90,930 research outputs found

    A Novel System Anomaly Prediction System Based on Belief Markov Model and Ensemble Classification

    Get PDF
    Computer systems are becoming extremely complex, while system anomalies dramatically influence the availability and usability of systems. Online anomaly prediction is an important approach to manage imminent anomalies, and the high accuracy relies on precise system monitoring data. However, precise monitoring data is not easily achievable because of widespread noise. In this paper, we present a method which integrates an improved Evidential Markov model and ensemble classification to predict anomaly for systems with noise. Traditional Markov models use explicit state boundaries to build the Markov chain and then make prediction of different measurement metrics. A Problem arises when data comes with noise because even slight oscillation around the true value will lead to very different predictions. Evidential Markov chain method is able to deal with noisy data but is not suitable in complex data stream scenario. The Belief Markov chain that we propose has extended Evidential Markov chain and can cope with noisy data stream. This study further applies ensemble classification to identify system anomaly based on the predicted metrics. Extensive experiments on anomaly data collected from 66 metrics in PlanetLab have confirmed that our approach can achieve high prediction accuracy and time efficiency

    Methods of Technical Prognostics Applicable to Embedded Systems

    Get PDF
    Hlavní cílem dizertace je poskytnutí uceleného pohledu na problematiku technické prognostiky, která nachází uplatnění v tzv. prediktivní údržbě založené na trvalém monitorování zařízení a odhadu úrovně degradace systému či jeho zbývající životnosti a to zejména v oblasti komplexních zařízení a strojů. V současnosti je technická diagnostika poměrně dobře zmapovaná a reálně nasazená na rozdíl od technické prognostiky, která je stále rozvíjejícím se oborem, který ovšem postrádá větší množství reálných aplikaci a navíc ne všechny metody jsou dostatečně přesné a aplikovatelné pro embedded systémy. Dizertační práce přináší přehled základních metod použitelných pro účely predikce zbývající užitné životnosti, jsou zde popsány metriky pomocí, kterých je možné jednotlivé přístupy porovnávat ať už z pohledu přesnosti, ale také i z pohledu výpočetní náročnosti. Jedno z dizertačních jader tvoří doporučení a postup pro výběr vhodné prognostické metody s ohledem na prognostická kritéria. Dalším dizertačním jádrem je představení tzv. částicového filtrovaní (particle filtering) vhodné pro model-based prognostiku s ověřením jejich implementace a porovnáním. Hlavní dizertační jádro reprezentuje případovou studii pro velmi aktuální téma prognostiky Li-Ion baterii s ohledem na trvalé monitorování. Případová studie demonstruje proces prognostiky založené na modelu a srovnává možné přístupy jednak pro odhad doby před vybitím baterie, ale také sleduje možné vlivy na degradaci baterie. Součástí práce je základní ověření modelu Li-Ion baterie a návrh prognostického procesu.The main aim of the thesis is to provide a comprehensive overview of technical prognosis, which is applied in the condition based maintenance, based on continuous device monitoring and remaining useful life estimation, especially in the field of complex equipment and machinery. Nowadays technical prognosis is still evolving discipline with limited number of real applications and is not so well developed as technical diagnostics, which is fairly well mapped and deployed in real systems. Thesis provides an overview of basic methods applicable for prediction of remaining useful life, metrics, which can help to compare the different approaches both in terms of accuracy and in terms of computational/deployment cost. One of the research cores consists of recommendations and guide for selecting the appropriate forecasting method with regard to the prognostic criteria. Second thesis research core provides description and applicability of particle filtering framework suitable for model-based forecasting. Verification of their implementation and comparison is provided. The main research topic of the thesis provides a case study for a very actual Li-Ion battery health monitoring and prognostics with respect to continuous monitoring. The case study demonstrates the prognostic process based on the model and compares the possible approaches for estimating both the runtime and capacity fade. Proposed methodology is verified on real measured data.

    Evaluation of recommender systems in streaming environments

    Full text link
    Evaluation of recommender systems is typically done with finite datasets. This means that conventional evaluation methodologies are only applicable in offline experiments, where data and models are stationary. However, in real world systems, user feedback is continuously generated, at unpredictable rates. Given this setting, one important issue is how to evaluate algorithms in such a streaming data environment. In this paper we propose a prequential evaluation protocol for recommender systems, suitable for streaming data environments, but also applicable in stationary settings. Using this protocol we are able to monitor the evolution of algorithms' accuracy over time. Furthermore, we are able to perform reliable comparative assessments of algorithms by computing significance tests over a sliding window. We argue that besides being suitable for streaming data, prequential evaluation allows the detection of phenomena that would otherwise remain unnoticed in the evaluation of both offline and online recommender systems.Comment: Workshop on 'Recommender Systems Evaluation: Dimensions and Design' (REDD 2014), held in conjunction with RecSys 2014. October 10, 2014, Silicon Valley, United State

    Energy rating of a water pumping station using multivariate analysis

    Get PDF
    Among water management policies, the preservation and the saving of energy demand in water supply and treatment systems play key roles. When focusing on energy, the customary metric to determine the performance of water supply systems is linked to the definition of component-based energy indicators. This approach is unfit to account for interactions occurring among system elements or between the system and its environment. On the other hand, the development of information technology has led to the availability of increasing large amount of data, typically gathered from distributed sensor networks in so-called smart grids. In this context, data intensive methodologies address the possibility of using complex network modeling approaches, and advocate the issues related to the interpretation and analysis of large amount of data produced by smart sensor networks. In this perspective, the present work aims to use data intensive techniques in the energy analysis of a water management network. The purpose is to provide new metrics for the energy rating of the system and to be able to provide insights into the dynamics of its operations. The study applies neural network as a tool to predict energy demand, when using flowrate and vibration data as predictor variables

    Grid Global Behavior Prediction

    Get PDF
    Complexity has always been one of the most important issues in distributed computing. From the first clusters to grid and now cloud computing, dealing correctly and efficiently with system complexity is the key to taking technology a step further. In this sense, global behavior modeling is an innovative methodology aimed at understanding the grid behavior. The main objective of this methodology is to synthesize the grid's vast, heterogeneous nature into a simple but powerful behavior model, represented in the form of a single, abstract entity, with a global state. Global behavior modeling has proved to be very useful in effectively managing grid complexity but, in many cases, deeper knowledge is needed. It generates a descriptive model that could be greatly improved if extended not only to explain behavior, but also to predict it. In this paper we present a prediction methodology whose objective is to define the techniques needed to create global behavior prediction models for grid systems. This global behavior prediction can benefit grid management, specially in areas such as fault tolerance or job scheduling. The paper presents experimental results obtained in real scenarios in order to validate this approach
    corecore