

• Header frame;

• Data frame;

• Configuration frame;

• Command frame.

The Header frame is the only human readable file, containing valuable information from the

producer to the user of data. The Configuration frame is sent whenever the configuration of the

system changes. Therefore, both Header and Configuration frame are transmitted by the PMU

when the nature of data to be sent is defined for the first time. The Data frame, sent from the PMU

to the PDC, contains the principal output of the PMU, such as the phasor measurements, frequency

and ROCOF, voltages, currents, active and reactive powers. Finally, the Command frame is usually

provided by higher levels of hierarchy for controlling the performance of the PMU (for instance,

sent from a PDC to a PMU). Overall, under normal operation conditions, only the Data frame is

communicated.

2.8 Harnessing PMU data

Synchronized phasor measurements are extremely important for monitoring and controlling the

dynamics of a power system. Since PMUs were introduced into power systems in 1980s, their

2.8 Harnessing PMU data 11

value has been acknowledged by the extensive studied, proposed and implemented applications,

which have shown significant benefits.

Nowadays, there are several PMUs installed around the world providing valuable information

to improve power system operation. One of the major concerns regarding the deployment of PMU

technology is its placement. Due to installation costs - devices, communication infrastructures

and labouring - it is not cost-effective to install a PMU at every node of a system. That is why

a great amount of research has been conducted to develop optimal placement strategies aiming

at minimizing the number of devices. It is important to note that the intended applications of

PMU installation are determinant to the strategies defined, with state estimation as one of the most

common.

In [12], the authors present three different methods for optimal placement of PMUs: observ-

ability factor analysis, sequential orthogonalization algorithm and coherency identification tech-

nique combined with observability factor analysis. However, in addition to the cost of PMUs,

the cost of the Communication Infrastructure (CI) has to be considered because it can even be

dominant in relation to the cost of PMUs. Reference [13] shows that independent approaches for

optimal placement of PMUs and optimal design of the CI might not lead to a global optimum so-

lution in terms of cost; considering both simultaneously led to better solutions in terms of cost and

state estimation observability. In addition, a genetic algorithm is used for optimizing the defined

problems, however exposing the methodology to the vicissitudes inherent of genetic approaches,

such as randomness and computation effort. An extension to that work is proposed by [14], where

binary imperialistic competition algorithm and Dijkstra algorithms are combined to optimize the

cost of WAMS. Here, optimal placement of PMUs and CI design are determined simultaneously,

whilst N-1 contingency is considered and observability is ensured.

Finding the optimum design of the measurement infrastructures to be installed is of great

importance for power system operators. In fact, the development of modern WAMS is inherently

dependent on the strategies found for PMUs placement, which have to be considered in investment

plans. As aforementioned, the optimum solutions are dependent on the application to be explored.

In general, there are five major areas of interest in which the PMUs have significant impacts [15]:

• Oscillation Detection and Control;

• Load Modeling Validation;

• Voltage Stability Monitoring and Control;

• System Restoration and Event Analysis;

• Improvement on State Estimation;

2.8.1 Oscillation Detection and Control

The deregulation of electric power systems and consequent market-based scheme, along with con-

tinuously growing demand, led to increasingly stressed operation in terms of oscillatory stability.

12 Phasor Measurement Units

Therefore, the dynamics involved in power transmission became more complex, specially for low

frequency oscillations. These are of great importance because they not only limit the amount of

power transfer, but also degrade the power system security. The traditional SCADA systems can-

not detect these fast dynamics due to their low data sampling rate and lack of synchronization.

These restraints are effectively surpassed by the high data reporting rate of synchronized PMUs

and the availability of fast communication links. So, the advent of PMU-based WAMS offers

great opportunities to monitor the dynamic behaviour of power systems and identify its oscillation

modes. For instance, an online monitoring of power system dynamics by using the synchronized

measurements is presented in [16]. Additionally, both [17] and [18] suggest other online appli-

cations, where Prony-based analysis - method used for the direct estimation of system modal in-

formation - is implemented for frequency and damping oscillations detection by harnessing PMU

data.

2.8.2 Load Modeling Validation

The analysis of a power system consists of modelling its various components and it has been

an object of extensive studies. Thereof, load modelling has always been a challenging area for

power system engineers, due to its great uncertainty and impact on system voltage and dynamic

stability. In this practice, two approaches are widely employed: the component-based approach

and the measurement-based approach [19]. The latter provides direct monitoring of true dynamic

load variations, hence easily updating the load model parameters in real time for transient stability

studies [20]. The recent growth of synchronized PMUs employment enhanced the efficiency of the

measurement-based approach. In fact, the inherent accuracy of PMU measurements is reflected in

the precision of load models, whereas the high reporting rates enable real-time development and

validation of the model [21]. Moreover, [15] discusses the use of PMUs for measurement-based

load modelling in the light of real-time security assessment and dynamic characteristics of end-use

load.

2.8.3 Voltage Stability Monitoring and Control

In electrical power systems, voltage stability is inherent to the loadability of transmission net-

works. Moreover, recent developments regarding distributed energy resources have brought in-

creased uncertainty to power transfer as well as network expansion. Consequently, voltage stabil-

ity has become a problem of major concern in both planning and operating of power systems. The

advent of PMU technology brought the possibility of measurement-based real-time voltage sta-

bility monitoring and control to transmission systems, thus improving the management of power

transfer and system security [15]. For instance, [22] proposes an algorithm for voltage stability im-

provement by optimally setting the output of control devices, assuming the availability of several

dispersed PMUs. In a different perspective, [23] presents PMU-based Artificial Neural Network

approach for faster than conventional real-time voltage stability monitoring. The synchronized

2.8 Harnessing PMU data 13

measurements are the inputs of the neural network, which is trained for providing the different

voltage stability indices.

2.8.4 System Restoration and Event Analysis

Facing a major disturbance, system operators want to limit the resulting impact for consumers by

restoring the system as quickly as possible. Afterwards, a complete event analysis must be driven

in order to determine the root cause of the disturbance - commonly referred to as post-mortem

analysis. However, the process of system restoration and event analysis is technically difficult to

implement due to the absence of synchronized data and consequent computation time. Therefore,

synchronized PMUs arise as a way to effectively deal with both issues.

As soon as a disturbance occurs, the protection system should detect it and operate appro-

priately so as to isolate and minimize the affected area. Then, the location and source of the

disturbance should be identified and isolated in order to restore power service. Approaches to

fault location regarding PMUs reveal advantages in computation burden and technical assump-

tions reduction [15]. In addition, [24] presents the effectiveness of high-speed synchrophasor data

in a multi-terminal calculation of fault location.

As reported in [25], PMUs gave a significant contribution to information acquisition during

a system islanding situation. The formation of the island was detected by monitoring the data

from PMUs, where rapid diverging oscillations of frequencies were captured. Subsequently, [26]

proposed a methodology for islands-synchronization with PMU measurements.

Overall, PMU-based systems can improve restoration time by providing high accuracy mea-

surements that help pinpointing a fault. Also, the presence of synchronized data is greatly lever-

aged whenever post-mortem analysis of events is required. These unique properties of PMUs also

prospect a successful application in preventive recognition schemes.

2.8.5 Improvement on State Estimation

State estimation plays an important role in real-time monitoring and control of a power system.

The traditional procedure uses measured voltage and current, real and reactive powers to infer the

operating condition of the grid, at a given instant. The synchronized measurements provided by

PMUs can be easily incorporated into state estimators along with conventional measurements [27].

Since voltage angles (which are state variables to be estimated in conventional state estimators) are

measured directly, the accuracy of the state estimation is increased. This accuracy improvement

was also obtained for dynamic state estimators [28].

State estimators are intended to provide the most likely state of the network. Therefore, they

must be able to adequately detect and correct measurement errors, in a procedure called bad data

processing. The detection of bad data in a power system can be improved by the effective place-

ment of PMUs [29].

14 Phasor Measurement Units

2.9 WAMS Implementations

Nowadays, Phasor Measurement Units are being used for several large scale WAMS implementa-

tions around the world, from which some examples are mentioned.

In USA, The Bonneville Power Administration was the first electrical utility to implement a

PMU-based architecture, in the beginnings of 2000. Thereafter, in response to the largest blackout

in American history that affected about 50 million people in 2003, the New York Independent

System Operator decided to install several PMUs in the system so as to prevent similar catas-

trophic events [30]. In addition, Mexico developed a WAMS architecture capable of reaching up

to eight transmission regions, helping the real-time monitoring and operation and improving sys-

tem reliability and security [31]. China has also made substantial investments in this technology.

Besides producing their own devices and standards, its grids have thousands of PMUs currently

installed, mainly in EHV levels [32]. In Brazil, a phasor measurement project called Medfasee

was developed. The project started by implementing Medfasee BT, a low voltage synchrophasor

system in which PMUs are installed in universities. In 2013, 22 low voltage PMUs were already

installed in several universities scattered around the country [6]. This brazilian project will be paid

detailed attention in chapter 4, since it provided a totally labelled dataset of disturbances recorded

by the synchrophasor measurement system. Driven by the success of Medfasee BT, the Medfasee

CTEEP was designed so as to implement a synchrophasor measurement system in a 440kV grid

owned by CTEEP (Companhia de Transmissão de Energia Elétrica Paulista). In 2013, the project

accounted 13 PMUs monitoring 13 transmission lines [33].

2.10 PMUs as a Big Data issue

With the advent of WAMS and the consequent the proliferation of digital measurement devices,

control centers are being flooded with increasingly amounts of data. PMUs are capable of collect-

ing samples at ratings from 10 to 60 (depending on system frequency) samples per second [34],

which are much higher sampling rates than the employed in traditional SCADA systems, that typ-

ically collect measurements every 2-4 seconds [35]. This new paradigm represents a huge amount

of raw data collected everyday. For instance, [36] refers that a single PMU sampling at 60Hz can

create roughly 721MB of data per day. In addition, they use a dataset from Bonneville Power Ad-

ministration’s PMU installation containing 44 PMUs that generate approximately 1TB per month.

Reference [37] prospects how large-scale PMU systems present challenges for such a volume of

data processing. Therefore, power system operators are craving for efficient techniques to digest

the incoming data, improving grid operations. The volumes of data involved in the operation of

WAMS suggest that this is a Big Data issue, where techniques in the field of Artificial Intelligence,

like Machine Learning, can be very helpful to extract features from raw data.

Chapter 3

Deep Learning

This second chapter of the literature review describes the state of the art concerning Deep Learn-

ing. After some initial considerations, the chapter addresses the concepts of learning from training

and includes detailed description of the most important Deep Learning frameworks.

A section of final remarks regarding both chapters of the literature review can be found at the

end.

3.1 Why Deep Learning?

Driven by the massive amounts of data involved in the operation of PMU-based WAMS, innova-

tive methods in the field of Artificial Intelligence, such as Machine Learning, are emerging for

harnessing the information provided and extract valuable knowledge for system operators. Instead

of declaring complex analytical models, learning to recognize patterns and identifying features

seems to be the answer to overcome the challenges imposed by processing the huge volumes of

raw data involved in WAMS operation. Thus, as a class of the Machine Learning algorithms,

Deep Learning arises as a computational learning technique in which high level abstractions are

hierarchically modelled from raw data. In doing so, computers are taught to understand the world

in terms of a hierarchy of concepts, where a complex concept can be defined in terms of simpler

concepts. Why Deep Learning? The core of Deep Learning emergence lies on recent increase

in computation power and access to enough data to train the algorithms. Also, in comparison to

other learning algorithms, Deep Learning has shown better performance when larger datasets are

involved. As illustrated in Figure 3.1, most learning algorithms reach a plateau in performance,

whereas Deep Learning continues increasing.

The hierarchical learning representations of data in Deep Learning are usually inspired in neu-

roscience, underlying the interpretation of information processing in neural systems. Hence, the

majority of Deep Learning frameworks are based on the working principle of Artificial Neural

Networks (ANNs), leading to the appearance of Deep Neural Networks (DNNs). DNNs can be

considered as a class of ANNs where multiple hidden layers are placed between the input and

output layers. Each layer is composed of single units, referred to as neurons due to the similarities

15

16 Deep Learning

Figure 3.1: Performance of learning algorithms on available data [2]

they share with the behaviour of the neurons present in the human brain. Mathematically, a neuron

can be considered as a non-linear function of the weighted sum of its inputs. This multi-layered

processing enables the algorithm to learn representations from data with multiple levels of abstrac-

tion. By composing the simple non-linear modules, representations at one level (starting from the

raw input) are transformed into a representation at a higher, slightly more abstract, level [38].

3.2 Learning from Training

Learning from training is perhaps the most interesting property of ANNs. The ability of learning

is generally obtained by iteratively adjusting the connection weights of neural network layers,

so as to reproduce features of the input data. The theory of Machine Learning presents a broad

categorization of its algorithms as supervised, unsupervised or even reinforcement learning, by

the kind of experience they are allowed to have during the learning procedure.

In supervised learning, the algorithm experiences a dataset, in which each example consists

of input values and the respective label/target. The outputs of the network are compared to the

targets and the corresponding difference is determined. The weights are then adjusted so as to

minimize such a difference. The backpropagation algorithm, addressed to in the following section,

is considered the quintessential example of supervised learning.

In unsupervised learning, algorithms are fed with sets of unlabelled examples. The objective

is to learn the probability distribution that generated the dataset. The connection weights are

therefore adjusted by a self-organizing process that learns useful properties of the input dataset

structure.

The algorithm can also be in a dynamic environment, receiving a reward feedback from its

current performance, in a context of learning called reinforcement learning, which should not be

confused with the supervised learning paradigm.

3.2 Learning from Training 17

3.2.1 Backpropagation

One of the most common and successful methods for supervised training of artificial neural net-

works is the backpropagation algorithm. Introduced in 1986 by [39], the process adjusts the

weights of the hidden connections of the network in order to meet a given loss function. This

adjustment showed that backpropagation training is able to generate useful internal representa-

tions of incoming data in the hidden layers of neural networks. A standard choice as the loss

function is to minimize the difference between the actual and the desired output (for instance, the

Mean Squared Error).

In general, the procedure comprises a two step sequence:

• Propagation — input data is presented to the network, propagating forward and producing

an output. The output is compared to the desired/target values using a loss function that

returns the resulting error;

• Weight Adjustment — the resulting error is then propagated backwards, updating the

weights of the internal connections so as to minimize the loss function. This minimiza-

tion is generally done through the application of a gradient descent method, in which the

weight parameters are iteratively updated in the direction of the gradient of the loss function,

until the minimum is reached.

The latter step is the trickiest. Indeed, the accuracy of the model depends directly on how good

the connection weights are adjusted. Time efficiency is also a concern, since this step can take a

significant part of the training duration.

3.2.2 Gradient-based Optimization

The inherent nonlinearity of ANNs implies that most loss functions become non-convex. There-

fore, these networks are usually trained employing iterative, gradient-based optimization methods,

in order to conduct the loss function to the lowest value possible. Regarding a learning paradigm,

objective functions are typically additive, formed as a composition of parcels from the training set,

all summed up. Consequently, a gradient optimizer is also an additive operation. For this reason,

optimizers have the possibility of performing one step (update of model parameters) based on two

distinct techniques:

• Batch or Deterministic Gradient Descent — a single step requires running over the entire

training set, hence updating the weights at the end of each epoch (one epoch is considered

as a pass over all examples of the training set);

• Stochastic or Online — a single example is used at a time. The term Online refers to

a specific case of real-time Stochastic, employed whenever each example is drawn from

continuously created examples. The weights are updated after every training example until

the entire training set is treated. At that point, an epoch of training is considered as complete,

having performed as much updates as training examples.

18 Deep Learning

In general, machine learning algorithms require large datasets for good generalization. Thus,

applying the Batch Gradient Descent to huge training sets causes the time efficiency of the opti-

mization to drop tremendously. On the other hand, the Stochastic Gradient Descent will imply a

stochastic approximation of the true gradient of the loss function. In order to overcome those dis-

advantages, most applications employ a hybrid solution and use more than one example at a time -

a mini-batch - instead of all the training set. This is commonly referred to as Mini-batch Stochas-

tic Gradient Descent (SGD). Indeed, the Mini-batch SGD provides a more accurate estimate of

the gradient [7] and is computationally more efficient in memory usage of modern computers [3],

specially for GPU (Graphics Processing Unit) computing [7].

3.2.3 Problems with Training

The training process acquires additional importance to avoid common issues such as overfitting

and excessive computation time. Frameworks like DNNs are prone to overfitting, that is, to over-

adapt to the training set and lose capacity of generalization. In these cases, regularization methods

such as dropout (where neurons are randomly removed during training, preventing the network

from becoming overly dependent on any neuron) or early-stopping can be applied during training

to help combat overfitting.

The success of backpropagation with stochastic gradient descent relies on its ease of imple-

mentation and tendency to converge to better local optima than other methods. However, es-

pecially for DNNs, these methods can be computationally expensive due to the many training

parameters to be considered such as size of the network (number of layers, number of units per

layer), learning rates and the initialization of weights. Covering all the parameter space to find the

optimal parameters might not be feasible in terms of time or computation resources. This has led

to several adaptations to speed up computation: mini-batching (determine the gradient for several

training examples at once) and application of GPU computing.

In the development of the Deep Learning algorithms, both issues were considered and their

solutions implemented. Therefore, these concepts are further detailed when appropriate - regular-

ization in Section 5.6.1, mini-batching and its influence on GPU computing in Section 6.5.1.

3.3 Deep Learning Frameworks

Deep learning is a fast-growing field and new applications of its frameworks/architectures emerge

often. The process of determining the best architecture is not straightforward, since it is not

always possible or even advisable to compare their performance on the same datasets. That is,

some architectures were developed for specific purposes and might not perform well on all tasks.

Bearing that in mind, the following sections present a description of the most important Deep

Learning Frameworks, especially for classification tasks (the aim of this dissertation). It is also

important to note that Deep Learning has not come across the field of Power Systems very often,

so the description given tends to be generic. Nevertheless, when appropriate, connections to Power

Systems are traced.

3.3 Deep Learning Frameworks 19

3.3.1 Multilayer Perceptron

Multilayer Perceptron (MLP) is the name hereby given to a deep multilayered feedforward arti-

ficial neural network, which is perhaps the most basic example of a Deep Learning Framework.

The concepts related to structure and working principle of DNNs were continuously introduced as

Deep Learning ideas were being introduced. So, to avoid redundancy, only the main features will

be highlighted. In addition, an illustration of a typical MLP is given in Figure 3.2.

Figure 3.2: An example of the typical architecture of an MLP: input layer, a series of n hidden
layers and an output layer

Defining the structure of an MLP for a specific application can assume a high level of com-

plexity. The number of neurons in the input layer is completely and uniquely determined once the

shape of the input data is acknowledged. The output layer is specified by the aim of the solution

developed. For instance, classification and regression require different but well defined output

configurations. However, defining the number of hidden layers and respective number of neurons

is not straightforward. Regarding the number of hidden layers, literature in general suggests that

ore or two layers is usually enough and going deeper not always implies accuracy improvements.

On the other hand, some rules-of-thumb for the number of neurons have been developed but are

too generic for a universal acceptance - for instance restricting the number of hidden units to be

between the number of units in the input and output layers. Still, these guidelines provide a starting

point for a final selection based on trial and error.

20 Deep Learning

Having defined the configuration and purpose of an MLP, its training is conducted in a super-

vised fashion by employing the technique of backpropagation. If properly trained, these archi-

tectures are able to acquire sufficient knowledge to solve its given task very accurately. In fact,

they have shown very good performances in computer science field, such as speech and image

recognition systems.

In what regards power systems, the application of ANNs in general, and MLPs in particular,

is wide and not a novelty. Therefore, a lot of subjects have at least experienced their use: for

instance, the definition of protection schemes for transmission lines, determining the location of

the fault with ANNs [40] [41]; transformer fault diagnosis [42] [43]; on-line voltage stability mon-

itoring [44]; forecasting problems of load [45] [46] [47], wind power [48] [49] and photovoltaic

production [50] [51] [52].

3.3.2 Autoencoders

Autoencoders (AEs) are a kind of artificial neural network trained to output a copy of its input.

However, it is usual to apply some restrictions that allow them to copy approximate and only

inputs that resemble the training data. This process forces to prioritize given aspects to be copied,

providing the ability to learn useful properties of data. Since merely copying the inputs may seem

useless, the objective of training the Autoencoder is that the hidden layers obtain useful properties

from data. A way of doing that is to constrain the hidden layer to have smaller dimension than

the input layer, as exemplified in Figure 3.3. This is a process commonly referred to as encoding,

in which the Autoencoder is forced to capture the most salient features of the training data by

representing it in an undercomplete representation, enabling dimensionality reduction [7]. Then

a conversion of that representation is performed by a decoding function, retrieving the original

format.

An interesting approach beyond the classic Autoencoders is found in the so-called Denoising

Autoencoder (dAE). These can be interpreted as a stochastic version of the Autoencoder, receiv-

ing a corrupted input x̃ and trained to reconstruct and obtain the original, uncorrupted input x.

That is, firstly, a stochastic corruption process randomly chooses some of the input points and sets

them to zero, simulating the removal of these components from the input [53]. This procedure

approximates an actual issue affecting power systems nowadays, that being the case of missing

data. Control centers are constantly flooded with measurements arriving from the various mea-

surement points, and sometimes that information can be distorted or even missing. This could be

explained by the malfunction of the metering devices or the communication facilities. In fact, this

is a common issue regarding the communication of the measurements by PMUs. Receiving that

sort of data values, the dAE tries to predict the missing/corrupted values from the non-missing

ones. More specifically, the dAE encodes the input by preserving as many features as possible,

followed by the inversion of the stochastic corruption effect applied to the input. Therefore, it

aims at capturing the statistical dependencies between the inputs [3].

Stacked Denoising Autoencoders (SdAs) consist of series of dAEs forming a deep network,

in which the output of one dAE is the input of the subsequent dAE. Such a framework is usually

3.3 Deep Learning Frameworks 21

Figure 3.3: The structure of a classic Autoencoder. The network is trained to reconstruct the inputs
x into x1, capturing the most salient features of the inputs in the smaller dimension hidden layer

trained in an unsupervised, greedy (one layer at a time) fashion. Each layer is therefore trained

as a single Denoising Autoencoder, focusing on reconstructing its input. Worth noticing in this

case that greedy procedures are not always adopted. In fact, some alternatives regarding Infor-

mation Theoretic and (top-down) Generative Model have been addressed to in both [53] and [3].

Additionally, as long as a classification task is desired, a second phase of supervised training is

required. Slight adjustments are applied in this fine-tuning step, in which the network as a whole

resembles an MLP.

3.3.3 Deep Belief Networks

The concept of Belief Networks is not new. In fact, their origin can be traced back to 1992 [54].

However, the depth of these and other architectures was not much explored due to the difficulty

of training and consequent bad generalization performance. An explanation was found in the

problems that randomly initializing parameters brought to gradient-based optimization [55]. The

breakthrough for effectively train deep architectures was only introduced in 2006 by [56]: Deep

Belief Networks (DBNs) are pre-trained in a greedy, layer-wise unsupervised manner, followed by

a supervised fine-tuning process. More specifically, each layer is individually pre-trained with an

unsupervised method, such as the Contrastive Divergence, for learning a non-linear transformation

of its input. Afterwards, a gradient-based optimization performs the final supervised training

22 Deep Learning

for fine-tuning the network. The unsupervised learning acts as an initialization of the network

parameters by finding a good starting point in the parameter space for the supervised training,

which represents better generalization [55]. Despite the initial eagerness, DBNs have been falling

out of favour since they have been outperformed by other frameworks in several applications. Still,

recent developments in power system forecasting research have reawakened the interest in DBNs,

specially in the field of power systems, demonstrating its current usefulness and motivating the

author to experience its performance.

Structurally, DBNs can be understood as a composition of single unsupervised networks -

Restricted Boltzmann Machines (RBMs) - stacked to form a deep architecture. As the name

implies, RBMs evolved from the simple Boltzmann Machine, which is a fully-connected network

with two layers, one visible and one hidden. By restricting the connections between neurons

within the same layer, an RBM is created. The individual RBMs are stacked in a way that the

hidden units of one RBM correspond to the visible layers of the next RBM. In doing so, the Deep

Belief Network structure is generated, as seen in Figure 3.4.

Figure 3.4: Individual RBMs (left) can be stacked to create the corresponding DBN (right). For
classification tasks, an output layer is also added

In terms of structure, Deep Belief Networks are very similar to Multilayer Perceptrons. How-

ever, the employment of RBMs and the distinctive unsupervised pre-training method turns DBNs

into probabilistic generative models due to their ability to provide the joint probability distribution

of their inputs and outputs. The additional supervised fine-tuning learning can be handled as in

the traditional MLPs, requiring the provision of labelled data.

Mainly, DBNs have been used for generating and recognizing images [56] [57], video se-

quences [58] and motion-capture data [59]. Moreover, Deep Belief Nets can also be structured so

as to perform non-linear dimensionality reduction [60]. In fact, [55] showed that using Autoen-

coders as an alternative to RBMs produced very similar results.

3.3 Deep Learning Frameworks 23

As mentioned earlier in this section, Deep Belief Networks have recently been employed in

forecasting problems. For instance, [61] applied deep feature learning using DBNs for day-ahead

wind speed forecasting. The DBN model employed was trained by using a step-by-step greedy

algorithm, enabling the extraction of complex features of wind speed due to its strong nonlinear

mapping ability, demonstrating high forecast accuracy. Moreover, applications in wind power

forecasting regard a hybrid combination of Wavelet Transform and DBN, as adopted in [62] and

[63]. Besides wind forecasting, in [64] a DBN is used for electricity load forecasting and the

model implemented demonstrated good results in 24h ahead forecasting; in [65], a DBN is used

for solar power forecasting.

3.3.4 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) [4] are a special type of FFNN for processing data that

has grid-like topology. Its structure is biologically-inspired, in which the connections between

the neurons are based on the animal visual cortex. Each neuron responds to stimulus within their

receptive field in a way mathematically approximate to a convolution operation. Receptive fields of

different neurons partially overlap, tiling the visual field. Indeed, CNNs tend to explore spatially-

local correlations, therefore enforcing local connectivity patterns between neurons of adjacent

layers - a property sometimes called Sparse Connectivity. This special behaviour is illustrated in

Figure 3.5: the inputs of a hidden unit in layer m come from a subset of units in layer m-1 that are

spatially contiguous (receptive field).

Figure 3.5: Connectivity pattern between neurons of adjacent layers - how CNNs emulate the
neuron response to stimulus only within its receptive field: units in layer m are connected to 3
adjacent units in layer m-1, therefore having receptive fields of width 3; the unit in layer m+1 is
also connected to 3 adjacent units in layer m, therefore having a receptive field of width 3 with
respect to that layer and a receptive field of width 5 with respect to layer m-1 (input) [3]

Variations outside the receptive field of each unit do not interfere with its output. Thus, this

architecture guarantees that the learnt "filters" produce an effective response to a spatially local

input pattern. Stacking several layers, as shown in the previous figure, leads to "filters" that are

more global, i.e., responsive to larger regions of the input space.

This connectivity pattern is replicated for all units within each layer to cover the entire visual

field, which allows the detection of features regardless of their position in the visual field. In doing

24 Deep Learning

so, a feature map is created. A parameter sharing technique is then applied to each feature map -

all units share the same parameters (weights and biases), as demonstrated in Figure 3.6.

Figure 3.6: Parameter sharing technique: the three units of layer m form a feature map and the
connections of the same color are constrained to be equal (shared) [3]

This characteristic of parameter sharing increases learning efficiency due to the reduction of

the number of free parameters to estimate. Since CNNs can also be trained with the backprop-

agation algorithm, having fewer parameters to learn makes them typically easier to train than

other frameworks. This is highly attractive because memory requirements for running the net-

work are reduced, leading to the ability of training larger, more powerful networks. Additionally,

CNNs have shown better performance in several applications, specially in both image and speech

recognition. Consequently, deep CNNs are becoming one of the means to effectively extract the

invariant structures and inherent hidden features in data.

In general, a feature map h is obtained by the convolution of the input x with the weights W

(linear filters), to which a bias b is added and finally a non-linear transformation (for instance tanh)

is applied:

h“ tanhppW ˚ xq`bq (3.1)

To better attain the inner properties of the input data, a convolution layer consists of multiple

feature maps.

Typical deep CNN architectures consist of alternating convolution and pooling layers, fol-

lowed by a fully-connected layer before the output layer. The common practice is to insert a

pooling layer between one or more convolutional layers in a CNN architecture, as shown in Figure

3.7

The convolution layer - whose working principle was explained earlier - consists of multi-

ple two-layer FFNNs that adopt the mathematical convolution operation in order to transform

low-level maps with local features into several high-level maps with global features. The weight

sharing technique between neurons in different layers helps the process of feed forward and back-

propagation. This is the main attribute that makes this architecture different from others, due to the

reduction in the number of parameters to be estimated, while still being able to effectively extract

the hidden invariant features in data. The pooling layer implements a max-pooling effect, which

3.3 Deep Learning Frameworks 25

Figure 3.7: Architecture of the LeNet-5, a well-known convolutional neural network example [4]

is a form of non-linear down-sampling. The input is divided into a set of non-overlapping rectan-

gles, outputting the maximum (max-pooling) of each sub-region. The pooling layer objective is to

progressively reduce the spatial size of the representation, decrease the number of parameters and

consequent amount of computational effort, and control overfitting issues.

Due to this visual influence, CNNs applications are primarily in the visual field, with several

image recognition examples [66] [67] [68] [69]. For video classification, where complexity in-

creases due to the temporal dimension, some extensions of CNNs have been explored [70] [71]

[72]. Despite that, this architecture has also been tested outside the field, with both recommen-

dation systems [73] and natural language processing [74]. It is worth mentioning that, in case of

CNNs are to be used in non-visual data, a proper way of encoding that data must be found, so as

to replicate the properties of visual information (grid-like topology). Therefore, the spread and

success of this architecture for any other than image-based applications is inherently dependent on

the ability to emulate the properties of an image.

Nevertheless, Convolutional Neural Networks have proven to be highly flexible and conse-

quently implemented in several and distinct applications. Recently, CNNs have found their place

within Electric Power Systems. For instance, in [75], a deep CNN architecture is employed for

power line insulators classification from aerial images. The well-known performance in image

classification tasks and the recent success of deep learning led to the first approach registered at

the time to implement a deep CNN for insulator condition inspection. Another recent application

of CNNs is presented in [76], where the uncertainties in wind power data can be effectively learnt

for probabilistic wind power forecasting. In fact, the high variability and volatility exhibited by

wind power data is soothed by the employment of a hybrid Wavelet Transform, deep CNN and

ensemble technique. The deep CNN architecture demonstrates great efficiency in extracting the

nonlinear and stochastic nature of each wind power frequency.

3.3.5 Spatio-Temporal Deep Learning

The majority of deep learning architectures focuses on extracting spatial features. However, a

sequence of patterns can give an understanding that single and discrete patterns might not pro-

vide. So, capturing the additional temporal dependencies in observations is vital for an effective

26 Deep Learning

and accurate inference of knowledge [5]. In spite of that, simultaneous integration of both spatial

and temporal components has not been an object of extensive research. The very first work was

presented by in [77], where DeSTIN - Deep Spatio-Temporal Inference Network - is introduced

as a discriminative Deep Learning framework combining unsupervised learning for dynamic pat-

tern representation together with Bayesian inference. DeSTIN is considered to model the spatio-

temporal dependencies in the observations in an unguided manner, whilst successfully dealing

with high dimensional signals.

The DeSTIN architecture consists of a hierarchy of layers, each having multiple nodes, such as

the typical Deep Learning frameworks. Additionally, every node has a corresponding "child" from

the layer below and a "parent" from the layer above, creating a hierarchical structure as presented

in Figure 3.8.

Figure 3.8: Hierarchical structure and signal flow of a DeSTIN architecture[5]

The nodes at the lowest layer receive the raw data as input - as exemplified in Figure 3.8 with

the letter ’C’ - producing an output, referred to as belief state, that is the input of its corresponding

"parent" node. In doing so, each node attempts to capture the spatio-temporal features contained

in its input and update a respective belief state. This belief state indicates the probability of each

possible state given the known information about the system. This sort of receptive field is unique

for each node and means to characterize the input and the sequences thereof. The beliefs created

throughout the entire architecture represent rich features that can be harnessed by hybrid architec-

tures that employ further supervised learning for classification purposes [5]. As it can be observed

in Figure 3.8, the spatial and hierarchical disposition of each node implies that belief states ex-

tracted from the lower layers will describe local features whereas beliefs from higher layers will

3.4 Final Remarks 27

characterize global features. Therefore, DeSTIN learns features from data in a total unsupervised

fashion, which stands in contrast to the other architectures described that rely on previous knowl-

edge of the problem at hand.

An enhancement to the original DeSTIN is proposed in [5], where an innovative recurrent clus-

tering algorithm is employed for capturing the spatio-temporal dependencies, as an unsupervised

learning procedure included in each node of the DeSTIN hierarchy. Furthermore, owing to par-

allel and independent operation of each node, remarkable scalability attributes, specially in GPU

implementation, are offered. Note that modern GPU are highly parallel programmable processors

that have a peak arithmetic and memory bandwidth much greater than any CPU [78]. Thus, the

ability to map DeSTIN to a GPU implementation is of great importance in order to tackle large

problems that use high resolution datasets, such as image or video.

Capturing the temporal dependencies on data is not straightforward. Also, as mentioned ear-

lier, it has not been an object of intensive research since most architectures are focused on im-

proving their performance on learning spatial features. Nevertheless, the ability to extract features

based on the sequential behaviour of data, in an unsupervised manner, seems very promising. In

the particular field of power systems, modelling the temporal dependencies inherent to consecutive

information prospects great advances on monitoring and control the dynamics of the system.

3.4 Final Remarks

The advent of WAMS and consequent PMU mass-deployment is of great importance for the

improvement of monitoring and control of power systems. However, as stated in section 2.10,

power system operators are craving for techniques that efficiently deal with the amount of raw

data flooding control centers nowadays. Artificial Intelligence, and more specifically Deep Learn-

ing approaches, seem to be a valid course of action to follow. The raw data provided by the

PMUs prospects a need for unsupervised learning techniques that extract valuable information

from patterns recognized in synchronized measurements. Otherwise, training supervised frame-

works requires previous extensive labelling of their datasets. Due to its unsupervised pre-training

phase, the Deep Belief Networks can emerge as a worthwhile framework to be employed. Alter-

natively, the flexibility exhibited by Convolution Neural Networks makes them highly attractive,

despite needing a way to encode data as images. Moreover, Autoencoders are envisaged as a

means of data dimensionality reduction. The issue regarding missing data on PMUs might aswell

be a motivation for the employment of Autoencoders, in its Denoising version. In addition, the

highly temporal component of the patterns present in PMU data opens doors for the application of

spatio-temporal algorithms for harnessing temporal dependencies.

Recent deployments of Deep Learning approaches regarding electric power systems in general

are depicting a bright future for the coupling of both activities. Indeed, several applications have

proven to benefit from the employment of deep learning frameworks. Also, the current availabil-

ity of GPU implementation is assuaging the computational effort inherent to those architectures.

Thus, the previous and the present section comprised an overview of both PMU technology and

28 Deep Learning

Deep Learning paradigm, aiming at a revision of concepts and respective applications. The inten-

tion of this dissertation is to propose an innovative application of deep learning frameworks that

can effectively extract features from synchronized measurements provided by PMUs.

Chapter 4

Context of The Work

This chapter contextualizes the work developed. It describes the PMU-based measurement system

that provided the data used, as well as the classification task carried out. The impacts of each

disturbance in system frequency are detailed, hence providing an insight to the ongoing electrical

phenomena.

4.1 The Medfasee BT Project

As described earlier in section 2.9, Brazil has implemented a Low Voltage, PMU-based, Wide

Area Measurement System. By the end of 2013, 22 devices were already installed in several

universities spread across the country. In addition, a 23rd PMU was envisaged to be installed

but, at the time of this thesis, that still had not happened. The data collected from each PMU is

sent to a central PDC installed in Universidade Federal de Santa Catarina (UFSC). So as to better

understand the geographical disposal of the devices, the location of each university taking part in

the project is identified in Figure 4.1. The acronym of each measurement point is described in

Appendix D.

Besides R&D, the data produced is being harnessed by the brazilian system operator for post-

mortem disturbance analysis. Also, the geographical distribution of the installed devices allows

the monitoring of electromechanical oscillations [6].

It is worth noticing that the Medfasee BT Project contributed greatly for the development of

this thesis by providing a complete dataset with several events properly labelled. Indeed, a manual

database was created including real events registered by the system operator between 2010 and

2015 [79]. Since the PMUs are installed in the low voltage grid, a careful selection of cases was

performed, which highlighted four types of events:

• Generation Tripping - cases of generation loss that caused frequency changes greater than

0.08 Hz (approximately 530 MW);

• Load Shedding - cases of load loss that resulted in frequency changes greater than 0.07 Hz

(approximately 440 MW);

29

30 Context of The Work

Figure 4.1: Geographical disposal of PMUs implemented in Medfasee Project [6] - details in
Appendix D

• Line Tripping - disconnection of ě 500kV transmission lines with significant power flow;

• Oscillation - cases of inter-area oscillations caused by the disconnection of a specific 600kV

DC link.

The events detected are distinguishable by the extent of their impacts. That is, both Generation

Tripping and Load Shedding are considered systemic events, therefore reaching a larger number

of PMUs. In contrast, Line Trippings and Oscillations are observed locally, hence affecting less

PMUs. As a result, the number of PMUs worth accessing is highly event-dependent. Having

gathered the exact time and location of each disturbance, the data measured by the affected PMUs

(stored in the main PDC) was then collected using a software for offline synchrophasor analysis,

which was specially developed for the project (MedPlot [33]). Table 4.1 lists the number of events

considered for each disturbance and the respective total number of cases (which corresponds to

the number of events multiplied by the number of PMUs affected in each event).

Table 4.1: List of extracted events

Events no. of events no. of examples

Generation Tripping 55 876
Load Shedding 29 421
Line Tripping 17 46

Oscillation 7 14

Total 108 1357

4.2 The Importance of Frequency in Disturbance Detection 31

The ratio between the number of examples and the number of events illustrates the different

range of impacts: Generation Tripping and Load Shedding are detected, in average, by 15 PMUs

whereas Line Tripping and Oscillation are caught by an average of 2 PMUs. Thus, the distribution

of cases is uneven, in which 65% of cases correspond to Generation Trippings, 31% to Load

Shedding, 3% to Line Trippings and only 1% of Oscillation examples. So, the total 1357 examples

compose a possibly too small dataset in what concerns typical deep learning applications.

Each example from the dataset provided corresponds to the frequency variation registered in

a PMU during a time window of 20 seconds: 1 second pre-event (system frequency normal be-

haviour) and the following 19 seconds of post-event. Since the sampling rate is 60 samples/second,

each example is fully characterized by 1200 frequency values. Therefore, each disturbance is

characterized by the changes it provoked in the frequency of the low voltage distribution grid. An

outlook of the impacts on frequency is given in the following sections.

4.2 The Importance of Frequency in Disturbance Detection

Frequency is one of the linchpin electrical variables in a power system. It can be understood as a

parameter of the voltage signal or assumed as a measurement of the system synchronous speed,

therefore proportional to the rotational speed of the generators. In what concerns the system oper-

ator, frequency is regarded as an image of the generation-consumption balance. Mathematically,

that balance is depicted by Newton’s 2nd Law of Motion for rotating masses, commonly referred

to as the swing equation for power systems:

2H
wo

dwptq
dt

“ Pmec´Pe (4.1)

Here, H represents the normalized inertia constant in seconds or MJ/MVA, wo is the nominal

system frequency in rad/s, Pmec is the per-unit mechanical power applied to the generator by its

prime mover and Pe is the per-unit electrical power load being supplied.

As expressed by the swing equation, mismatches between generation and load result in changes

in system frequency: if generation exceeds actual demand (increase in the mechanical power ap-

plied to the generator or reduction of the electrical power being supplied) the generators will accel-

erate and hence the frequency will increase; conversely, a surplus of load forces the generators to

slow down since the excess power is extracted from the rotating masses, and frequency decreases.

In both cases, the respective control systems should be activated so as to counterbalance the effects

and restore the production-consumption equilibrium. Under normal operating conditions, the in-

stantaneous frequency is not always constant due to small generation or load variations. However,

large and fast frequency deviations from its nominal value point towards the existence of a distur-

bance or event in the system. That is, abnormal situations such as short circuits, can lead to the

activation of the respective protection systems, removing from the grid the component or a set of

components where the fault was occurring. The corresponding impacts are component-dependent,

32 Context of The Work

so a classification can be performed in order to identify their origin. As explained earlier, the

dataset used in this thesis comprises four types of events properly labelled - Generation Tripping,

Load Shedding, Line Tripping and Oscillations - each of them described in the following sections.

4.2.1 Generation Tripping

Nowadays, electrical facilities with large exploitation of renewable resources are exposed to an

inherent and inevitable variability that affects the electricity production. Therefore, system oper-

ators have to handle this new paradigm with special care so as to minimize the resulting impacts

and prevent excessive frequency variations. For instance, such fluctuations are particularly felt in

systems with high wind power penetration, in which sudden climate changes can cause the need

to stop the turbines. In addition to dispatch orders, losses of generation can also result from the

activation of its protective system due to external factors. Overall, the loss of generation and con-

sequent imbalance will result in the drop of frequency. A real occurrence of a generation tripping

is shown below, as it was caught by several PMUs:

59.3

59.4

59.5

59.6

59.7

59.8

59.9

60

60.1

60.2

0 1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

f
(H

z)

time (s)
UNIFEI UNB COPPE USP-SC UTFPR UFSC

UNIR UFMT UNIPAMPA UFMG UFMS UFPE

Figure 4.2: Typical frequency change in the presence of a Generation Tripping. Details about the
PMUs that caught the event in Appendix D

The frequency progress demonstrates the initial normal behaviour and the following frequency

drop caused by the disturbance felt. Moreover, the action of both primary and secondary frequency

controls is also well observed a few seconds after the occurrence - respectively, stabilizing and re-

turning the frequency value to its nominal (the latter not shown completely). This is a standard and

automatic procedure in which the generators outputs are rapidly redefined so as to avoid a contin-

uous decline in frequency that can lead to under-frequency problems and consequent blackouts.

4.2.2 Load Shedding

Load shedding regards the process of dropping off important loads to restore the balance between

demand and generation. A particular and common case is found in the disconnection of pumped

4.2 The Importance of Frequency in Disturbance Detection 33

storage power plants after dispatch orders.

However, under the paradigm of system security assessment, load shedding is held as an ul-

timate resource of control/protection to solve excessive frequency decline and avoid damaging

system components. In doing so, the system transits from an Emergency State to a In Extremis

State (DyLiacco, 1967; Fink and Carlsen, 1978), in which partial or total collapse of the system is

a possibility.

Moreover, a load drop off might occur unpredictably, i.e., a severe disturbance or even a mal-

function of a component can result in the disconnection of a substantially large load. Normally,

such cases are more easily circumvented in highly meshed grids, by adjusting its topology and

retrieving the standard operating conditions, as seen below.

59.95

60

60.05

60.1

60.15

60.2

60.25

60.3

60.35

60.4

60.45

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

f
(H

z)

time (s)

UFPA UNIFEI COPPE UFC USP-SC UTFPR UFSC UNIR

Figure 4.3: Typical frequency change in case of a load shedding - details in Appendix D

Overall, the electrical power supplied decreases significantly and the excess of mechanical

power applied to the generator will imply a frequency increase. Again, the actions of counterbal-

ancing are also observed.

4.2.3 Transmission Line Tripping

Whenever a transmission line is switched off, the power flow in its surroundings is changed. In

addition, the switching operation creates frequency transients that are transmitted over the form

of oscillations around the nominal frequency. As seen in Fig 4.4, in which the event was zoomed

in for a better understanding, a rapid, high amplitude transient is caught. Indeed, this kind of

phenomena is typically not widely observed, therefore being caught within a small range of nearby

PMUs.

34 Context of The Work

59.2

59.3

59.4

59.5

59.6

59.7

59.8

59.9

60

60.1

60.2

60.3

60.4
0 1 2 3 4 5 6

f
(H

z)

time (s)

UFC UFMA UFPE

Figure 4.4: Typical frequency change in case of a transmission line tripping off - details in Ap-
pendix D

4.2.4 Oscillations

Frequency oscillations are quite often in electrical power grids due to their dynamic behaviour un-

der normal or abnormal working circumstances. In fact, the occurrence of the previously described

disturbances can produce additional impacts in the form of frequency oscillations. Therefore,

sometimes, a specific origin of an oscillation might not be easily acknowledged. Nevertheless,

it is crucial that the system has the ability of maintaining stability by properly damping those

electromechanical oscillations. If not, negative consequences affect system components which are

disconnected to avoid damage, leading to potential islandings or blackouts. Consequently, tran-

sient stability and small signal stability studies assume a major relevance for system operators

preventive analysis.

In what regards the dataset supplied, the registered frequency oscillations are originated in a

particular HVDC link (600 kV). Thus, they are captured by the PMUs installed in UFAC (Univer-

sidade Federal do Acre) and UNIR (Universidade Federal de Rondônia), as seen in Figure 4.5.

4.3 Existing Disturbance Identification Methods

The procedure of identifying a disturbance comprises a series of sequential steps: preprocessing,

detection, classification and location. The preprocessing phase performs the signal filtering in

order to attenuate noise and leaps. Then, a commonly used method for detecting power system

disturbances is to monitor the rate of change of frequency pd f {dtq [80]. Whenever the frequency

variations exceed a given threshold, the trigger is activated and a disturbance is flagged. Here, the

choice for the threshold value (sensitivity of the detector) is critical so as to avoid false triggering.

Afterwards, the process of event classification is employed. The traditional classifiers are mainly

deterministic, in which a specific algorithm is defined so that for a given input the output is always

4.4 Proposed Classifier 35

59.5

59.6

59.7

59.8

59.9

60

60.1

60.2

60.3

0 1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

f
(H

z)

time (s)

UFAC UNIR

Figure 4.5: Typical frequency change in case of an oscillation - details in Appendix D

the same. Recently, statistical methods have gained special attention. They have been proven to

be better suited for dealing with power system randomness, especially with the increasing pene-

tration of renewable sources. Indeed, several recent methods for statistical classification have been

proposed, such as artificial neural networks [79], support vector machines [81] [82], naive Bayes

classifiers [82], decision trees [82], etc. After classification, the location of the event can also be

estimated employing the concepts of electromechanical wave propagation [83]. In general, a lot

of research has been conducted in the area of disturbance identification and system operators are

usually endowed with such functionalities. However, the fresh developments in the area of artifi-

cial intelligence, namely in deep machine learning, foresee the application of new methodologies

for disturbance classification.

4.4 Proposed Classifier

Inspired by the advances in Deep Learning, this thesis brings forward new procedures for perform-

ing automatic classification of power system disturbances. More specifically, the aim is to learn

features from the temporal frequency variation involved in a disturbance. The classifiers herein

developed will be applied to the dataset provided and trained to distinguish the four types of events

described earlier in this section. In order to do so, three different frameworks were explored:

• Multilayer Perceptron - this type of artificial neural network was adopted here to perform a

direct comparison to the work developed in [79], in which a one hidden layer architecture

is proposed. Thus, this work designed a one hidden layer architecture and also deeper

architectures with four and eight hidden layers;

• Deep Belief Network - the depth of the network is obtained by stacking individual RBMs

on top of each other (in this case, 3 RBMs);

36 Context of The Work

• Convolutional Neural Network - its visual field inspiration was used for dealing with the

whole event frequency change as an image/frame snapped from the continuous movie that

is the operation of the system.

In the following chapter, the specifications of each framework engineered are detailed. The

respective achievements are presented in chapter 6.

Chapter 5

Methodology

In this chapter, the frameworks designed for the classification procedure are explained, detailing

the chosen structure and respective parameters. For a deeper understanding of the concepts in-

volved in each implementation, the reader is advised to visit Section 3.3, where the respective

theoretical explanations are given. What’s more, an observation is made on how the data was pre-

processed before being fed to the algorithms adopted. It is important to note that this is a different

kind of data treatment, typically applied in Machine Learning, and should not be confused with

the filtering phase of the disturbance identification methods. The end of the chapter presents the

motivations for the use of GPU computing as a means to accelerate the computational procedures.

5.1 Data Preprocessing

In Deep Learning, data preprocessing is almost essential, since many frameworks achieve better

performance when the dataset is rescaled. However, there is not a defined recipe that could be

followed. Sometimes, the distinctiveness of data requires a trial and error procedure and some

experience for finding the best way to work out the dataset. Still, two generic and widely applied

techniques are normalization and standardization. Normalization involves the rescaling of data in

order to set all values within the range of 0 and 1. Standardization sets the observations to fit a

Gaussian distribution, hence examples are rescaled to have zero-mean and unit-variance.

As mentioned in Section 4.1, the data entries correspond to the frequency variation registered

in the 20 seconds of disturbance. Since samples were obtained with a rate of 60 samples per

second, one disturbance is characterized by 20 x 60 = 1200 frequency values. Moreover, the

preprocessing method in use is standardization. Sometimes, standardization is more robust when

dealing with observations that might step outside the range of expected values, which can be very

helpful since the disturbance can lead to unpredictable frequency values.

37

38 Methodology

5.2 Logistic Regression

The logistic regression is considered one of the most basic classifiers in machine learning theory.

It is a probabilistic classifier as it performs the classification by projecting the input values onto

a set of hyperplanes, each corresponding to a given class. The distance from the input to each

hyperplane reflects the probability that the input is a member of the matching class [3].

The logistic activation function is usually determined by the number of classes to predict. In

binary classification, the sigmoid function is preferably employed. In cases of multiclass classi-

fication, the softmax function is mostly used. In fact, softmax is no more than an extention of

the sigmoid function, hence both being equivalent for binary classification. Regarding the case of

multiclass classification, the probability of an input x belonging to a class i is expressed as:

PpY “ i|x,W,bq “ so f tmaxipWx`bq “
eWix`bi

ř

j eWjx`b j
(5.1)

This formulation can be replicated to calculate the probability distribution of the input example

over the different possible classes. The output probabilities will range from 0 to 1, all summing up

to 1. Thus, the actual prediction f pxq is determined by the class i, whose probability is maximal

(therefore the argmax function):

f pxq “ argmaxi rPpY “ i|x,W,bqs (5.2)

Regarding ANN-based classification tasks, logistic regression is regularly employed as the

output layer. The event classifiers implemented in this thesis establish a multiclass logistic regres-

sion layer as the output. The class predictions are used for determining the accuracy of the model

under a function called Zero-One Loss (detailed below in Section 5.3.1). However, due to compu-

tation efficiency issues, the optimal model parameters are obtained with the minimization of the

Negative Log-Likelihood as loss function (explained in Section 5.3.2), by conducting a mini-batch

SGD optimization.

5.3 Loss Functions

Loss functions differ greatly with respect to the paradigm and objective of training. In classifi-

cation problems, it is very useful to measure the obtained miss-classifications, since they provide

the accuracy of the model. This measurement is commonly referred to as Zero-One Loss. Nev-

ertheless, it is not always mathematically possible to learn the classifier on that measurement,

and a probabilistic meaning is assigned - for instance, with the Negative Log-Likelihood. These

concepts are adopted in this thesis, so a fully description is given in the following sections.

The classification tasks herein conducted are supervised, hence requiring the dataset D in

evaluation to comprise a set of pairs pxpiq,ypiqqÑ (i-th input, i-th target). Accordingly, the i-th input

5.3 Loss Functions 39

of dimensionality D, xpiq PRD, is assigned the i-th target from a set of L targets ypiq P t0, ...,Lu.

The loss functions implemented regard this organization in their description.

5.3.1 Zero-One Loss

The main objective in classification tasks is to minimize the number of errors in unseen examples.

The so called zero-one loss function performs exactly that as it measures the accuracy of the

classification: returns 0 if the predicted class is equal to the true class or 1 if missclassified.

Mathematically, having a prediction function for L classes as f : RD Ñ t0, ...,Lu, the corre-

sponding loss ` on the dataset D is given as:

`0,1 “

|D |
ÿ

i“0

I f pxpiqq‰ypiq (5.3)

in which f pxpiqq “ argmaxi
“

PpY “ k|xpiq,W,bq
‰

is the class predicted for the input xris (equa-

tion 5.2) and ypiq is the correct label.

The indicator function Iz determines the correctness of the classification through the direct

comparison between the predicted classes and the real targets:

Iz “

#

1 if z is True (missclassification)

0 if z is False (properly classified)
, zÑ f pxpiqq ‰ ypiq (5.4)

By doing so for every example i on the dataset D , the accuracy of the model is determined.

5.3.2 Negative Log-Likelihood

The non differentiability of the zero-one loss function requires excessive computational resources

when optimizing large models - huge number of parameters θ - during the training procedure.

Thus, an alternative is found in maximizing the log-likelihood of the classifier:

L pθ ,Dq “

|D |
ÿ

i“0

logPpY “ ypiq|xpiq,θq (5.5)

Since typically the loss functions are to be minimized, the learning can be adapted so as to

perform the training data on a negative log-likelihood (NLL):

NLLpθ ,Dq “ ´
|D |
ÿ

i“0

logPpY “ ypiq|xpiq,θq (5.6)

40 Methodology

Therefore, the NLL is assumed to be the differentiable surrogate for the zero-one loss function.

In doing so, the gradient can then be efficiently applied to the training set of examples. However,

it should be pointed out that the zero-one loss function and the NLL represent different objectives.

5.4 Multilayer Perceptron

The Multilayer Perceptron implemented here is a typical feedforward, fully-connected, DNN with

an input layer, hidden layers and an output layer. The input layer contains 1200 neurons so as

to be fed with the 1200 frequency values (20 seconds x 60 samples/second) as inputs. Several

experiments were conducted in what regards the number of hidden layers and the respective num-

ber of neurons. Particularly, in order to ascertain the effect of the model’s depth, 3 architectures

were tested: 1, 4, and 8 hidden layers - MLP 1, MLP 4 and MLP 8, respectively. The number of

neurons chosen for each layer is detailed in Table 5.1. Both the input and hidden layer neurons

were implemented with the hiperbolic tangent (tanh) as activation function.

Moreover, the weights of the hidden layers should be initialized to be small enough so that the

activation function operates in its linear region, where gradients are larger. Therefore, the initial-

ization is dependent on the activation function in use. For tanh, this is held by uniformly sampling

from the following symmetric interval, as proposed in [84]: r´
b

6
f anin` f anout

,
b

6
f anin` f anout

s, in

which f anin and f anout are the number of units in the pi´1q´ th and i´ th layers, respectively.

The classification task is performed by employing a softmax logistic regression layer as the

output layer. The number of output neurons corresponds to the number of events in classification.

The training procedure is carried out by minimizing the Negative Log-Likelihood and updating

the parameters with a mini-batch SGD. The minibatch size is variable. Several sizes were ex-

perimented and the ones adopted are shown in Appendix B. Finally, the accuracy of the model

designed is observed by applying the Zero-One loss function.

Table 5.1: Specifications of the several Multilayer Perceptrons developed

Settings MLP 1 MLP 4 MLP 8

input neurons 1200 1200 1200

hidden neurons 500 500 | 200 | 100 | 50
1200 | 1000 | 800 | 500

300 | 200 | 100 | 20
output neurons no. events no. events no. events

hidden layer activ. func. tanh tanh tanh
ouput layer activ. func. softmax softmax softmax

training loss func. neg. log-likelihood neg. log-likelihood neg. log-likelihood
training optimizer mini-batch SGD mini-batch SGD mini-batch SGD

accuracy evaluation zero-one loss zero-one loss zero-one loss

5.5 Deep Belief Network 41

5.5 Deep Belief Network

The Deep Belief Network used in this thesis is implemented by stacking 3 Restricted Boltzmann

Machines on top of each other. Each individual unit was assigned the sigmoid as activation func-

tion. The first layer RBM is the input of the network, hence having 1200 neurons in its visible

layer. Since the DBN is used for classification purposes, the hidden layer of the last RBM is not

the output of the network. Instead, the DBN is treated as a special MLP and a logistic regression

layer is added on top for performing the classification task. Again, the output units are determined

by the number of events to distinguish. These settings are organized in Table 5.2.

Table 5.2: Specifications of the Deep Belief Network designed

Settings DBN Architecture

input neurons 1200

units in 1st RBM 1200 800
units in 2nd RBM 800 800
units in 3rd RBM 800 800
units activ. func. sigmoid

output neurons no. of events
ouput layer activation softmax

pre-training method CD-1
fine-tune cost neg. log-likelihood

accuracy evaluation zero-one loss

As described in section 3.3.3, DBNs can be efficiently pre-trained in a greedy, layer-wise, un-

supervised manner. Thereafter, a supervised fine-tuning for a final weight adjustment is employed.

More specifically, the whole training procedure followed the subsequent guidelines:

• Unsupervised pre-training:

1. The first RBM is trained to obtain a representation of the input data;

2. The second RBM is trained using the outputs from the first RBM. That is, the trans-

formed inputs in the hidden layer of the first RBM are the visible layer inputs of the

second RBM;

3. Points 1. and 2. are repeated until every layer in the network is trained - in this case, 3

RBMs were implemented;

• Supervised fine-tuning of the whole model.

The objective in training an RBM is to maximize its log-likelihood. However, applying the

stochastic gradient descent to an RBMs is mathematically intractable. For that reason, Hinton

proposed a new method - Contrastive Divergence [85] - which approximates the log-likelihood

gradient calculus.

42 Methodology

In RBM training, maximizing the log-likelihood of the input data is equivalent to minimizing

a Kullback-Leibler divergence pQ0||Q8q between the data distribution Q0 and the equilibrium

distribution of the model Q8. The latter implies running several steps of Gibbs sampling (each

variable draws a sample given the current state of the other variables) over the model, therefore

resulting in high computational effort. The reasoning behind CD-1 is to minimize the difference

between pQ0||Q8q and pQ1||Q8q, where Q1 is the resulting distribution after one-step of Gibbs

sampling. Surprisingly, performing just one-step approximates very well the theoretical result and

is computationally efficient, so it is widely applied in the pre-training phase of DBNs. In the

context of RBMs, one-step of Gibbs sampling comprises the following steps:

1. Start with a training vector on the visible units;

2. Update all the hidden units in parallel;

3. Update all the visible units in parallel, getting a reconstruction of the input data;

4. Update all hidden units again.

The key factors to achieve both speed and correctness is to start the network with small wights

and use the CD-1. Therefore, the DBN implemented consists of the one-step Contrastive Diver-

gence (CD-1) as the unsupervised method, running for 100 epochs for each RBM layer. Since

the activation function in use is the sigmoid, the weights were initialized as proposed in [84]:

r´4ˆ
b

6
f anin` f anout

,4ˆ
b

6
f anin` f anout

s, in which f anin and f anout are the number of units in the

pi´1q´ th and i´ th layers, respectively.

The end of the pre-training stage results in that each RBM has learned to detect inherent

patterns in data. However, the network cannot still identify each of the patterns learned. To

finish training, labels of the given patterns need to be provided so as to fine-tune the net with

supervised learning. An important feature of this architecture is that it only needs a small labelled

dataset for performing the final fine-tuning, which is revealed as of great importance in real-world

applications. This supervised fine-tuning phase is similar to the training procedure implemented

for learning the MLP, although now only small changes are applied to its parameters. With the help

of the output logistic regression layer, fine-tuning is performed via minibatch stochastic gradient

descent in the negative log-likelihood cost function. Moreover, the accuracy of this framework is

evaluated by quantifying the wrong classifications, that is, by using the Zero-One Loss function.

5.6 Convolutional Neural Network

The trick to apply Convolutional Neural Networks is to find the right settings for the filters imple-

mented. The filter shapes found in the literature vary greatly according to the dataset in use. In

addition, CNNs are an image-based methodology, so its implementation is easier when working

with images as inputs, specially squared images that involve symmetrical structures. For non-

image applications, a way to replicate a visual shape is required.

5.6 Convolutional Neural Network 43

In this thesis, the 1200 frequency values of each event can be understood as a 1200x1 vector

of data. For enabling the CNN training, these 1200 "pixels" have to be re-shaped so as to produce

a matrix structure that resembles the frame of an image - height x width. Two image shapes were

developed: 30x40 and 20x60. Unfortunately, fitting the 1200 values in a symmetrical structure

(height = width) is not possible. Thus, this asymmetry carries an extra complexity to the definition

of the filter shapes to be applied. An illustration of the resulting 30x40 images, for a specific event

of each class, is shown in Figures 5.1-5.4. For a better understanding of the pattern involved in a

given event, the 30x40 pixels were assigned a color as a function of its frequency value: green for

nominal frequency, red and blue for under and over the nominal frequency, respectively.

Figure 5.1: Generation Tripping: the input pattern of the CNN and the corresponding original
frequency variation

Figure 5.2: Load Shedding example: the input pattern of the CNN and the original frequency
variation

The architecture designed will also be explained for the 30x40 case. For an improved un-

derstanding of the subsequent description, the reader is advised to simultaneously visualize its

concepts in Figure 5.5.

44 Methodology

Figure 5.3: Line Tripping example: the input pattern of the CNN and the original frequency
variation

Figure 5.4: Oscillation example: the input pattern of the CNN and the original frequency variation

The CNN consists of 2 convolutional and 2 max-pooling layers alternately stacked, followed

by a fully connected layer and a final logistic regression layer to carry out the classification task.

The input image contains 1200 pixels (30 x 40 image). The first convolution layer performs the

convolution of twenty (7x9) filters with the input image, thus creating twenty feature maps of size

(30-7+1 x 40-9+1) = (24x32). Then, the pooling layer does a (2x2) max-pooling over each feature

map re-shaping them to a (12x16) size. The first convolutional-pooling filtering is completed.

This 2-step process is again repeated: the twenty (12x16) feature maps are now convoluted with

fifty (7x9) filters resulting in frames of size (6x8); the subsequent sub-sampling/max-pooling layer

leads to fifty feature maps of size (3x4). The output of this second procedure is a 4D tensor of

shape (mini-batch size, number of feature maps, filter height, filter width) = (mini-batch size, 50,

3, 4). Since the fully-connected layer operates only on 2D matrices of shape (mini-batch size,

number of pixels), the 4D output tensor is flattened to (mini-batch size, 50 * 3 * 4) = (mini-batch

size, 600).

5.6 Convolutional Neural Network 45

Figure 5.5: CNN designed for performing classification in 30x40 images (adapted from [4])

The hidden layer has 300 neurons and the logistic regression layer contains the number of units

corresponding to the number of events to distinguish. In summary, the procedure is as follows:

1. Convolutional layer with 20 (7x9) filtersÑ creating 20 (24x32) feature maps;

2. Max-Pooling layer of (2x2)Ñ re-shaping for obtaining 20 (12x16) feature maps;

3. Convolutional layer with 50 (7x9) filtersÑ creating 50 (6x8) feature maps;

4. Max-Pooling layer of (2x2)Ñ re-shaping for 50 (3x4) feature maps;

5. Fully-connected layer of 300 hidden neurons.

6. Output layer of one neuron per class.

The same reasoning can be done for handling images of shape 20x60. Table 5.3 organizes the

settings defined for both cases.

The weights of each convolutional and sub-sampling layer are initialized similarly to as with

the MLP. Slight differences are worth mentioning: here, f anin corresponds to the number of inputs

to a hidden unit (number of input feature maps * filter height * filter width); f anout is determined

by the number of output feature maps and filter shape. The weights of the fully-connected layer

are initialized exactly as described for the Multilayer Perceptron.

Since a logistic regression layer is used for performing the classification task, the training pro-

cedure does not differ much from the previous architectures. Indeed, the negative log-likelihood

is used as loss function and the weights and biases of each layer are updated by the mini-batch

stochastic gradient descent. Finally, the accuracy of both architectures is evaluated under the zero-

one loss criterion.

5.6.1 Regularization Methods

The objective in training a machine learning algorithm is to obtain good generalization, i.e., to

perform well on unseen data. However, a commonly observed behaviour is the model overfitting to

46 Methodology

Table 5.3: CNN settings defined for processing the input 30x40 and 20x60 images

CNN Architecture Settings 30x40 image 20x60 image

1st convolutional layer
no. of kernels 20 20
filter shapes (7, 9) (5, 13)

1st sub-sampling layer
no. of kernels 20 20

pool size (2,2) (2,2)

2nd convolutional layer
no. of kernels 50 50
filter shapes (7, 9) (5, 13)

2nd sub-sampling layer
no. of kernels 50 50

pool size (2,2) (2,2)

Fully-connected layer
input units 600 600

hidden units 300 300
activation tanh tanh

Logistic Regression layer
input units 300 300

output units no. of events no. of events
activation softmax softmax

the training set throughout the training procedure, losing its generalization capacity. An illustration

of these phenomena is found in Figure 5.6, showing the generalization error increasing with the

increase of model capacity - capacity is hereby relative to the complexity of the model, such

that a very complex model is overly attached to the training data; also, the capacity increase is

correspondingly connected to the course of training.

Figure 5.6: Evolution of the training and generalization errors along with training epochs [7]

These phenomena can be combated by applying the so-called regularization methods: the

objective is to reduce the generalization error even if at the expense of increased training error.

There are many regularization techniques, such as the addition of extra terms to the loss function

(L1 and L2 Regularization), hence penalizing specific parameter configurations. A particular case

of regularization is found in Early Stopping (identified as the optimal capacity in Figure 5.6),

5.7 Introducing GPU Computing 47

which requires splitting the dataset into a separate Validation set, besides the Train and Test sets.

Overfitting is then tackled by monitoring the performance of the model on the validation set. With

the training procedure running, the parameter configuration is saved every time the validation

error decreases. Conversely, if the validation error ceases to improve significantly, the heuristic

implemented gives up on much further optimization and the procedure is stopped. This is based

on the concept of patience, i.e. the number of iterations to wait (examples to experience) before

stopping the procedure.

5.7 Introducing GPU Computing

GPU-accelerated computing, also referred to as General-Purpose Computing on Graphics Process-

ing Units (GPGPU), regards the use of Graphics Processing Units (GPUs) along with the Central

Processing Unit (CPU) to accelerate computational applications. Whilst traditional methods op-

erate only on the CPU, the new paradigm offloads the computationally heavy portions of code to

the GPU, processing the remainder on the CPU, as shown in Figure 5.7.

Figure 5.7: How the division of code sections is made between the GPU and the CPU [8]

In doing so, applications benefit from huge time reductions. The reason why is found on how

both process their tasks: the CPU consists of few cores optimized for sequential serial processing,

whereas the GPU owns a massively parallel architecture composed by thousands of smaller and

more efficient cores conceived for processing multiple tasks concurrently - Figure 5.8. Thus, GPU

computing is all about leveraging the parallelism in its architecture to perform mathematically

compute intensive operations that the CPU is not designed to handle with ease.

So as to harness the performance of the GPU architecure, NVIDIA created a parallel pro-

gramming model called CUDA that is supported by all NVIDIA GPU models. Moreover, several

programming libraries have emerged or been updated to provide the ability of easy GPU com-

puting. For instance, cuDNN is an NVIDIA library specially developed for deep neural networks

48 Methodology

Figure 5.8: CPU versus GPU regarding the number of cores [8]

GPU-accelerated computing. These libraries can be further integrated with more generally numer-

ical computation libraries, such as Theano that is built on top of Python and is compiled to run

efficiently on either CPU or GPU architectures. A more detailed description of these concepts and

the effort required for their understanding is given in Appendix A.

Overall, the combination of GPU computing and Deep Learning looks very promising. Deep

Learning requires huge amounts of mathematical operations involving matrices and vectors. These

are essentially multiplications that can be massively parallelized. Therefore, harnessing the prop-

erties of the GPU architecture can result in speeding up the algorithms. Additionally, as models

increase in depth, more of these operations are required. Depending on the structure, the benefits

in time can be proportional to the dimension of the model employed. Another interesting feature

is that the resulting accuracy of training a model is not relevantly affected by the use of GPU

computing libraries. Thus, in what concerns Deep Learning and specially its applications to the

field of power systems, it is foreseen that the increased computational effort inherent to deeper

networks can be massively reduced, without losing accuracy.

Chapter 6

Results

The following sections show the results obtained with the application of the three methodologies

proposed. Firstly, some general specifications are explained considering their transverse nature.

Then, the outcome of each framework is detailed.

6.1 Dataset Splitting

In Machine Learning applications, a mandatory step is to perform a proper data splitting to the

dataset that is going to be used. There are several rules-of-thumb for choosing the ratio of each

subset (for instance techniques such as Holdout or k-fold Cross Validation) supported by series of

arguments that are out of the scope of this work. In fact, the partition hereby conducted is very

common when working with three distinct sets. Nevertheless, the main reason of its choice was

to match the one held in the classifier proposed in [79], since doing so allows tracing some direct

comparisons that are going to be carried out in this work. Accordingly, the data was split in the

sets of training, validation and test, as follows:

• Training Set - 70%: consists of the examples used in training, whose objective is to fit the

parameters of the model (connection weights);

• Validation Set - 15%: its examples are used for selecting hyper-parameters of the architec-

ture and controlling of optimization;

• Test Set - 15%: a set of examples that are used to assess the generalization capacity of the

model, i.e., its performance in "unseen" examples.

Note that the objective of building these computational models is that they gain the ability

to generalize well the extracted knowledge. Therefore, the accuracy of a given methodology is

measured in the performance it exhibits when evaluating examples from the test set, simulating

a real application in unseen data. So, it is very important to guarantee that the test examples are

not used in any way that influences choices about the model. For this reason, the validation set

49

50 Results

is considered as part of the training data, since both are used for leading the model to its best

performance on the test data.

What’s more, the classifier proposed in [79] demonstrated results for the distinction of only two

events - Generation Tripping and Load Shedding. This dissertation can be regarded as an extension

of those results, since all the possible combinations between the four events were experimented.

Thus, the database presented in Table 4.1 is further divided into 11 partial datasets. The number of

examples and their division is listed in the subsequent table according to each possible combination

of 2, 3 or 4 events. Obviously, the distinction between 4 events corresponds to the use of the total

database provided.

The nomenclature followed was: GT for Generation Tripping; LS for Load Shedding; LT for

Line Tripping; OS for Oscillation.

Table 6.1: List of cases regarding each possible combination of 2, 3 and 4 events

Events to distinguish no. examples Training set - 70% Validation set - 15% Test set - 15%

GT vs LS 1297 908 195 194
GT vs LT 922 645 138 139
GT vs OS 890 623 134 133
LS vs LT 467 327 70 70
LS vs OS 435 305 65 65
LT vs OS 60 42 9 9

GT vs LS vs LT 1343 940 201 202
GT vs LS vs OS 1311 918 197 196
GT vs LT vs OS 936 655 140 141
LS vs LT vs OS 481 337 72 72

GT vs LS vs LT vs OS 1357 950 204 203

In general, all frameworks developed will be evaluated in the eleven different combinations.

6.2 Hardware Specifications

The time efficiency of the files developed is directly influenced by the specifications of the machine

used for extracting the results. Therefore, it is a good practice to present the characteristics of both

CPU and GPU hardware so that the time associated to each file has a base of comparison between

different hardware:

• CPU: The CPU in use is a 4-core Intel (R) Xeon (R) E5-1620 V3, 10 MB Cache, 3.50 GHz

with 3.60 GHz Turbo - specifications can be found in [86];

• GPU: The GPU is a 12 GB NVIDIA GeForce GTX TITAN X - specifications are available

in [87].

Due to driver memory issues, the use of the GPU is limited to 95% of its maximum capacity.

6.3 Selection of Hyperparameters 51

6.3 Selection of Hyperparameters

The so-called hyperparameters are several settings regarding each framework that can be used for

controlling the behaviour of the learning procedure. Generally speaking, these include learning

rates, size of mini-batch, number of hidden units, etc., that are not appropriate to be adjusted

(and sometimes cannot be) with the course of training because this would almost certainly result

in overfitting to the training data. In addition, the effects that each has on the results are not

independent, therefore anticipating that finding their optimum values is not a feasible problem.

So, a procedure of trial-and-error was conducted to choose the hyper-parameters based on the

assessment of the validation set accuracy. This is a very time-consuming step, which was based

on several rules-of-thumb found on the literature and fully documented in [88].

It is worth noticing that the mini-batch size was handled separately from the other hyper-

parameters due to its impacts on the efficiency of GPU computing. Therefore, the reasons sup-

porting the choices of size made for each architecture and dataset are explained in Section 6.5.1.

Since this is merely informative, the settings are compiled and presented in Appendix B.

6.4 Classification Results

As mentioned earlier, the original dataset was replicated into the different possible combinations

between the events to distinguish. Then, the architectures proposed were evaluated in all those

datasets. The classification results are presented in Table 6.2. The accuracy is measured in the test

set with respect to the zero-one loss function, i.e., it identifies the number of miss-classifications

for each case. The corresponding percentage results are indicated in Table C.1 of Appendix C.

Table 6.2: Accuracy of each architecture developed in each event distinction

Dataset z File MLP 1 MLP 4 MLP 8 DBN CNN 20x60 CNN 30x40

GT vs LS 0 0 0 0 0 0
GT vs LT 0 0 0 0 0 0
GT vs OS 1 1 1 2 0 0
LS vs LT 0 0 0 0 0 0
LS vs OS 1 1 0 1 0 0
LT vs OS 1 0 0 1 0 0

GT vs LS vs LT 2 0 0 0 0 0
GT vs LS vs OS 2 2 2 2 0 0
GT vs LT vs OS 0 0 0 0 0 0
LS vs LT vs OS 1 0 0 0 0 0

GT vs LS vs LT vs OS 3 3 3 3 1 0

Since this work shares the dataset with the classifier described in [79], an immediate compar-

ison is inevitable. The corresponding circumstances herein are the application of the MLP with

1 hidden layer to the dataset that distinguishes Generation Tripping from Load Shedding (GT vs

52 Results

LS). In those conditions, the classifier developed showed to perfectly distinguish between the two

events, therefore achieving a performance equal to the one presented in Brazil [79].

Regarding the application of the three MLPs, the first thing to notice is that there are no

substantial improvements with the increase of depth. This could be a symptom of the universal

approximation theorem, which states that one hidden layer is enough to make the network rep-

resent a wide variety of functions, when given the appropriate parameters. Nonetheless, these

improvements cannot be neglected due to the number of examples in evaluation. For instance,

whilst in the case of GT vs LS vs LT classifying correctly 2 more events represented an accuracy

enhancement of 0.99% (2 out of 202 examples), the improvement on classification obtained in LT

vs OS led to a reduction of error in 11.11% (1 out of 9 examples) - these are results that can be

consulted in Table C.1, which shows the error accuracy in terms of percentage of the number of

examples in each set.

In addition, the comparison between the different MLPs needs to consider not only the gains

in accuracy, but also the amount of computational burden each architecture carries. Moving from

4 hidden layers to 8 hidden layers only represented a gain of 1.54% and only in the evaluation of

one combination (LS vs OS). In fact, for the distinction of all 4 events, it is clear that there are no

such improvements with the increase of depth, prompting the current need for exploring different

Deep Learning frameworks.

The performance of the Deep Belief Network is roughly identical to the one obtained with the

1 hidden layer MLP. With the exception of the case LS vs LT vs OS, the previous unsupervised

pre-training applied to the DBN did not in any way leverage the network with respect to the basic

MLP, for this specific classification task.

The Convolutional Neural Networks absolutely outperformed the remaining architectures.

Both 20x60 and 30x40 frameworks show great capacity of distinguishing the several events by

making use of image properties. This is inherently dependent on how the "picture" was orga-

nized: re-shaping the original vector to a matrix created new relations between "pixels" that were

previously located far from each other. Since CNNs exploit local spatially correlations found

in connections between nearby pixels, the new arrangement produced patterns that were easily

learned by the architecture. This also supports that different shapes are predictable to result in dif-

ferent accuracy. However, the lack of discrepancies in the results obtained is due to the flexibility

of this architecture, which led to an almost absolute correctness of classification. The exception

is found in the distinction of the 4 types of events, in which only the 30x40-sized images man-

aged to obtain 100% of correct classification. Overall, the successful application of both CNNs

illustrates that the patterns hidden in data are easily learned when working with image-shaped con-

figurations. By emulating the behaviour of the visual cortex - the most powerful visual processing

system in existence - one is able to achieve better performance, at least in this recreated "image"

classification.

In short, considering only the best architectures from each framework, it becomes clear that

the DBN held the worst results. It was outperformed by the MLP of 8 hidden layers, which was

then greatly surpassed by the CNN 30x40.

6.4 Classification Results 53

6.4.1 Classification Details

A closer look to the miss-classified cases is worth having. To perform that sort of analysis, the

confusion matrices for each dataset and architecture were obtained and can be found in Section C.2

of Appendix C. The confusion matrices allow to determine how many examples were duly classi-

fied. That information can be organized into a table which reflects the predicted classes versus the

original target classes.

Table 6.3: Predicted vs real events

Dataset z File MLP 1 MLP 4 MLP 8
predicted real predicted real predicted real

GT vs LS - - - - - -
GT vs LT - - - - - -
GT vs OS GT OS GT OS GT OS
LS vs LT - - - - - -
LS vs OS LS OS LS OS - -
LT vs OS LT OS - - - -

GT vs LS vs LT LT LS GT LT - - - -
GT vs LS vs OS GT GT OS OS GT GT OS OS GT GT OS OS
GT vs LT vs OS - - - - - -
LS vs LT vs OS LT OS - - - -

GT vs LS vs LT vs OS GT GT LS OS OS OS GT GT GT OS OS OS GT GT LT OS OS OS

Dataset z File DBN CNN 20x60 CNN 30x40
predicted real predicted real predicted real

GT vs LS - - - - - -
GT vs LT - - - - - -
GT vs OS GT GT OS OS - - - -
LS vs LT - - - - - -
LS vs OS LS OS - - - -
LT vs OS LT OS - - - -

GT vs LS vs LT - - - - - -
GT vs LS vs OS GT GT OS OS - - - -
GT vs LT vs OS - - - - - -
LS vs LT vs OS - - - - - -

GT vs LS vs LT vs OS GT GT GT OS OS OS GT LT - -

The table shows an interesting feature: almost all errors result from miss-classifying an Oscil-

lation. In fact, whenever evaluating a dataset containing OS, the errors in prediction are made in

OS examples. That is, the real target was OS but the model predicted something else. A possible

reason is found in the lack of examples from this particular class, which implies insufficient expo-

sure to that kind of event in training. Therefore, the model is unable to catch representative features

and fails to generalize. The exception to this subject lies in the Convolutional Neural Networks.

Re-shaping the inputs led to the creation of new patterns that better identified the unique features

of oscillations. Thus, both CNNs managed to classify correctly all OS examples, demonstrating

54 Results

their exceptional ability to generalize well even in datasets with few examples from a given class.

6.5 The Outcome of GPU Implementation

The main outcome in employing GPU computing to Deep learning frameworks is the gain in time

efficiency. The typical neural network based architectures have a myriad of parameters to adjust

during the course of training. Also, their structures are composed of large numbers of identical

units, thus being highly parallel by nature and foreseeing significant speed-ups over CPU-only

training.

It should be mentioned that the transmission of data between the CPU and the GPU is time

costly. Specially when working with mini-batch SGD, the training procedure must be optimized so

as to avoid constant flux of information between both devices that can degrade the GPU-computing

profits. To achieve effective time improvements, this situation was considered and handled by

harnessing the Theano’s library ability to work with shared variables - for a deeper understanding

of the GPU-accelerated computing experience, Appendix A should be consulted. The theoretical

explanation is given as follows.

6.5.1 Mini-batch Size and its Influence on GPU Computing

When applying the mini-batch SGD, a size of the mini-batch has to be selected. In addition, the

time acceleration obtained with the GPU is dependent on the mini-batch size, so this choice has to

be made with caution. In practice, using larger sizes in mini-batch SGD reduces the variance of

the stochastic gradient updates, since it takes the average of the gradients in the mini-batch. Thus,

bigger step-sizes are allowed and the optimization algorithm converges much faster in terms of

total computation. It should be pointed out, however, that it requires experiencing more examples

in order to reach the same accuracy because there are less updates per epoch - no. updates = no.

training examples / no. examples in the mini-batch. Therefore, the number of gradient computa-

tions is actually the same: a mini-batch of size N takes step-sizes N times larger, so a single step

will result in roughly the same accuracy as N steps of SGD with mini-batch size of 1.

The interesting feature is that large-minibatch parallelization with GPUs is easier to perform

than using a single example per iteration. In this thesis, each dataset used was divided in mini-

batches of a fixed size. So as to fully harness the capacities of GPU-computing, the dataset is

stored in Theano’s shared variables and entirely copied to the GPU in a single call. The GPU

further accesses any minibatch by their respective index. The reasoning behind this procedure is

the computational expense inherent to transmitting data from the CPU into the GPU memory. In

case minibatches were copied when needed, the resulting speed-up could be almost insignificant

or even negative (delaying the process) [3].

6.5 The Outcome of GPU Implementation 55

6.5.2 CPU versus GPU Time Results

As of today, the benefits from the employment of GPU computing into Deep Learning frameworks

are related with time. Indeed, the implementation of the several architectures in both CPU and

GPU produced significant time improvements. The results illustrated in Table 6.4 are referred

to the speed-up obtained with the use of the GPU. Here, the speed-up is measured as the ratio

between the CPU and GPU elapsed time.

Table 6.4: Speed-ups obtained with using the GPU: ratio time(CPU) / time(GPU)

Dataset z File MLP 1 MLP 4 MLP 8
DBN

(pre-train)
DBN

(fine-tune)
CNN
20x60

CNN
30x40

GT vs LS 3.4 4.3 6.9 8.4 6.2 21.1 24.2
GT vs LT 3.1 4.0 6.8 9.1 6.2 20.2 23.3
GT vs OS 2.6 3.0 8.6 9.0 6.4 19.7 22.4
LS vs LT 3.0 3.6 7.4 9.0 5.5 26.2 27.3
LS vs OS 3.4 3.5 6.4 8.2 5.3 23.5 21.2
LT vs OS 1.5 2.0 5.0 4.0 6.8 9.8 9.6

GT vs LS vs LT 3.2 3.6 6.8 9.5 6.3 23.9 27.1
GT vs LS vs OS 3.5 4.1 7.2 8.7 6.6 23.6 22.5
GT vs LT vs OS 3.1 4.0 6.4 9.0 6.2 16.8 20.3
LS vs LT vs OS 3.2 3.7 6.7 7.8 5.9 21.0 21.9

GT vs LS vs LT vs OS 3.6 4.1 8.1 8.8 6.0 31.6 27.2

Comparisons between the several results obtained must be handled with care. Different ar-

chitectures should be evaluated in the same dataset. Sometimes, this comparison gets biased due

to the choice of different hyper-parameters for each model. Even in the same dataset, the regu-

larization method of early stopping implies that the total number of epochs is different between

the several architectures. Yet, it remains the same between the CPU and the GPU. Consequently,

presenting the time elapsed for each architecture in each dataset does not make sense.

An alternative was found in determining the ratio between the time elapsed when running

on the CPU and the GPU - time(CPU) / time(GPU). In doing so, a relative measure is obtained,

vanishing the influence that the number of epochs would have. Such a procedure could also be

understood as a measure of relative speeds: if the speed in epochs/time for both GPU and CPU is

determined, then its ratio is exactly the same as the one obtained from the elapsed times. So, both

inform how much faster the algorithm ran on the GPU. Comparisons between different frameworks

in the same dataset are now possible, enabling to depict some general assumptions.

As introduced earlier in Section 5.7, the inherent computations of ANNs in general fit well

with the GPU architecture. Indeed, ANNs are typically structured in such a manner that at each

layer, hundreds of units perform the same computation. Also, the underlying updates for training

an ANN are basically large matrix manipulations, which are highly parallelizable. Therefore, the

resulting gains in speed for the MLPs are somewhat expected: for every dataset in evaluation, the

bigger acceleration is found in the MLP with 8 hidden layers, followed by the MLP with 4 hidden

56 Results

layers and then the MLP with 1 hidden layer. Whilst increasing the depth of the model implies

more computational time (due to the increased amount of mathematical operations conducted), the

space for parallelization grows. That is, the MLP 8 takes longer to converge in both CPU and GPU

but the ratio between those times is roughly two times bigger than the one of MLP 4. Comparing

the MLP 4 and the MLP 1, the difference is a lot tightened. Thus, the increase of parallelization

with the increase of depth is more noticeable when dealing with more complex models.

In what concerns the Deep Belief Networks, it is seen that the process of Contrastive Diver-

gence (pre-training) was more subject to parallelization than the mini-batch Stochastic Gradient

Descent (fine-tuning). When conditioned to one layer, the elements in the other layer (considering

an individual RBM) are independent. Therefore, the Gibbs sampling can be held for all units in

parallel, which represents a significant time reduction for the Contrastive Divergence when the

process is conducted on the GPU.

The greatest speed-ups are obtained in the Convolutional Neural Networks. The explanation

relies on their working principle, since they process the inputs as images (grid-like topology),

which is the perfect environment for GPUs. The convolutional layer comprises a set of indepen-

dent filters - for instance, 20, in the first convolutional layer of the architecture employed - which

are independently convolved with the input image. Then, the sub-sampling layer operates in each

feature map also independently. So, this procedure can be massively parallelized by harnessing the

GPU architecture and running these operations at the same time. This is a remarkable feature that

produced speed-ups ranging from 20 to 30 times. Indeed, for a long time, CNNs were hindered by

the amount of computation time they required, being considered almost unfeasible. The advances

in CPU computing aroused the interest in this framework, but it was the throughput obtained with

the GPUs that established their worldwide success.

Chapter 7

Conclusions and Future Work

This chapter states the major conclusions resulting from the research conducted and presents some

recommendations for upgrading the work developed.

7.1 Conclusions

The need to improve the monitoring and control of electric power systems led to the proliferation

of PMU devices. As a result, massive amounts of data are generated and sent to control centers,

which are eager to find new approaches for harnessing this type and volume of information. A

new paradigm emerges, envisaging the application of new and unconventional methods, such as

Deep Learning frameworks. These are capable of dealing more efficiently with such quantities of

raw data than the traditional and analytical methods.

Several applications regarding PMU data were outlined. PMU-based WAMS benefit from

the high sampling rate of these devices, being able to monitor dynamic behaviours that are un-

detectable by traditional SCADA acquisition devices. Apart from real-time employments, the

availability of synchronized measurements is very important for offline purposes, such as post-

mortem analysis. Indeed, system security depends on the accuracy of this procedure, which can

be highly improved by using PMU data.

In general, this thesis focused on harnessing PMU data for post-mortem analysis of a system

that suffered from several disturbances. Four types of events were to be classified: Generation

Tripping, Load Shedding, Line Tripping and Oscillation. Due to the limited access to PMU data,

the classifiers developed consider only the frequency variation as a consequence from each distur-

bance. To address this classification task, Deep Learning frameworks were employed. In particu-

lar, three Multilayer Perceptrons, a Deep Belief Network and two Convolutional Neural Networks.

The three MLPs differ in the depth of each model. It was observed that increasing the depth of an

MLP did not result in substantial accuracy improvements. In fact, the MLP with a single hidden

layer showed a similar performance to the DBN. The breakthrough of this work is the application

57

58 Conclusions and Future Work

of CNNs to PMU data, which outperformed significantly the other architectures in terms of accu-

racy. By simulating the properties of an image, this framework recreates patterns of the input data,

thus achieving 100% of correct classifications when distinguishing between the four events.

Evaluating the miss-classifications obtained, it was verified that they all corresponded to os-

cillation cases, with only one exception. This resulted from the fact that the dataset provided con-

tained very few examples of this event. The exception was found in CNNs due to the recreation

of input patterns that led to the correct classification of the OS cases. This is another remarkable

achievement, in the sense that this architecture is able to perform well even in non-representative

classes.

Moreover, each framework was implemented on a GPU so as to leverage its massive parallel

architecture. In doing so, significant time improvements were achieved. As a matter of fact,

training time has been a real concern for the employment of these complex structures. However,

the recent advances in computational efficiency and the usage of GPUs have propelled their wide

application.

The organization of ANNs makes them highly parallelizable. Also, the results regarding the

MLPs showed that the acceleration is proportional to the complexity (depth and individual units)

of the model.

In terms of structure, the DBNs are quite similar to the MLPs, therefore prone to run efficiently

on the GPU. However, training the DBN is a more complex task owing to its pre-training and fine-

tuning phases. In fact, it was the former (Contrastive Divergence method) that held the most

significant speed-up.

In CNNs, the convolution operation performed in a feature map requires significant computa-

tional resources. Since each feature map is independent, this procedure can be massively paral-

lelized on the GPU. The same applies for the pooling operation. Such a structure implied that this

was the architecture in which the acceleration was larger.

Overall, the deep learning frameworks have proved to be valuable tools for harnessing data

from PMUs. Their scalability adapts very well to such volumes of data, fulfilling a current demand

from power system operators. The speed-ups obtained with the use of GPU computing (up to 30

times in the case of CNNs) transports the training of deep networks into the realm of on-line use,

which is remarkable. This allows the algorithms to be trained and re-trained in real time, instead of

the traditional off-line training, prospecting their adoption in system control centers. Indeed, not

only they will be able to perform real-time guidance for operators and trigger system responses,

but also continuously learn new features from the real-time observation of events.

7.2 Future Work

Since this is an on-going research subject, several ideas can be mentioned as an improvement to the

work developed. One can also speculate over other ideas related to this work but not necessarily

as complementary developments. In general, the author proposes the following advances:

7.2 Future Work 59

• Extension of the dataset: if continuing the labelling process manually seems unsustainable,

some sort of data augmentation could be performed, specially for reproducing more exam-

ples of Line Tripping and Oscillation events. In addition, with the use of techniques of

that nature, an entire training set could be created, the validation and test accuracy being

evaluated in real events;

• Consider additional types of disturbances or detail the existing ones. For instance, identify

the root cause of a Load Shedding event;

• The malfunctioning of the device itself or the respective communication system may imply

corrupted or missing data. In order to ascertain its impact in this type of algorithms, an

application regarding (Stacked) Denoising Autoencoders could be employed;

• Explore the temporal dependencies on data with the employment of spatio-temporal method-

ologies, such as the DeSTIN architecture described in Section 3.3.5;

• Move from an offline to an online environment: apply Deep Learning techniques to perform

preventive recognition of upcoming events;

• The classification task conducted in this work is mainly local. That is, the classifier is fed

with one PMU at a time, outputting the expected class of that specific event. A classifier

can be implemented in every local with a PMU installed. By collecting the outputs of each

classifier, an estimation of event location could be made;

• As an alternative to the previous suggestion, a global classifier could be developed. In this

case it would receive the input data from all the PMUs in the system, at the same time. This

was, in fact, conceived but not possible to implement due to the limitations of the dataset

available: each event is only represented by the affected PMUs. For the possibility of such

an implementation, each event must be characterized by all the PMUs present in the system,

so that a global picture can be taken. It is worth mentioning that an architecture of that size

will lead to significant increases in computational time, so this development would need to

be combined with GPU computing.

60 Conclusions and Future Work

Appendix A

Python as a Deep Learning Tool

Python is one of the most employed languages for developing Deep Learning applications. It is

a high-level programming language, whose design emphasizes code readability. Python regards

extensive math libraries that can be used in conjunction with third-party libraries such as Numpy,

providing the basic tools for its applicability to scientific purposes that involve numerical data

processing and manipulation. Then, specialized libraries were developed for machine learning

purposes. For instance, both Theano and TensorFlow provide automatic differentiation and easy

GPU implementation, proving to be extremely valuable Deep Learning tools. Additional libraries

are built on top of these for increased user friendliness. The most common are Keras and Lasagne,

with the first wrapping both Theano and TensorFlow and the latter running exclusively on top of

Theano.

Part of the time spent exploring the concepts inherent to this work was dedicated to learn how

to program in Python and fully explore its libraries. In particular, the specific deep learning fea-

tures were developed with the use of Theano. It was favoured over Keras/Lasagne for reasons of

availability of documentation and flexibility of implementation. At its very core, Theano allows

the definition, optimization and evaluation of mathematical expressions, particularly the ones hav-

ing multi-dimensional arrays. However, one of the main reasons for using Theano lies in its ease

of GPU computing. Note that the main workload in machine learning models is the training proce-

dure. With the use of Theano shared variables, the mini-batch SGD can be effectively offloaded to

the GPU as described in section 6.5.1. Also, the automatic differentiation ability is of great value

for this type of gradient-based optimizers.

Apart from installing all GPU related drivers, one has to write the code in a way to be inter-

changeably run either on the CPU or the GPU. Then, a file named .theanorc is created, in which

several flags define the properties to be used whenever running the program. That is, the device

can be chosen (device=cpu or device=gpu) and, in case of using the GPU, the amount of memory

allocated can also be defined (95% - cnem=0.95)

Overall, the incursion in Python and all the idiosyncrasies of Deep Learning represented a

challenge that was successfully overtaken, in part due to the employment of Theano, that provided

an enhanced understanding of the GPU computing methods.

61

62 Python as a Deep Learning Tool

Appendix B

Architecture Settings

This chapter appends the several hyper-parameters chosen for each architecture.

B.1 Multilayer Perceptron

B.1.1 MLP with 1 hidden layer

Table B.1: Hyper-parameters defined for the application of the 1 hidden layer MLP

Events to distinguish Learning Rate Mini-batch Size No of hidden units

GT vs LS 0.1 25 500
GT vs LT 0.1 25 500
GT vs OS 0.1 10 500
LS vs LT 0.1 25 500
LS vs OS 0.1 25 500
LT vs OS 0.1 3 500

GT vs LS vs LT 0.1 25 500
GT vs LS vs OS 0.1 25 500
GT vs LT vs OS 0.1 25 500
LS vs LT vs OS 0.1 25 500

GT vs LS vs LT vs OS 0.1 10 1000

63

64 Architecture Settings

B.1.2 MLP with 4 hidden layer

Table B.2: Hyper-parameters defined for the application of the 4 hidden layer MLP

Events to distinguish Learning Rate Mini-batch Size No of hidden units

GT vs LS 0.1 25 500 | 200 | 100 | 50
GT vs LT 0.1 25 500 | 200 | 100 | 50
GT vs OS 0.1 10 500 | 200 | 100 | 50
LS vs LT 0.1 25 500 | 200 | 100 | 50
LS vs OS 0.1 25 500 | 200 | 100 | 50
LT vs OS 0.1 3 500 | 200 | 100 | 50

GT vs LS vs LT 0.1 25 500 | 200 | 100 | 50
GT vs LS vs OS 0.1 25 500 | 200 | 100 | 50
GT vs LT vs OS 0.1 25 500 | 200 | 100 | 50
LS vs LT vs OS 0.1 25 500 | 200 | 100 | 50

GT vs LS vs LT vs OS 0.1 25 500 | 200 | 100 | 50

B.1.3 MLP with 8 hidden layer

Table B.3: Hyper-parameters defined for the application of the 8 hidden layer MLP

Events to distinguish Learning Rate Mini-batch Size No of hidden units

GT vs LS 0.1 25 1200 | 1000 | 800 | 500 | 300 | 200 | 100 | 20
GT vs LT 0.1 25 1200 | 1000 | 800 | 500 | 300 | 200 | 100 | 20
GT vs OS 0.1 10 1200 | 1000 | 800 | 500 | 300 | 200 | 100 | 20
LS vs LT 0.1 25 1200 | 1000 | 800 | 500 | 300 | 200 | 100 | 20
LS vs OS 0.1 25 1200 | 1000 | 800 | 500 | 300 | 200 | 100 | 20
LT vs OS 0.1 3 1200 | 1000 | 800 | 500 | 300 | 200 | 100 | 20

GT vs LS vs LT 0.2 25 1200 | 1000 | 800 | 500 | 300 | 200 | 100 | 20
GT vs LS vs OS 0.01 25 1200 | 1000 | 800 | 500 | 300 | 200 | 100 | 20
GT vs LT vs OS 0.1 25 1200 | 1000 | 800 | 500 | 300 | 200 | 100 | 20
LS vs LT vs OS 0.01 25 1200 | 1000 | 800 | 500 | 300 | 200 | 100 | 20

GT vs LS vs LT vs OS 0.01 25 1200 | 1000 | 800 | 500 | 300 | 200 | 100 | 20

B.2 Deep Belief Network 65

B.2 Deep Belief Network

Table B.4: Hyper-parameters defined for the application of the Deep Belief Network

Events to distinguish
Pre-training

Learning Rate
Fine-tuning

Learning Rate
Mini-batch Size No. of hidden units

GT vs LS 0.000001 0.1 25 800 | 800 | 800
GT vs LT 0.000001 0.1 25 800 | 800 | 800
GT vs OS 0.000001 0.1 10 800 | 800 | 800
LS vs LT 0.000001 0.1 25 800 | 800 | 800
LS vs OS 0.000001 0.1 25 800 | 800 | 800
LT vs OS 0.000001 0.1 3 800 | 800 | 800

GT vs LS vs LT 0.000001 0.1 25 800 | 800 | 800
GT vs LS vs OS 0.000001 0.1 25 800 | 800 | 800
GT vs LT vs OS 0.000001 0.1 25 800 | 800 | 800
LS vs LT vs OS 0.000001 0.1 25 800 | 800 | 800

GT vs LS vs LT vs OS 0.000001 0.1 25 800 | 800 | 800

66 Architecture Settings

B.3 Convolutional Neural Network

B.3.1 20x60 case

Table B.5: Hyper-parameters defined for the application of the 20x60 Convolutional Neural Net-
work

Events to distinguish Learning Rate Mini-batch Size No. of hidden units

GT vs LS 0.1 25 200
GT vs LT 0.1 25 200
GT vs OS 0.1 25 200
LS vs LT 0.1 35 500
LS vs OS 0.1 25 200
LT vs OS 0.1 6 200

GT vs LS vs LT 0.1 35 500
GT vs LS vs OS 0.1 25 200
GT vs LT vs OS 0.1 15 500
LS vs LT vs OS 0.1 25 300

GT vs LS vs LT vs OS 0.1 45 300

B.3.2 30x40 case

Table B.6: Hyper-parameters defined for the application of the 30x40 Convolutional Neural Net-
work

Events to distinguish Learning Rate Mini-batch Size No. of hidden units

GT vs LS 0.1 25 200
GT vs LT 0.1 25 200
GT vs OS 0.1 25 200
LS vs LT 0.1 35 500
LS vs OS 0.1 25 200
LT vs OS 0.1 6 200

GT vs LS vs LT 0.1 35 500
GT vs LS vs OS 0.1 25 200
GT vs LT vs OS 0.1 15 500
LS vs LT vs OS 0.1 25 300

GT vs LS vs LT vs OS 0.1 30 300

Appendix C

Ancillary Results

This chapter appends several information to complement the understanding of the results obtained

with the application of the different methodologies.

C.1 Accuracy as a Percentage of the Test Set

Table C.1: Accuracy obtained as a percentage of the total examples in each dataset

Dataset z File MLP 1 MLP 4 MLP 8 DBN CNN 20x60 CNN 30x40

GT vs LS 0.00 % (0) 0.00 % (0) 0.00 % (0) 0.00 % (0) 0.00 % (0) 0.00 % (0)
GT vs LT 0.00 % (0) 0.00 % (0) 0.00 % (0) 0.00 % (0) 0.00 % (0) 0.00 % (0)
GT vs OS 0.75 % (1) 0.75 % (1) 0.75 % (1) 1.50 % (2) 0.00 % (0) 0.00 % (0)
LS vs LT 0.00 % (0) 0.00 % (0) 0.00 % (0) 0.00 % (0) 0.00 % (0) 0.00 % (0)
LS vs OS 1.54 % (1) 1.54 % (1) 0.00 % (0) 1.54 % (1) 0.00 % (0) 0.00 % (0)
LT vs OS 11.11% (1) 0.00 % (0) 0.00 % (0) 11.11% (1) 0.00 % (0) 0.00 % (0)

GT vs LS vs LT 0.99 % (2) 0.00 % (0) 0.00 % (0) 0.00 % (0) 0.00 % (0) 0.00 % (0)
GT vs LS vs OS 1.02 % (2) 1.02 % (2) 1.02 % (2) 1.02 % (2) 0.00 % (0) 0.00 % (0)
GT vs LT vs OS 0.00 % (0) 0.00 % (0) 0.00 % (0) 0.00 % (0) 0.00 % (0) 0.00 % (0)
LS vs LT vs OS 1.39 % (1) 0.00 % (0) 0.00 % (0) 0.00 % (0) 0.00 % (0) 0.00 % (0)

GT vs LS vs LT vs OS 1.48 % (3) 1.48 % (3) 1.48 % (3) 1.48 % (3) 0.49 % (1) 0.00 % (0)

C.2 Confusion Matrices

The following sections present the confusion matrices relative to the test set obtained with the ap-

plication of each architecture to every combination possible. The first section presents the number

of examples in each class for each dataset evaluated, that is, the expected confusion matrix in case

the architecture classifies every example correctly. Then, for each architecture, it is shown the

confusion matrix for each dataset with classification errors.

67

68 Ancillary Results

C.2.1 Expected Confusion Matrices

Table C.2: Number of examples of each class in the dataset GT vs LS

GT vs LS GT LS

GT 135 0
LS 0 59

Table C.3: Number of examples of each class in the dataset GT vs LT

GT vs LT GT LT

GT 132 0
LT 0 7

Table C.4: Number of examples of each class in the dataset GT vs OS

GT vs OS GT OS

GT 129 0
OS 0 4

Table C.5: Number of examples of each class in the dataset LS vs LT

LS vs LT LS LT

LS 62 0
LT 0 8

Table C.6: Number of examples of each class in the dataset LS vs OS

LS vs OS LS OS

LS 62 0
OS 0 3

Table C.7: Number of examples of each class in the dataset LT vs OS

LT vs OS LT OS

LT 5 0
OS 0 4

C.2 Confusion Matrices 69

Table C.8: Number of examples of each class in the dataset GT vs LS vs LT

GT vs LS vs LT GT LS LT

GT 135 0 0
LS 0 60 0
LT 0 0 7

Table C.9: Number of examples of each class in the dataset GT vs LS vs OS

GT vs LS vs OS GT LS OS

GT 136 0 0
LS 0 58 0
OS 0 0 2

Table C.10: Number of examples of each class in the dataset GT vs LT vs OS

GT vs LT vs OS GT LT OS

GT 130 0 0
LT 0 8 0
OS 0 0 3

Table C.11: Number of examples of each class in the dataset LS vs LT vs OS

LS vs LT vs OS LS LT OS

LS 64 0 0
LT 0 6 0
OS 0 0 2

Table C.12: Number of examples of each class in the dataset GT vs LS vs LT vs OS

GT vs LS vs LT vs OS GT LS LT OS

GT 140 0 0 0
LS 0 53 0 0
LT 0 0 6 0
OS 0 0 0 4

70 Ancillary Results

C.2.2 MLP with 1 hidden layer

Table C.13: Confusion matrix for the MLP of 1 hidden layer applied to the dataset GT vs OS

GT vs OS GT OS

GT 129 0
OS 1 3

Table C.14: Confusion matrix for the MLP of 1 hidden layer applied to the dataset LS vs OS

LS vs OS LS OS

LS 62 0
OS 1 2

Table C.15: Confusion matrix for the MLP of 1 hidden layer applied to the dataset LT vs OS

LT vs OS LT OS

LT 5 0
OS 1 3

Table C.16: Confusion matrix for the MLP of 1 hidden layer applied to the dataset GT vs LS vs
LT

GT vs LS vs LT GT LS LT

GT 134 0 1
LS 0 60 0
LT 0 1 7

Table C.17: Confusion matrix for the MLP of 1 hidden layer applied to the dataset GT vs LS vs
OS

GT vs LS vs OS GT LS OS

GT 136 0 0
LS 0 58 0
OS 2 0 0

C.2 Confusion Matrices 71

Table C.18: Confusion matrix for the MLP of 1 hidden layer applied to the dataset LS vs LT vs
OS

LS vs LT vs OS LS LT OS

LS 64 0 0
LT 0 6 0
OS 0 1 1

Table C.19: Confusion matrix for the MLP of 1 hidden layer applied to the dataset GT vs LS vs
LT vs OS

GT vs LS vs LT vs OS GT LS LT OS

GT 140 0 0 0
LS 0 53 0 0
LT 0 0 6 0
OS 2 1 0 1

72 Ancillary Results

C.2.3 MLP with 4 hidden layers

Table C.20: Confusion matrix for the MLP of 4 hidden layer applied to the dataset GT vs OS

GT vs OS GT OS

GT 129 0
OS 1 3

Table C.21: Confusion matrix for the MLP of 4 hidden layer applied to the dataset LS vs OS

LS vs OS LS OS

LS 62 0
OS 1 2

Table C.22: Confusion matrix for the MLP of 4 hidden layer applied to the dataset GT vs LS vs
OS

GT vs LS vs OS GT LS OS

GT 136 0 0
LS 0 58 0
OS 2 0 0

Table C.23: Confusion matrix for the MLP of 4 hidden layer applied to the dataset GT vs LS vs
LT vs OS

GT vs LS vs LT vs OS GT LS LT OS

GT 140 0 0 0
LS 0 53 0 0
LT 0 0 6 0
OS 3 0 0 1

C.2 Confusion Matrices 73

C.2.4 MLP with 8 hidden layers

Table C.24: Confusion matrix for the MLP of 8 hidden layer applied to the dataset GT vs OS

GT vs OS GT OS

GT 129 0
OS 1 3

Table C.25: Confusion matrix for the MLP of 8 hidden layer applied to the dataset GT vs LS vs
OS

GT vs LS vs OS GT LS OS

GT 136 0 0
LS 0 58 0
OS 2 0 0

Table C.26: Confusion matrix for the MLP of 8 hidden layer applied to the dataset GT vs LS vs
LT vs OS

GT vs LS vs LT vs OS GT LS LT OS

GT 140 0 0 0
LS 0 53 0 0
LT 0 0 6 0
OS 2 0 1 1

74 Ancillary Results

C.2.5 DBN

Table C.27: Confusion matrix for the DBN applied to the dataset GT vs OS

GT vs OS GT OS

GT 129 0
OS 2 2

Table C.28: Confusion matrix for the DBN applied to the dataset LS vs OS

LS vs OS LS OS

LS 62 0
OS 1 2

Table C.29: Confusion matrix for the DBN applied to the dataset LT vs OS

LT vs OS LT OS

LT 5 0
OS 1 3

Table C.30: Confusion matrix for the DBN applied to the dataset GT vs LS vs OS

GT vs LS vs OS GT LS OS

GT 136 0 0
LS 0 58 0
OS 2 0 0

Table C.31: Confusion matrix for the DBN applied to the dataset GT vs LS vs LT vs OS

GT vs LS vs LT vs OS GT LS LT OS

GT 140 0 0 0
LS 0 53 0 0
LT 0 0 6 0
OS 3 0 0 1

C.2 Confusion Matrices 75

C.2.6 CNN 20x60

Table C.32: Confusion matrix for the CNN 20x60 applied to the dataset GT vs LS vs LT vs OS

GT vs LS vs LT vs OS GT LS LT OS

GT 140 0 0 0
LS 0 53 0 0
LT 1 0 5 0
OS 3 0 0 1

76 Ancillary Results

Appendix D

Brazillian Medfasee BT Project -
Complementary Information

In order to fully understand the charts presented in chapter 4 and provide complementary infor-

mation regarding the Medfasee BT Project, the meaning of each location with a PMU installed is

given:

• UFAC - Universidade Federal do Acre;

• UFAM - Universidade Federal do Amazonas

• UFBA - Universidade Federal da Bahia;

• UFC - Universidade Federal do Cerará;

• UFJF - Universidade Federal de Juíz de Fora;

• UFMA - Universidade Federal do Maranhão;

• UFMG - Universidade Federal de Minas Gerais;

• UFMS - Universidade Federal de Mato Grosso do Sul;

• UFMT - Universidade Federal de Mato Grosso;

• UFPA - Universidade Federal do Pará;

• UFPE - Universidade Federal de Pernambuco;

• UFRGS - Universidade Federal do Rio Grande do Sul;

• UFRJ/COPPE - Universidade Federal do Rio de Janeiro;

• UFSC - Universidade Federal Santa Catarina;

• UFT - Universidade Federal do Tocantins;

77

78 Brazillian Medfasee BT Project - Complementary Information

• UNB - Universidade de Brasília;

• UNIFAP - Universidade Federal do Amapá;

• UNIFEI - Universidade Federal de Itajubá;

• UNIPAMPA - Universidade Federal do Pampa;

• UNIR - Universidade Federal de Rondônia;

• USP-SC - Universidade de São Carlos, Campus de São Carlos;

• UTFPR - Universidade Tecnológica Federal do Paraná;

References

[1] A.G. Phadke and J.S. Thorp. Synchronized Phasor Measurements and their Applications.
2008. doi:10.1007/978-0-387-76537-2.

[2] A. Ng. Deep Learning. URL: http://cs229.stanford.edu/materials/
CS229-DeepLearning.pdf.

[3] Andrew Ng, Jiquan Ngiam, Chuan Yu Foo, Yifan Mai, Caroline Suen, Adam Coates, Andrew
Maas, Awni Hannun, Brody Huval, Tao Wang, and Sameep Tandon. Deep Learning Tutorial
- Release 0.1. Sep. 2015.

[4] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. "Gradient-Based Learning Applied to
Document Recognition". Proceedings of the IEEE, 86(11):2278–2324, Nov. 1998. doi:
10.1109/5.726791.

[5] S. Young, A. Davis, A. Mishtal, and I. Arel. "Hierarchical spatiotemporal feature extraction
using recurrent online clustering". Pattern Recognition Letters, 37(1):115–123, Feb. 2014.
doi:10.1016/j.patrec.2013.07.013.

[6] R. Leandro, T. Jeremias, I. Decker, A. Silva, and M. Agostini. "Monitoramento on-line de
oscilações eletromecânicas no SIN utilizando sincrofasores". XIII SEPOPE - Simpósio de
Especialistas em Planejamento da Operação e Expansão Elétrica, May 2014.

[7] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016.

[8] "GPU vs CPU? What is GPU Computing? | NVIDIA". URL: http://www.nvidia.
com/object/what-is-gpu-computing.html.

[9] A.G. Phadke, M. Ibrahim, and T. Hlibka. "Fundamental basis for distance relaying with
symmetrical components". IEEE Transactions on Power Apparatus and Systems, 96(2):635–
646, March 1977. doi:10.1109/T-PAS.1977.32375.

[10] A. G. Phadke, J. Thorp, and M. Adamiak. "A New Measurement Technique for Track-
ing Voltage Phasors, Local System Frequency, and Rate of Change of Frequency". IEEE
Transactions on Power Apparatus and Systems, PAS-102(5):1025–1038, May 1983. doi:
10.1109/TPAS.1983.318043.

[11] V Zimmer, T. Jeremias, I. Decker, and M. Agostini. "Detecção de perturbações sistémicas
usando dados de medição fasorial sincronizada". XIX Congresso Brasileiro de Automática,
pages 4180–4187, 2012.

[12] A. M. Almutairi and J. V. Milanovic. "Comparison of different methods for optimal
placement of PMUs". 2009 IEEE Bucharest PowerTech, pages 1–6, June 2009. doi:
10.1109/PTC.2009.5281976.

79

http://dx.doi.org/10.1007/978-0-387-76537-2
http://cs229.stanford.edu/materials/CS229-DeepLearning.pdf
http://cs229.stanford.edu/materials/CS229-DeepLearning.pdf
http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.1016/j.patrec.2013.07.013
http://www.nvidia.com/object/what-is-gpu-computing.html
http://www.nvidia.com/object/what-is-gpu-computing.html
http://dx.doi.org/10.1109/T-PAS.1977.32375
http://dx.doi.org/10.1109/TPAS.1983.318043
http://dx.doi.org/10.1109/TPAS.1983.318043
http://dx.doi.org/10.1109/PTC.2009.5281976
http://dx.doi.org/10.1109/PTC.2009.5281976

80 REFERENCES

[13] M. Shahraeini, M. S. Ghazizadeh, and M. H. Javidi. "Co-optimal placement of measure-
ment devices and their related communication infrastructure in wide area measurement sys-
tems". IEEE Transactions on Smart Grid, 3(2):684–691, 2012. doi:10.1109/TSG.
2011.2178080.

[14] M. B. Mohammadi and H. F. Hooshmand, R.and Fesharaki. "A New Approach for Optimal
Placement of PMUs and Their Required Communication Infrastructure in Order to Minimize
the Cost of the WAMS". IEEE Transactions on Smart Grid, 7(1):84–93, Jan. 2016. doi:
10.1109/TSG.2015.2404855.

[15] P. Zhang. "Phasor Measurement Unit (PMU) Implementation and Applications". Technical
Report 3, EPRI - Electric Power Research Institute, California, 2007.

[16] T. Hashiguchi, M. Yoshimoto, Y. Mitani, O. Saeki, and K. Tsuji. "Analysis of Oscillation
Characteristics Followed by Power System Disturbance Based on Multiple Synchronized
Phasor Measurements". Jan. 2015.

[17] Camilo A. Ordóñez and Mario A. Ríos. "Electromechanical Modes Identification Based on
Sliding-window Data from a Wide-area Monitoring System". Electric Power Components
and Systems, 41(13):1264–1279, Oct. 2013. doi:10.1080/15325008.2013.816982.

[18] C. A. Ordonez, , H. R. Chamorro, J. Quintero, R. Leelaruji, J. Peng, and L. Nord-
ström. "Prony-based on-line oscillation detection with real PMU information". In 2016
IEEE Colombian Conference on Robotics and Automation, pages 1–5. IEEE, Sep. 2016.
doi:10.1109/CCRA.2016.7811401.

[19] W. Price, K. Wirgau, A. Murdoch, V. Mitsche, E. Vaahedi, and M. El-Kady. "Load model-
ing for power flow and transient stability computer studies". IEEE Transactions on Power
Systems, 3(1):180–187, 1988. doi:10.1109/59.43196.

[20] J. Shi and H. Renmu. "Measurement-based load modeling - model structure". In 2003 IEEE
Bologna Power Tech Conference Proceedings, volume 2, pages 631–635. IEEE, June 2003.
doi:10.1109/PTC.2003.1304621.

[21] V Vignesh, S. Chakrabarti, and S. C. Srivastava. "An experimental study on the load mod-
elling using PMU measurements". In 2014 IEEE PES T&D Conference and Exposition,
pages 1–5. IEEE, Apr. 2014. doi:10.1109/TDC.2014.6863487.

[22] C. Reddy, S. Chakrabarti, and S. Srivastava. "Reduced network based voltage stability mon-
itoring by using PMU measurements". In 2016 IEEE Region 10 Conference (TENCON),
pages 762–765. IEEE, Nov. 2016. doi:10.1109/TENCON.2016.7848106.

[23] H. Shah and K. Verma. "PMU-ANN based approach for real time voltage stability moni-
toring". In 2016 IEEE 6th International Conference on Power Systems (ICPS), pages 1–5.
IEEE, mar 2016. doi:10.1109/ICPES.2016.7584137.

[24] S. Picard, M. Adamiak, and V. Madani. "Fault location using PMU measurements and wide-
area infrastructure". In 2015 68th Annual Conference for Protective Relay Engineers, pages
272–277. IEEE, Mar. 2015. doi:10.1109/CPRE.2015.7102170.

[25] S. Kolluri, S. Mandal, F. Galvan, and M. Thomas. "Island formation in entergy power grid
during Hurricane Gustav". In 2009 IEEE Power & Energy Society General Meeting, pages
1–5. IEEE, July 2009. doi:10.1109/PES.2009.5275340.

http://dx.doi.org/10.1109/TSG.2011.2178080
http://dx.doi.org/10.1109/TSG.2011.2178080
http://dx.doi.org/10.1109/TSG.2015.2404855
http://dx.doi.org/10.1109/TSG.2015.2404855
http://dx.doi.org/10.1080/15325008.2013.816982
http://dx.doi.org/10.1109/CCRA.2016.7811401
http://dx.doi.org/10.1109/59.43196
http://dx.doi.org/10.1109/PTC.2003.1304621
http://dx.doi.org/10.1109/TDC.2014.6863487
http://dx.doi.org/10.1109/TENCON.2016.7848106
http://dx.doi.org/10.1109/ICPES.2016.7584137
http://dx.doi.org/10.1109/CPRE.2015.7102170
http://dx.doi.org/10.1109/PES.2009.5275340

REFERENCES 81

[26] Z. Qin, S. Liu, and Y. Hou. "Virtual Synchroscope: a novel application of PMU for system
restoration". In 2011 International Conference on Advanced Power System Automation and
Protection, pages 193–197. IEEE, Oct. 2011. doi:10.1109/APAP.2011.6180407.

[27] R. Zivanovic and C. Cairns. "Implementation of PMU technology in state estimation: an
overview". In IEEE AFRICON 1996, volume 2, pages 1006–1011. IEEE, Sep. 1996. doi:
10.1109/AFRCON.1996.563034.

[28] A. Jain and N. R. Shivakumar. "Impact of PMU in dynamic state estimation of power
systems". In 2008 40th North American Power Symposium, pages 1–8. IEEE, Sep. 2008.
doi:10.1109/NAPS.2008.5307352.

[29] J. Chen and A. Abur. "Placement of PMUs to enable bad data detection in state es-
timation". IEEE Transactions on Power Systems, 21(4):1608–1615, Nov. 2006. doi:
10.1109/TPWRS.2006.881149.

[30] M. Wald. "New Tools for Keeping the Lights On - The New York
Times". URL: http://www.nytimes.com/2013/08/01/business/
new-tools-for-keeping-the-lights-on.html?ref=science.

[31] E. Martinez. "Wide area measurement & control system in Mexico. 2008 Third Interna-
tional Conference on Electric Utility Deregulation and Restructuring and Power Technolo-
gies, (Apr.):156–161, 2008. doi:10.1109/DRPT.2008.4523394.

[32] C. Lu, B. Shi, X. Wu, and H. Sun. "Advancing China’s Smart Grid: Phasor Measurement
Units in a Wide-Area Management System". IEEE Power and Energy Magazine, 13(5):60–
71, Sep. 2015. doi:10.1109/MPE.2015.2432372.

[33] R. Leandro and I. Decker. "Ambiente Computacional de Análise do Desempenho Dinâmico
de Sistemas Elétricos Usando Sincrofasores". XXII SNPTEE - Seminário Nacional de Pro-
dução e Transmissão de Energia Elétrica, At Brasília, Oct. 2013.

[34] IEEE Power & Energy Society. C37.118.1-2011 - IEEE Standard for Synchrophasor Mea-
surements for Power Systems. Dec. 2011. doi:10.1109/IEEESTD.2011.6111219.

[35] B. Yang, J. Yamazaki, N. Saito, Y. Kokai, and D. Xie. "Big data analytic empowered grid
applications - Is PMU a big data issue?". International Conference on the European Energy
Market, EEM, Aug. 2015. doi:10.1109/EEM.2015.7216718.

[36] D. Nguyen, R. Barella, S. A. Wallace, X. Zhao, and X. Liang. "Smart grid line event clas-
sification using supervised learning over PMU data streams". 6th International Green and
Sustainable Computing Conference, Dec. 2015. doi:10.1109/IGCC.2015.7393695.

[37] Y. Hu and D. Novosel. "Challenges in Implementing a Large-Scale PMU System". In 2006
International Conference on Power System Technology, PowerCon2006, pages 1–7. IEEE,
Oct. 2006. doi:10.1109/ICPST.2006.321829.

[38] Y. LeCun, Y. Bengio, and G. E. Hinton. "Deep learning". Nature, 521(7553):436–444, May
2015. doi:10.1038/nature14539.

[39] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. "Learning representa-
tions by back-propagating errors". Nature, 323(6088):533–536, Oct. 1986. doi:10.1038/
323533a0.

http://dx.doi.org/10.1109/APAP.2011.6180407
http://dx.doi.org/10.1109/AFRCON.1996.563034
http://dx.doi.org/10.1109/AFRCON.1996.563034
http://dx.doi.org/10.1109/NAPS.2008.5307352
http://dx.doi.org/10.1109/TPWRS.2006.881149
http://dx.doi.org/10.1109/TPWRS.2006.881149
http://www.nytimes.com/2013/08/01/business/new-tools-for-keeping-the-lights-on.html?ref=science
http://www.nytimes.com/2013/08/01/business/new-tools-for-keeping-the-lights-on.html?ref=science
http://dx.doi.org/10.1109/DRPT.2008.4523394
http://dx.doi.org/10.1109/MPE.2015.2432372
http://dx.doi.org/10.1109/IEEESTD.2011.6111219
http://dx.doi.org/10.1109/EEM.2015.7216718
http://dx.doi.org/10.1109/IGCC.2015.7393695
http://dx.doi.org/10.1109/ICPST.2006.321829
http://dx.doi.org/10.1038/nature14539
http://dx.doi.org/10.1038/323533a0
http://dx.doi.org/10.1038/323533a0

82 REFERENCES

[40] M. Hashim, M. Osman, M. Ibrahim, A. Abidin, and M. Mahmud. Single-ended fault location
for transmission lines using traveling wave and multilayer perceptron network. In 2016 6th
IEEE International Conference on Control System, Computing and Engineering (ICCSCE),
pages 522–527. IEEE, 2016. doi:10.1109/ICCSCE.2016.7893632.

[41] E. Koley, S. Shukla, S. Ghosh, and D. Mohanta. Protection scheme for power transmission
lines based on SVM and ANN considering the presence of non-linear loads. IET Generation,
Transmission & Distribution, 11(9):2333–2341, June 2017. doi:10.1049/iet-gtd.
2016.1802.

[42] A. Venkatasami. Application of neural networks for transformer fault diagnosis. 2012 IEEE
10th International Conference on the Properties and Applications of Dielectric Materials,
pages 3–6, July 2012. doi:10.1109/ICPADM.2012.6318975.

[43] M. Ali, A. Siddique, and S. Mehfuz. Artificial Neural Networks Based incipient fault diag-
nosis for Power Transformers. 2015 Annual IEEE India Conference (INDICON), pages 1–6,
Dec. 2015. doi:10.1109/INDICON.2015.7443174.

[44] C. Bulac, I. Tristiu, A. Mandis, and L. Toma. On-line power systems voltage stabil-
ity monitoring using artificial neural networks. In 2015 9th International Symposium
on Advanced Topics in Electrical Engineering (ATEE), pages 622–625. IEEE, May 2015.
doi:10.1109/ATEE.2015.7133884.

[45] K. Kandananond. Forecasting Electricity Demand in Thailand with an Artificial Neural
Network Approach. Energies, 4(12):1246–1257, Aug. 2011. doi:10.3390/en4081246.

[46] D. Ortiz-Arroyo, M. Skov, and Q. Huynh. Accurate Electricity Load Forecasting with Ar-
tificial Neural Networks. In International Conference on Computational Intelligence for
Modelling, Control and Automation and International Conference on Intelligent Agents, Web
Technologies and Internet Commerce (CIMCA-IAWTIC’06), volume 1, pages 94–99. IEEE.
doi:10.1109/CIMCA.2005.1631248.

[47] K.P.M. Madhugeeth and H.L. Premaratna. Forecasting Power Demand Using Artificial Neu-
ral Networks For Sri Lankan Electricity Power System. 2008 IEEE Region 10 and the Third
international Conference on Industrial and Information Systems, pages 1–6, Dec. 2008.
doi:10.1109/ICIINFS.2008.4798394.

[48] D. Lee and R. Baldick. Short-term Wind Power ensemble Prediction based on Gaussian
processes and Neural Networks. IEEE Transactions on Smart Grid, 5(1):501–510, Jan. 2014.
doi:10.1109/TSG.2013.2280649.

[49] S. Li, P. Wang, and L. Goel. Wind Power Forecasting Using Neural Network Ensembles with
Feature Selection. IEEE Transactions on Sustainable Energy, 6(4):1447–1456, Oct. 2015.
doi:10.1109/TSTE.2015.2441747.

[50] V. Singh, B. Ravindra, and V. Vijay. Forecasting of 5MW Solar Photovoltaic Power Plant
Generation Using Generalized Neural Network. 2015 39th National Systems Conference
(NSC), (3):1–2, Dec. 2015. doi:10.1109/NATSYS.2015.7489107.

[51] S. Watetakarn and S. Premrudeepreechacharn. Forecasting of solar irradiance for solar power
plants by Artificial Neural Network. 2015 IEEE Innovative Smart Grid Technologies - Asia
(ISGT ASIA), pages 1–5, Nov. 2016. doi:10.1109/ISGT-Asia.2015.7387180.

http://dx.doi.org/10.1109/ICCSCE.2016.7893632
http://dx.doi.org/10.1049/iet-gtd.2016.1802
http://dx.doi.org/10.1049/iet-gtd.2016.1802
http://dx.doi.org/10.1109/ICPADM.2012.6318975
http://dx.doi.org/10.1109/INDICON.2015.7443174
http://dx.doi.org/10.1109/ATEE.2015.7133884
http://dx.doi.org/10.3390/en4081246
http://dx.doi.org/10.1109/CIMCA.2005.1631248
http://dx.doi.org/10.1109/ICIINFS.2008.4798394
http://dx.doi.org/10.1109/TSG.2013.2280649
http://dx.doi.org/10.1109/TSTE.2015.2441747
http://dx.doi.org/10.1109/NATSYS.2015.7489107
http://dx.doi.org/10.1109/ISGT-Asia.2015.7387180

REFERENCES 83

[52] A. Rashkovska, J. Novljan, M. Smolnikar, M. Mohorcic, and C. Fortuna. "Online short-
term forecasting of Photovoltaic Energy Production". 2015 IEEE Power & Energy Society
Innovative Smart Grid Technologies Conference (ISGT), (Nov.):1–5, feb 2015. doi:10.
1109/ISGT.2015.7131880.

[53] Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol. "Extracting
and Composing Robust Features with Denoising Autoencoders". Feb. 2008.

[54] Radford M Neal. "Connectionist learning of belief networks". Artificial Intelligence,
56(1):71–113, 1992. doi:10.1016/0004-3702(92)90065-6.

[55] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle. "Greedy Layer-Wise Training of
Deep Networks". Advances in Neural Information Processing Systems, 19(1):153, 2007.
doi:citeulike-article-id:4640046.

[56] Geoffrey E. Hinton, Simon Osindero, and Yee-Whye Teh. "A Fast Learning Algorithm for
Deep Belief Nets". Neural Computation, 18(7):1527–1554, July 2006. doi:10.1162/
neco.2006.18.7.1527.

[57] M. Ranzato, F. Huang, Y. Boureau, and Y. LeCun. "Unsupervised Learning of Invariant
Feature Hierarchies with Applications to Object Recognition". In 2007 IEEE Conference on
Computer Vision and Pattern Recognition, pages 1–8. IEEE, June 2007. doi:10.1109/
CVPR.2007.383157.

[58] I. Sutskever and G. Hinton. "Learning Multilevel Distributed Representations for High-
Dimensional Sequences". In Proceedings of the Eleventh International Conference on Ar-
tificial Intelligence and Statistics, volume 2 of Proceedings of Machine Learning Research,
pages 548–555. PMLR, Mar. 2007.

[59] G. Taylor, G. Hinton, and S. Roweis. Modeling Human Motion Using Binary Latent Vari-
ables. In Advances in Neural Information Processing Systems 19, pages 1345–1352. MIT
Press, 2006.

[60] G. Hinton and R. Salakhutdinov. "Reducing the Dimensionality of Data with Neural Net-
works". Science, 313(5786):504–507, July 2006. doi:10.1126/science.1127647.

[61] J. Wan, J. Liu, G. Ren, Y. Guo, D. Yu, and Q. Hu. "Day-Ahead Prediction of Wind Speed
with Deep Feature Learning". International Journal of Pattern Recognition and Artificial
Intelligence, 30(05):1650011, June 2016. doi:10.1142/S0218001416500117.

[62] H. Wang, G. Wang, G. Li, J. Peng, and Y. Liu. "Deep belief network based deterministic and
probabilistic wind speed forecasting approach". Applied Energy, 182:80–93, 2016. doi:
10.1016/j.apenergy.2016.08.108.

[63] X. Zhao, J. Wan, G. Ren, J. Liu, J. Chang, and D. Yu. "Multi-scale DBNs regression model
and its application in wind speed forecasting". In 2016 IEEE Advanced Information Man-
agement, Communicates, Electronic and Automation Control Conference (IMCEC), pages
1355–1359. IEEE, Oct. 2016. doi:10.1109/IMCEC.2016.7867434.

[64] Aleksandra Dedinec, Sonja Filiposka, Aleksandar Dedinec, and Ljupco Kocarev. "Deep
belief network based electricity load forecasting: An analysis of Macedonian case". Energy,
115:1688–1700, 2016. doi:10.1016/j.energy.2016.07.090.

http://dx.doi.org/10.1109/ISGT.2015.7131880
http://dx.doi.org/10.1109/ISGT.2015.7131880
http://dx.doi.org/10.1016/0004-3702(92)90065-6
http://dx.doi.org/citeulike-article-id:4640046
http://dx.doi.org/10.1162/neco.2006.18.7.1527
http://dx.doi.org/10.1162/neco.2006.18.7.1527
http://dx.doi.org/10.1109/CVPR.2007.383157
http://dx.doi.org/10.1109/CVPR.2007.383157
http://dx.doi.org/10.1126/science.1127647
http://dx.doi.org/10.1142/S0218001416500117
http://dx.doi.org/10.1016/j.apenergy.2016.08.108
http://dx.doi.org/10.1016/j.apenergy.2016.08.108
http://dx.doi.org/10.1109/IMCEC.2016.7867434
http://dx.doi.org/10.1016/j.energy.2016.07.090

84 REFERENCES

[65] A. Gensler, J Henze, B. Sick, and N. Raabe. Deep Learning for Solar Power Forecasting —
An Approach Using Autoencoder and LSTM Neural Networks. In 2016 IEEE International
Conference on Systems, Man, and Cybernetics (SMC), pages 002858–002865. IEEE, Oct.
2016. doi:10.1109/SMC.2016.7844673.

[66] S. Lawrence, C. Giles, A. Tsoi, and A. Back. "Face Recognition: A Convolutional Neural
Network Approach". IEEE Transactions on Neural Networks, 8(1):98—-113, 1997.

[67] M. Matsugu, K. Mori, Y. Mitari, and Y. Kaneda. "Subject independent facial expression
recognition with robust face detection using a convolutional neural network". Neural Net-
works, 16(5-6):555–559, June 2003. doi:10.1016/S0893-6080(03)00115-1.

[68] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and
A. Rabinovich. "Going Deeper with Convolutions". Sep. 2014. arXiv:1409.4842.

[69] S. Farfade, M. Saberian, and L. Li. "Multi-view Face Detection Using Deep Convolutional
Neural Networks". page 19, Feb. 2015. doi:10.1145/2671188.2749408.

[70] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and F. Li. "Large-scale video
classification with convolutional neural networks". In Conference on Computer Vision and
Pattern Recognition, pages 1725–1732. IEEE, June 2014. doi:10.1109/CVPR.2014.
223.

[71] K. Simonyan and A. Zisserman. "Two-Stream Convolutional Networks for Action Recogni-
tion in Videos". June 2014. arXiv:1406.2199.

[72] M. Baccouche, F. Mamalet, C. Wolf, C. Garcia, and A. Baskurt. "Sequential Deep Learning
for Human Action Recognition". pages 29–39. Springer, Berlin, Heidelberg, 2011. doi:
10.1007/978-3-642-25446-8_4.

[73] A. Van Den Oord, S. Dieleman, and B. Schrauwen. "Deep content-based music recommen-
dation". In Advances in Neural Information Processing Systems 26, pages 2643–2651. 2013.

[74] R. Collobert and J. Weston. "A unified architecture for natural language processing". Pro-
ceedings of the 25th International Conference on Machine learning - ICML ’08, 20(1):160–
167, July 2008. doi:10.1145/1390156.1390177.

[75] Z. Zhao, G. Xu, Y. Qi, N. Liu, and T. Zhang. "Multi-patch deep features for power line
insulator status classification from aerial images". In 2016 International Joint Conference on
Neural Networks (IJCNN), pages 3187–3194. IEEE, July 2016. doi:10.1109/IJCNN.
2016.7727606.

[76] H. Wang, G. Li, G. Wang, J. Peng, H. Jiang, and Y. Liu. "Deep learning based ensemble
approach for probabilistic wind power forecasting". Applied Energy, 188:56–70, 2017. doi:
10.1016/j.apenergy.2016.11.111.

[77] I. Arel, D. Rose, and R. Coop. "DeSTIN: A Scalable Deep Learning Architecture with
Application to High-Dimensional Robust Pattern Recognition". AAAI Fall Symposium Series
2009, pages 11–15, 2009.

[78] J. Owens and M. Houston. "GPU Computing". Proceedings of the IEEE, 96(5):879 – 899,
Apr. 2008. doi:10.1109/JPROC.2008.917757.

http://dx.doi.org/10.1109/SMC.2016.7844673
http://dx.doi.org/10.1016/S0893-6080(03)00115-1
http://arxiv.org/abs/1409.4842
http://dx.doi.org/10.1145/2671188.2749408
http://dx.doi.org/10.1109/CVPR.2014.223
http://dx.doi.org/10.1109/CVPR.2014.223
http://arxiv.org/abs/1406.2199
http://dx.doi.org/10.1007/978-3-642-25446-8_4
http://dx.doi.org/10.1007/978-3-642-25446-8_4
http://dx.doi.org/10.1145/1390156.1390177
http://dx.doi.org/10.1109/IJCNN.2016.7727606
http://dx.doi.org/10.1109/IJCNN.2016.7727606
http://dx.doi.org/10.1016/j.apenergy.2016.11.111
http://dx.doi.org/10.1016/j.apenergy.2016.11.111
http://dx.doi.org/10.1109/JPROC.2008.917757

REFERENCES 85

[79] I. Decker, M. Zarzosa, and V. Zimmer. "Classificador de Eventos no SIN baseado em Redes
Neurais Artificiais e Sincrofasores". VI Simpósio Brasileiro de Sistemas Elétricos, Jan. 2016.
doi:10.20906/CPS/SBSE2016-0250.

[80] T. Xia, H. Zhang, R. Gardner, J. Bank, J. Dong, J. Zuo, Y. Liu, L. Beard, P. Hirsch, G. Zhang,
and R. Dong. "Wide-area Frequency Based Event Location Estimation". In 2007 IEEE Power
Engineering Society General Meeting, pages 1–7. IEEE, June 2007. doi:10.1109/PES.
2007.386018.

[81] G. Zheng. "Classification of power system disturbances based on wide-area frequency mea-
surements". In IEEE PES Innovative Smart Grid Technologies Conference Europe, ISGT
Europe, pages 1–4. IEEE, Jan. 2011. doi:10.1109/ISGT.2011.5759179.

[82] P. Sangitab and S. Deshmukh. "Use of Support Vector Machine, decision tree and Naive
Bayesian techniques for wind speed classification". In 2011 International Conference on
Power and Energy Systems, ICPS 2011, pages 1–8. IEEE, Dec. 2011. doi:10.1109/
ICPES.2011.6156687.

[83] T. Xia, H. Zhang, R. Gardner, J. Bank, J. Dong, J. Zuo, Y. Liu, L. Beard, P. Hirsch, G. Zhang,
and R. Dong. "Wide-area Frequency Based Event Location Estimation". 2007 IEEE Power
Engineering Society General Meeting, pages 1–7, June 2007. doi:10.1109/PES.2007.
386018.

[84] X. Glorot and Y. Bengio. "Understanding the difficulty of training deep feedforward neural
networks". Proceedings of the 13th International Conference on Artificial Intelligence and
Statistics (AISTATS), 9:249–256, 2010. doi:10.1.1.207.2059.

[85] G. Hinton. "Training Products of Experts by Minimizing Contrastive Divergence". Neural
Computation, 14(8):1771–1800, 2002. doi:10.1162/089976602760128018.

[86] "Intel R© Xeon R© Processor E5-1620 v3 (10M Cache, 3.50 GHz) Prod-
uct Specifications". URL: https://ark.intel.com/products/82763/
Intel-Xeon-Processor-E5-1620-v3-10M-Cache-3{_}50-GHz.

[87] "GeForce GTX TITAN X | Specifications | GeForce". URL: http://www.geforce.com/
hardware/desktop-gpus/geforce-gtx-titan-x/specifications.

[88] Y. LeCun, L. Bottou, G. Orr, and K. Müller. "Efficient backprop". Computer Science, 7700
LECTU:9–48, 2012. doi:10.1007/978-3-642-35289-8-3.

http://dx.doi.org/10.20906/CPS/SBSE2016-0250
http://dx.doi.org/10.1109/PES.2007.386018
http://dx.doi.org/10.1109/PES.2007.386018
http://dx.doi.org/10.1109/ISGT.2011.5759179
http://dx.doi.org/10.1109/ICPES.2011.6156687
http://dx.doi.org/10.1109/ICPES.2011.6156687
http://dx.doi.org/10.1109/PES.2007.386018
http://dx.doi.org/10.1109/PES.2007.386018
http://dx.doi.org/10.1.1.207.2059
http://dx.doi.org/10.1162/089976602760128018
https://ark.intel.com/products/82763/Intel-Xeon-Processor-E5-1620-v3-10M-Cache-3{_}50-GHz
https://ark.intel.com/products/82763/Intel-Xeon-Processor-E5-1620-v3-10M-Cache-3{_}50-GHz
http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-titan-x/specifications
http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-titan-x/specifications
http://dx.doi.org/10.1007/978-3-642-35289-8-3

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Main Contribution

	2 Phasor Measurement Units
	2.1 Brief Overview
	2.2 Historical Background
	2.3 Fundamentals of Synchrophasors
	2.4 Generic Configuration of a PMU
	2.5 Measurement System Hierarchy
	2.6 Communication Infrastructures
	2.7 Output Data
	2.8 Harnessing PMU data
	2.8.1 Oscillation Detection and Control
	2.8.2 Load Modeling Validation
	2.8.3 Voltage Stability Monitoring and Control
	2.8.4 System Restoration and Event Analysis
	2.8.5 Improvement on State Estimation

	2.9 WAMS Implementations
	2.10 PMUs as a Big Data issue

	3 Deep Learning
	3.1 Why Deep Learning?
	3.2 Learning from Training
	3.2.1 Backpropagation
	3.2.2 Gradient-based Optimization
	3.2.3 Problems with Training

	3.3 Deep Learning Frameworks
	3.3.1 Multilayer Perceptron
	3.3.2 Autoencoders
	3.3.3 Deep Belief Networks
	3.3.4 Convolutional Neural Networks
	3.3.5 Spatio-Temporal Deep Learning

	3.4 Final Remarks

	4 Context of The Work
	4.1 The Medfasee BT Project
	4.2 The Importance of Frequency in Disturbance Detection
	4.2.1 Generation Tripping
	4.2.2 Load Shedding
	4.2.3 Transmission Line Tripping
	4.2.4 Oscillations

	4.3 Existing Disturbance Identification Methods
	4.4 Proposed Classifier

	5 Methodology
	5.1 Data Preprocessing
	5.2 Logistic Regression
	5.3 Loss Functions
	5.3.1 Zero-One Loss
	5.3.2 Negative Log-Likelihood

	5.4 Multilayer Perceptron
	5.5 Deep Belief Network
	5.6 Convolutional Neural Network
	5.6.1 Regularization Methods

	5.7 Introducing GPU Computing

	6 Results
	6.1 Dataset Splitting
	6.2 Hardware Specifications
	6.3 Selection of Hyperparameters
	6.4 Classification Results
	6.4.1 Classification Details

	6.5 The Outcome of GPU Implementation
	6.5.1 Mini-batch Size and its Influence on GPU Computing
	6.5.2 CPU versus GPU Time Results

	7 Conclusions and Future Work
	7.1 Conclusions
	7.2 Future Work

	A Python as a Deep Learning Tool
	B Architecture Settings
	B.1 Multilayer Perceptron
	B.1.1 MLP with 1 hidden layer
	B.1.2 MLP with 4 hidden layer
	B.1.3 MLP with 8 hidden layer

	B.2 Deep Belief Network
	B.3 Convolutional Neural Network
	B.3.1 20x60 case
	B.3.2 30x40 case

	C Ancillary Results
	C.1 Accuracy as a Percentage of the Test Set
	C.2 Confusion Matrices
	C.2.1 Expected Confusion Matrices
	C.2.2 MLP with 1 hidden layer
	C.2.3 MLP with 4 hidden layers
	C.2.4 MLP with 8 hidden layers
	C.2.5 DBN
	C.2.6 CNN 20x60

	D Brazillian Medfasee BT Project - Complementary Information
	References

