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Computer systems are becoming extremely complex, while system anomalies dramatically influence the availability and usability
of systems. Online anomaly prediction is an important approach to manage imminent anomalies, and the high accuracy relies on
precise system monitoring data. However, precise monitoring data is not easily achievable because of widespread noise. In this
paper, we present a method which integrates an improved Evidential Markovmodel and ensemble classification to predict anomaly
for systemswith noise. TraditionalMarkovmodels use explicit state boundaries to build theMarkov chain and thenmake prediction
of different measurement metrics. A Problem arises when data comes with noise because even slight oscillation around the true
value will lead to very different predictions. Evidential Markov chain method is able to deal with noisy data but is not suitable in
complex data stream scenario. The Belief Markov chain that we propose has extended Evidential Markov chain and can cope with
noisy data stream. This study further applies ensemble classification to identify system anomaly based on the predicted metrics.
Extensive experiments on anomaly data collected from 66metrics in PlanetLab have confirmed that our approach can achieve high
prediction accuracy and time efficiency.

1. Introduction

As computer systems are growing increasingly complicated,
they are more vulnerable to various anomalies such as
performance bottlenecks and service level objective (SLO)
violations [1]. Thus, it requires the computer systems to be
more capable of managing anomalies under time pressure,
and avoiding or minimizing the system unavailability by
monitoring the computer systems continuously. Anomaly
management methods can be classified into two categories:
passive methods and proactive methods. Passive methods
notify the system administrator only when errors or faults
are detected. These approaches are appropriate to manage
anomalies that can be easily measured and fixed in a sim-
ple system. However, in nowadays dynamic and complex
computer systems, detecting some anomalies may have a
high cost, which is unacceptable for continuously running
applications. Proactivemethods take preventive actionswhen
anomalies are imminent; thus, they are more appropriate
for systems that need to avert the impact of anomalies and
achieve continuous operation. Nowadays proactive methods

are preferred in both academic research and real world
applications.

Previous work has addressed the problem of system
anomaly prediction, which can be categorized as data-driven
methods, event-drivenmethods, and symptom-drivenmeth-
ods [2].

Event-drivenmethods directly analyze the error or failure
that events report and use error reports as input data to
predict future system anomaly. Salfner and Malek use error
reports as input and then perform a trend analysis to predict
the occurrence of failure in a telecommunication system by
determining the frequency of error occurrences [3]. Kiciman
and Fox use decision tree to identify faulty components in
J2EE application server by classifying whether requests are
successful or not. These approaches have the basic assump-
tion that anomaly-prone system behavior can be identified by
characteristics of anomaly [4]. This is why only reoccurring
anomaly presented in the error report can be predicted by
event-driven method.

Data-drivenmethods learn from the temporal and spatial
correlation of anomaly occurrence. They aim at recognizing
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the relationship between upcoming failures and occurrence
of previous failures. Zhang and Ma use modified KPCA
method to diagnose anomalies in nonlinear processes [5].
In nonlinear fault detection scenario, they utilize statistical
analysis to improve the learning techniques [6], which is also
applicable for large scale fault diagnosis processes [7]. Liang
et al. exploit these correlation characteristics of anomaly
on IBM’s BlueGene/L [8]. They find that the occurrence of
a failure is strongly correlated to the time stamp and the
location of others in a cluster environment. Zhang et al.
propose a hybrid prediction technique which uses model
checking techniques; an operational model is explored to
check if a desirable temporal property is satisfied or violated
by the model itself [9]. To conclude, the basic idea of data-
driven methods is that upcoming anomalies are from the
occurrence of the previous ones.

Symptom-driven methods analyze some workload-
related data such as input workload and memory workload
in order to predict further system resource utilization. Tan
and Gu [10] monitor a series of run-time metrics (CPU,
memory, I/O usage, and network), use a discrete-time
Markov chain to forecast the system metrics in the future,
and finally predict the system state based on Naı̈ve Bayesian
classification. Luo et al. [11] build autoregressive model using
various parameters from an Apache webserver to predict
further system resource utilization; failures are predicted by
detecting resource exhaustion.

Efficient proactive anomaly management relies on the
system monitoring data, and the metric system generated by
monitor infrastructures are continuously arriving and invari-
ably noisy, so one big challenge is to provide high accurate
and good and efficient system anomaly prediction for noisy
monitoring data stream. Recently, some approaches have
been proposed for system anomaly prediction using discrete-
time Markov chain (DTMC) [10, 12]. However, their work
does not consider the issue thatmonitoring datamay oscillate
around the real value as we mentioned previously. DTMC
which uses explicit state boundaries will lead to significantly
different values even when the metrics oscillation around the
boundaries is very slight. Soubaras [13] proposed Evidential
Markov chain model which extends DTMC to overcome
the noise value around explicit state boundaries problem
caused by inaccuracies monitoring metrics. The problem of
Evidential Markov chain is that although it works excellently
in a static data scenario, it cannot be applied directly to
stream data. Its fixed transition matrix is too restrictive for
continuously changing stream data and brings in enormous
amount of calculation.

In this paper, we present the design and implementation
of an approach to solve the system anomaly prediction
problem on noise data stream. We first present an improved
belief Markov chain (BMC) to fit into a data stream scenario.
We use a stream-based 𝑘-means clustering algorithm [14]
to dynamically maintain and generate Markov transition
matrix. Only information of microclusters is stored after
clustering, and new comers will falls into or newly establish
one of the 𝑘 groups. Compared to Evidential Markov chain
method, by which all the data has to be stored and recalcu-
lated every time when new one arrives to get Markov state,

our approach is time efficient and more feasible in a highly
dynamic and complex system. We then employ aggregate
ensemble classification method [15] to determine whether
the system will turn into anomaly in the future. Aggregate
ensemble classification can address the incorrect anomaly
mark problem in a continuously running system.

Extensive experiments on PlanetLab dataset [16] of dif-
ferent parameter settings show that averagely BMC achieves
14.8% smaller mean prediction error than DTMC method
in various previous works [10, 12, 17, 18]. Our system
anomaly prediction method (SAPredictor), which combines
BMC and aggregate ensemble classification, is proved to
achieve better prediction performance than other prediction
models, for example, DTMC+Naı̈ve Bayes, DTMC+KNN,
andDTMC+C4.5. SAPredictor demonstrates the best perfor-
mance in the three key criteria, namely, 71.6% for precision,
84.6% for recall, and 77.5% for 𝐹-measurement.

The main contributions of this paper are summarized as
follows.

(1) We propose the belief Markov chain by improving
the Evidential Markovmodel using a stream-based 𝑘-
means clustering algorithm andmake it more suitable
for system metrics prediction on noisy data stream.

(2) We integrate belief Markov chain and aggregate
ensemble classification as SAPredictor to predict
system anomaly.

(3) We validate the effectiveness of SAPredictor by exten-
sive experiments on real system data.

The rest of this paper is organized as follows. Section 2
introduces our SAPredictor method. Section 3 demonstrates
the experiments and analyzes the results. Finally, we conclude
and give some future research directions in Section 4.

2. Approach Overview

In this section, we present the detailed design of SAPre-
dictor. We first describe the problem of system anomaly
prediction and then propose our SAPredictor method, which
is composed by the two components: belief Markov chain
model and aggregate ensemble classification model. Belief
Markov chain model is used to predict the changing pattern
of measurement metrics; aggregate ensemble classification
is a supervised learning method which employs multiple
classifiers and combines their predictions. In this work, we
use sliding window to partition the system metrics stream
into some chunks and then train the belief Markov chain and
aggregate ensemble learning model by the history.The future
system status is predicted by putting future metrics as input
into the classification model.

2.1. Problem Statement. For a system, we have a vector
of observations at time 𝑡 for the system metrics, 𝑌

𝑡
=

[𝑦
1,𝑡

, 𝑦
2,𝑡

, . . . 𝑦
𝑛,𝑡

].𝑌
𝑡
is a vector that contains𝑁 systemmetric

time series at time 𝑡, namely, 𝑦
𝑖,𝑡
(𝑖 = 1, 2, . . . , 𝑛), 𝑖 is the 𝑖th

metric. We label 𝑌
𝑡
at time 𝑡 as normal (state 0) or anomaly

(state 1) by monitoring the system state at time 𝑡. The system
anomaly prediction problem we focus on in this paper is that
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whether 𝑌
𝑡
will fall into anomaly status in the next 𝛽 steps,

where 𝛽 > 0 and 𝛽 ∈ 𝑁. To solve this problem, we need to
first forecast the future value of 𝑦

𝑖,𝑡+𝛽
for each metric. Then,

we train ensemble classifier EC based on a sliding window
[𝑦
𝑖,𝑡−𝑑+1

, . . . 𝑦
𝑖,𝑡
] of 𝑌

𝑡
, where 𝑑 is the size of sliding window.

Finally, we use EC to test on 𝑦
𝑖,𝑡+𝛽

(𝑖 = 1, 2 . . . , 𝑛) and predict
the state label of 𝑌

𝑡+𝛽
.

2.2. SAPredictor Approach. Figure 1 describes the SAPredic-
tor system anomaly prediction approach. 𝑁 measurement
metrics (e.g., CPU, memory, I/O usage, network, etc.) are
collected from the system continuously. Then, the collected
system metrics streams are partitioned into some chunks by
sliding window. The current and history chunks are used to
train the belief Markov chain model and aggregate ensemble
learning model. Then, the future system metrics is predicted
by the belief Markov chain model, and having these metrics
as input into the aggregate ensemble classification model,
we can ascertain whether the system will fall into anomaly
in the future. Belief Markov chain and aggregate ensemble
classification will be presented in the following subsections.

2.2.1. System Metrics Value Prediction. In this section, we
first introduce why the Evidential Markov chain which is
based on the Dempster-Shafer theory [19] is preferred over
discrete-time Markov chain in dealing with system anomaly
prediction for noisy data, and then we explain the advantages
of our belief Markov chain method compared to Evidential
Markov method in a data stream environment.

When we build discrete-time Markov chain model, it is
necessary to divide all the data into discrete states. Traditional
discretion techniques used in discrete-time Markov chain
include equal-width and equal-depth. Both techniques gener-
ate statuswith explicit boundaries using all the data.However,
the system metrics being monitored are usually imprecise
due to system noise and measurement error. Thus, discrete-
time Markov chain which uses explicit boundary to divide
the states will generate highly different prediction results even
if their initial values are almost the same. Evidential Markov
model [13] has made big improvement by being capable of
coping with noisy data. Following is an example of explicit
boundary problem in discrete-time Markov chain.

In one possible situation, we have a metric ranging in
[0, 150], and then we use equal-width approach to discrete
the range into three bins, namely, [0, 50), [50, 100), and
[100, 150]. 𝑆

1
, 𝑆
2
, and 𝑆

3
denote the states when metric is in

[0, 50), [50, 100), and [100, 150], respectively. The transition
matrix for the metric is a 3 ∗ 3 matrix:

𝑀 = (

𝑎
11

𝑎
12

𝑎
13

𝑎
21

𝑎
22

𝑎
23

𝑎
31

𝑎
32

𝑎
33

) = (

0.3 0.2 0.5

0.1 0.2 0.7

0.1 0.5 0.4

) . (1)

Here, each element 𝑎
𝑖𝑗
in matrix 𝑀 denotes the prob-

ability of transition from state 𝑖 to state 𝑗. When we use
discrete-time Markov chain to predict future value, a vector
𝜋 = [𝜋

𝑡,𝑆
1

, 𝜋
𝑡,𝑆
2

, 𝜋
𝑡,𝑆
3

] is needed to denote the probability of
the metric in each state at time 𝑡. If we have an initial value 99
which is in state 𝑆

2
, then the corresponding probability vector

is 𝜋
0

= [0, 1, 0]. We can calculate the probability vector 𝜋
1

after one time unit as

𝜋
1
= 𝜋
0
∗ 𝑀 = [0, 1, 0] ∗ (

0.3 0.2 0.5

0.1 0.2 0.7

0.1 0.5 0.4

)

= [0.1, 0.2, 0.7] .

(2)

Here, the probability vector 𝜋
1
represents that the initial

value will transfer into 𝑆
3
most likely, and the predicted value

after one step will be 125 = (100+150)/2 as the mean of state
𝑆
3
. However, if the initial value turns to be 101, then the vector

𝜋


0
will be [0, 0, 1]. By applying (2) again, it turns out that the

prediction value will stay in state 𝑆
2
with the predicted value

of 75 = (50 + 100)/2 in the next step:

𝜋


1
= 𝜋


0
∗ 𝑀 = [0, 0, 1] ∗ (

0.3 0.2 0.5

0.1 0.2 0.7

0.1 0.5 0.4

)

= [0.1, 0.5, 0.4] .

(3)

Note that there is only a slight difference between 99 and
101 in the initial value, yet the forecasted value after one step
is in large difference from 75 to 125.

As the example shows, discrete-time Markov chain uses
explicit state boundaries, and it will have very different
prediction value if the original metric is around the state
boundary. To solve this problem, we propose belief Markov
chain based on the Dempster-Shafer theory. The Dempster-
Shafer theory is an inaccurate inference theory. It can handle
the uncertainty caused by unknown prior knowledge and
extend the basic event space to its power set. The detailed
definitions for Dempster-Shafer [19] are as follows.

Definition 1 (frame of discernment). Suppose that 𝑃 is the
exhaustive set of random variable 𝑋, so 𝑃 = {𝑥

1
, 𝑥
2
, . . . 𝑥
𝑗
}

and the elements in 𝑃 are mutually exclusive. Then, the set of
all possible subsets of 𝑃 is called a frame of discernment 𝐴:

𝐴 = (𝜙, {𝑥
1
} , {𝑥
2
} , . . . , {𝑥

𝑗
} , {𝑥
1
, 𝑥
2
} , {𝑥
1
, 𝑥
𝑗
} , . . . ,

{𝑥
2
, 𝑥
3
} , . . . , {𝑥

2
, 𝑥
𝑗
} , . . . , {𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑗
})

= (𝐴
0
, 𝐴
1
, 𝐴
2
, . . . , 𝐴

𝑗
) .

(4)

We use 𝐴
𝑘
(𝑘 ∈ 𝑁, 𝑘 ∈ [0, 𝑗]) to represent the subset in

power set of 𝑃 which contains 𝑘 elements.

Definition 2 (mass function). Have 𝑃 and 𝐴, for every subset
of 𝑃; if the following statements satisfy, then the function 𝐹 is
called the mass function on 𝐴:

𝐹 (𝜙) = 0,

∑𝐹 (𝐴
𝑘
) = 1,

𝐹 (𝐴
𝑘
) ∈ [0, 1] , 𝐴

𝑘
∈ 2
𝑃
.

(5)

Definition 3 (transferable belief model). Suppose that we
have discernment frame 𝐴 and mass function 𝐹 on 𝑃. Then,
the probability for each random variable 𝑋 in 𝑃 can be
calculated by transferable belief model:

𝑇 (𝑥) = ∑
𝐹 (𝐴)

|𝐴|
. (6)



4 Mathematical Problems in Engineering

Server

Server Server

Ensemble
classification

model

Belief
Markov
chain

Metric
one

Metric
two

Metric
N

Train the
classifier
model

Predict
anomaly

Result
System

Predict metric
value

...

Figure 1: System anomaly prediction approach.
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Figure 2: State-space with cross-state region.

The subset of 𝐴 includes both single event set {𝑥
𝑖
} and

multiple event combinations {𝑥
𝑖
, 𝑥
𝑗
, . . . , 𝑥

𝑘
}. This is why we

need transferable belief model to calculate the probability of
one single random variable.

Figure 2 illustrates a metric divided into 𝑁 states, 𝑆 =

{𝑆
1
, 𝑆
2
, 𝑆
3
, . . . , 𝑆

𝑛
}, and each pair of adjacent states has a state

𝑆
𝑖,𝑖+1

which means that the value is in cross-region between
state 𝑖 and state 𝑖 + 1. When using BMCmodel to predict, the
initial metric may belong to a single state entirely or belong
to the cross-region of two adjacent states. So, the discernment
frame of this problem can be simplified to

𝐴BMC = (𝜙, {𝑥
1
} , {𝑥
2
} , . . . , {𝑥

𝑛
} , {𝑥
1
, 𝑥
2
} ,

{𝑥
2
, 𝑥
3
} , . . . , {𝑥

𝑛−1
, 𝑥
𝑛
}) .

(7)

Then, we declare the mass function to assign probability
to each subset in 𝐴BMC. Any function that satisfies (5) can be
used as mass function.The probability of each event in 𝑃 can
be calculated as

𝑝 (𝑥
𝑖
) =

{{{{{{

{{{{{{

{

𝐹 (𝑥
𝑖
) +

𝐹 (𝑥
𝑖
, 𝑥
𝑖+1

)

2
𝑖 = 1,

𝐹 (𝑥
𝑖−1

, 𝑥
𝑖
)

2
+ 𝐹 (𝑥

𝑖
) +

𝐹 (𝑥
𝑖
, 𝑥
𝑖+1

)

2
1 < 𝑖 < 𝑛,

𝐹 (𝑥
𝑖−1

, 𝑥
𝑖
)

2
+ 𝐹 (𝑥

𝑖
) 𝑖 = 𝑛.

(8)

At last, we need to infer the transition matrix which
describes the probabilities of moving from one state to others
as we did in discrete-time Markov chain. Each element 𝑝

𝑖𝑗

of transition matrix 𝑀BMC denotes the probability of the
currently state 𝑆

𝑖
, and then it moves to state 𝑆

𝑗
. It can be

calculated by

𝑝
𝑖𝑗

=
∑
𝑛

𝑡=1
(𝑝(𝑖)
𝑡
∗ 𝑝(𝑗)

𝑡+1
)

∑
𝑗∈𝐴BMC

∑
𝑛

𝑡=1
(𝑝(𝑖)
𝑡
∗ 𝑝(𝑗)

𝑡+1
)
. (9)

However, the Evidential Markov chain needs to store
all the data and recalculate the Markov state when new
data arrives, this is not time efficient and feasible for the
systems that need real-time response, especially for data
stream applications. Thus, we improve Evidential Markov
chain using stream-based 𝑘-means clustering method. The
arriving data points can be mapped onto 𝑘 states using data
stream clustering algorithm where each cluster represents a
Markov state. For each cluster 𝑖 representing state 𝑠

𝑖
, we need

to store a transition count vector 𝑐
𝑖
. All transition counts

can be seen as a 𝐾 ∗ 𝐾 transition count matrix 𝐶 where
𝐾 is the number of clusters. As we use stream clustering,
there is a list of operations for cluster: adding a new data to
an existing cluster, creating a new cluster, deleting clusters,
merging clusters, and splitting clusters. And we use Jaccard
[20] as a dissimilarity threshold to detect clusters.Thus, the 𝑘

states are adaptively changing to fit the arriving data, which
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is also an advantage compared to Evidential Markov chain
method.

2.2.2. System Status Classification. In this section, we first
introduce why we choose ensemble classification to forecast
the system status and then how the aggregate ensemble
method can address the concept drift and noisy data problem
in data stream. Tan and Gu [10] apply single statistical
classifier on static dataset to make classification. Though this
approach works well on static dataset, it is not applicable
in a dynamic environment where system logs are generated
continuously, and even the underlying data generatingmech-
anism and cause of anomaly are constantly changing. To
capture the time-evolving anomaly pattern, many solutions
have been proposed to build classification models from data
stream.

One simple model is using online incremental learning
[11, 21]. The incremental learning methods deliver a single
learning model to represent an entire data stream and update
the model continuously when new data arrives. Ensem-
ble classification always regards the data stream as several
separated data chunks and trains classifiers based on these
chunks using different learning algorithms, and then ensem-
ble classifier is built through voting of these base classifiers.
Although these models are being proved to be efficient and
accurate, they depend on the assumption that data stream
being learned is high quality and without consideration of
data error. However, in real world applications, like system
monitoring data stream and sensor network data stream, they
are always containing erroneous data values. As a result, the
tradition online incremental model is likely to lose accuracy
in the data stream which has error data values.

Ensemble learning is a supervisedmethodwhich employs
multiple learners and combines their predictions. Different
from the incremental learning, ensemble learning trains a
number of models and gives out final prediction based on
classifiers voting. Because the final prediction is based on a
number of base classifiers, ensemble learning can adaptively
and rapidly address the concept drift and error data problem
in data stream. Based on the above reason, we choose to use
ensemble classification.

In summary, the ensemble of classification can be cat-
egorized into two categories: horizontal ensemble and ver-
tical ensemble classification [15]. The horizontal ones build
classifiers using several buffered chunks, while the vertical
ones build classifiers using different learning algorithmon the
current chunks.

Vertical ensemble is shown in Figure 3. It uses 𝑟 different
classification algorithms (e.g., we simply set 𝑟 = 3) to
build classifier on the current chunk and then use the
results of these classifiers to form an ensemble classification
model. The vertical ensemble only uses the current chunk
to build classifiers, and the advantage of vertical ensemble
classification is that it uses different algorithms to build the
classifier model which can decrease the bias error between
each classifiers. However, the vertical ensemble assumes
that the data stream is errorless. As we discussed before,
the real-world data stream always contains error. So, if the
current chunk is mostly containing noise data, then the result

Table 1: Monitoring metrics used for anomaly prediction.

Monitored metrics
LOAD1 LOAD5 AVAILCPU
UPTIME FREEMEM FREEDISK
DISKUSAGE DISKSIZE MYFREEDISK
CPUUSE RWFS LOAD11
LOAD12 LOAD13 PUKPUKS1-10
NUMSLICE LIVESLICE VMSTAT1-17
SERVTEST1 SERVTEST2 BURP
CPUHOG MEMHOG TXHOG
RXHOG PROCHOG TXRATE
RXRATE PURKS1-10 MEMINFO1-3

may have severe performance deterioration. To address this
problem, horizontal ensemble which uses multiple history
chunks to build classifiers is employed.

Horizontal ensemble is showed in Figure 4. The data
stream is separated into 𝑛 consecutive chunks (e.g., 𝐷

1
and

𝐷
2
are history chunks, and 𝐷

3
is the current chunk), and

the aim of ensemble learning is to build classifiers on these 𝑛

chunks and predict data in the yet-to- arrive chunk (𝐷
4
in this

picture). The advantage of horizontal structure is that it can
handle the noise data in the stream because the prediction of
newly arriving data chunk depends on the average of different
chunks. Even if the noise data may deteriorate some chunks,
the ensemble can still generate relatively accurate prediction
result.

The disadvantage of horizontal ensemble is that the
data stream is continuously changing, and the information
contained in the previous chunks may be invalid so that
use these old-concept classifiers will not improve the overall
result of prediction.

Because of the limitation of both horizontal and ver-
tical ensembles, in this paper, we use a novel ensemble
classification which uses 𝑘 different learning algorithms to
build classifiers on 𝑝 buffered chunks and then train 𝑘-
by-𝑝 classifier as Figure 5 shows. By building an aggregate
ensemble, it is capable of solving a real-world data stream
containing both concept drifting and data errors.

3. Experiment and Result

3.1. Experiment Setup. We evaluate our SAPredictor method
on the anomaly data collected from realistic system: Plan-
etLab. The PlanetLab [22] is a global research network that
supports the development of new network services. The
PlanetLab data set [16] which we use in this paper contains 66
system-level metrics such as CPU load, freememory and disk
usage, shown by Table 1. The sampling interval is 10 seconds.
There are 50162 instances, and among which 8700 are labeled
as anomalies.

Our experiments were conducted on a 2.6-GHz Inter
Dual-Core E5300with 4GB ofmemory runningUbuntu10.4.
We use sliding window (window size = 1000 instances) based
validation because in real system, the labeled instances are
sorted in chronological order of collecting time. The reason
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Table 2: Comparison between BMC and DTMC at 10% noise.

Noise = 10% Mean prediction error (%) Improvement
Time units BMC DTMC
1 14.04% 16.60% 15.42%
2 18.78% 20.96% 10.40%
3 22.98% 24.35% 5.63%
4 26.75% 27.83% 3.88%
5 27.57% 28.50% 3.26%

that we do not use cross-validation is that it randomly divides
the dataset into pieces without considering the chronological
order. Under such circumstances, it is possible that current
data is used to predict past data, which does not make sense.
Thus, sliding window validation is more appropriate for our
experiments.

3.2. The Metrics Prediction Accuracy. Short term predictions
are helpful to prevent potential disasters and limit the
damage caused by system anomalies. Usually, predicting near
term future is more clever and successful than long term
predictions [5]. So, in our experiment, we assess system state
prediction in short term.

In this experiment, we choose 𝑘-means discretion tech-
nique to create state boundary.The reason is that by 𝑘-means
the state will have more adjacent data compared to the state
discrete by equal-width and equal-depth, when we divide the
data into 𝑘 clusters, because each middle point of the cluster
will be used as a state. We set the size of bins as 5, 10, 15, . . .
to 30, and evaluate the quality of metric prediction by mean
prediction error (MPE) as the study by Tan and Gu [10]:

MPE =
(∑
𝐷
∑
𝑖

𝑚=1
(
𝑥𝑚 − 𝑥

𝑚

 /𝑥𝑚))

(|𝑚| ∗ |𝐷|)
. (10)

𝐷 is the test dataset, and |𝐷| is the number of instances in
𝐷. |𝑚| is the number of system metrics, and 𝑥

𝑚
is the actual

value of metric 𝑚. 𝑥
𝑚
is the prediction value of metric 𝑚,

which is represented by themean value of samples in that bin.
The less the value of MPE, the more accurate the predictor.

We assess the MPE in near term future (1–5 time units
ahead) for different bin sizes (5, 10, 15, 20, 25, and 30) on
PlanetLab dataset. Figure 6 shows the MPE of PlanetLab for
time units (1–5) with bin size of 20. From these two figures,
we have the following observations: (1) BMC can achieve less
prediction error than DTMC from time units 1 to 5. One step
prediction has themost notable advantage, and the advantage
decreases slightly as time goes on, which means that our
algorithm fits better when the forecast period is shorter; (2)
BMC and DTMC both lose prediction accuracy as time goes
by, which indicates that predict anomaly in longer term is
more challenging.

Figure 7 shows the MPE of PlanetLab with different bin
sizes (5, 10, 15, 20, 25, and 30) when time unit is one. From
these figures, we can see that both methods have higher MPE
with less number of bins. The reason is that less number
of states tends to group a larger range of data into a bin.
Since the mean of the bin is used as the prediction value, the

Table 3: Comparison between BMC and DTMC at 20% noise.

Noise = 20% Mean prediction error (%) Improvement
Time units BMC DTMC
1 14.67% 17.42% 15.79%
2 19.61% 21.85% 10.25%
3 23.61% 25.23% 6.42%
4 27.66% 28.73% 3.72%
5 28.42% 29.42% 3.40%

Table 4: Comparison between BMC and DTMC at 30% noise.

Noise = 30% Mean prediction error (%) Improvement
Time units BMC DTMC
1 15.34% 18.27% 16.04%
2 20.47% 22.77% 10.10%
3 24.36% 26.14% 6.81%
4 27.07% 28.67% 5.58%
5 29.29% 30.38% 3.59%

Table 5: Comparison between BMC and DTMC at 40% noise.

Noise = 40% Mean prediction error (%) Improvement
Time units BMC DTMC
1 15.89% 19.15% 17.02%
2 21.43% 23.76% 9.81%
3 25.14% 27.11% 7.27%
4 27.93% 29.69% 5.93%
5 30.22% 31.43% 3.85%

Table 6: Comparison between BMC and DTMC at 50% noise.

Noise = 50% Mean prediction error (%) Improvement
Time units BMC DTMC
1 16.38% 20.07% 18.36%
2 22.26% 24.79% 10.21%
3 25.90% 28.12% 7.89%
4 28.83% 30.75% 6.24%
5 31.23% 32.48% 3.85%

gap between the prediction value and the real value will be
enlarged.

In Tables 2, 3, 4, 5, and 6, we compare themean prediction
error of DTMC and BMC under different noise percentage.
The noise percentage 𝑛 means that the monitoring value at
state 𝑖 oscillates around the true value 𝑦

𝑖
in the range of [𝑦

𝑖−1
+

(𝑦
𝑖
−𝑦
𝑖−1

)∗𝑛%, 𝑦
𝑖+1

−(𝑦
𝑖+1

−𝑦
𝑖
)∗𝑛%] as illustrated in Figure 2,

where 𝑦
𝑖−1

is the value of the last state and 𝑦
𝑖+1

is the value
of next state. We choose n from 10 to 50 in our experiment
because the previous 𝑖 will be falsely recognized as state 𝑖 − 1

or state 𝑖 + 1 if 𝑛 is larger than 50%. Thus, in this paper, we
set the noise in the percentage from 10% to 50%. The mean
prediction error results in Tables 2–6 show that our proposed
method BMChas better prediction quality thanDTMC. Both
BMC and DTMC have the smallest prediction error in one
step prediction, and the error magnifies as prediction steps
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Figure 6: Prediction accuracy when bin size is 20.
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Figure 7: Prediction accuracy when time unit is 1.

become larger. BMC has the most notable advantage over
DTMC in one step prediction and the advantage decreases as
step goes larger. Based on the above observation, we conclude
that our algorithm has better performance than DTMC in
all noise ranges and fits better when we forecast imminent
anomalies.

3.3. Ensemble Classification withData Stream. In this experi-
ment, we compare three ensemble classificationmethods and

Table 7: The four cases that prediction belongs to.

Cases Actually abnormal Actually normal

Predicted as normal True positive (TP)
(true warning)

False negative (FN)
(incorrectly
warning)

Predicted as abnormal False positive (FP)
(missing warning)

True negative (TN)
(correctly no
warning)

other classification algorithms, as decision tree and logistic
regression. For ease of comparisons, we first summarize
the assessment of criteria of different classification methods.
Suppose that a data stream has 𝑛 data chunks. We aim to
build a classifier to predict all instances’ label in the yet-to-
come chunk. To simulate different types of data stream, we
use the following approaches used in [21]: noise selection—
we randomly select 20% chunks from each dataset as noise
chunks and then arbitrarily assign each instance a class label
which does not equal its original class label, and finally we put
these noisy data chunks back into the data stream.

The performance of system anomaly prediction is eval-
uated by 3 criteria according to [20]: precision, recall, and
𝐹-measure. We use Table 7 to help explain the definitions
of these criteria, where state 0 denotes normal and state 1
denotes anomaly.

These three criteria are defined as

precision =
TP

TP + FP
,

recall = TP
TP + FN

,

𝐹-measure =
2 ∗ precision ∗ recall
precision + recall

.

(11)

We define precision as the proportion of successful
prediction for each predicted state in chunk 𝐷

𝑛+1
, recall as

the probability of each real state to be successfully predicted
in the chunk 𝐷

𝑛+1
, and 𝐹-measure as the harmonic mean of

precision and recall.
Following the above process 𝑛 − 1 times, we have the

average precision, recall, and 𝐹-measure. Ideally, a good
classifier for noise data stream should have high average
precision, high average recall, and high average 𝐹-measure.

Table 8 shows the quality of classification between dif-
ferent classifiers. In this experiment, we choose three basic
classifiers C4.5, Logistic, and Naı̈ve Bayes as our base clas-
sifiers. And we set the sliding window size as 1000 instances.
Column 2 to Column 4 in Table 8 are the classification results
that employ single classifier. So, we choose the 𝐷

1
to train

the model and test the model use 𝐷
2
then repeat the process

by training the model using 𝐷
2
and test on 𝐷

3
and so on.

HTree, HNB, and HLogist are three horizontal ensemble
classification methods which use both history and current
chunks to train the classifier model. So, we first use 𝐷

1
to

train the model and test on 𝐷
2
and then use both 𝐷

1
and 𝐷

2

to train the model and test on 𝐷
3
. Repeat this process until

the end of the data stream. VerEn is the vertical ensemble
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Table 8: Classification quality between different classifiers.

Tree NB Logistic HTree HNB HLogist VerEn AggEn
Precision 73.05% 72.36% 70.23% 70.04% 69.68% 69.69% 72.38% 73.25%
Recall 63.04% 69.48% 55.34% 72.18% 71.05% 51.93% 66.68% 75.08%
𝐹-Measure 61.21% 68.85% 58.33% 68.73% 68.10% 51.76% 65.41% 72.70%

Table 9: Anomaly prediction cost.

Time SAPredictor
Training time 452ms
Prediction time 205 us

Table 10: Prediction results for different methods.

Methods Precision Recall 𝐹-Measure
KNN + DTMC 72.7% 50.5% 57.3%
C4.5 + DTMC 74.9% 73.9% 74.4%
NB + DTMC 82.7% 26.6% 25.0%
TAN + DTMC 74.1% 80.0% 76.6%
SAPredictor 71.6% 84.6% 77.5%

model which uses all three base classifiers to train on the
current chunk and test the next chunk.The last column is the
aggregate ensemblewhich builds all base classifiers on history
and current chunks.

The result in Table 8 shows that AggEn performs the best
for all three measurements, the single Naı̈ve Bayes is the
second best, and VerEn is the third best. And HLogist and
Logistic are listed as the last.

3.4. Anomaly Prediction System Cost. We have evaluated the
overhead of our anomaly prediction model. Table 9 shows
the average training time and prediction time. The training
time includes the time of building BMCmodel and inducing
the anomaly classifier. The prediction time includes the time
to retrieve state transition probabilities and generate the
classification result for a single data record. These results are
collected over 100 experiment runs. We observe that the total
training time is within several hundreds of milliseconds, and
the prediction requires almost 200 microseconds. The above
overhead measurements show that our approach is practical
for performing online prediction of system anomalies.

3.5. SAPredictor Compared with Other Models. In this sec-
tion, we compare the prediction quality between SAPredictor
and DTMC combining other state-of-the-art classifiers in the
machine learning literature, that is, 𝑘-Nearest Neighbor, C4.5,
Näıve Bayes, and Tree-Augmented Näıve Bayesian (TAN)
Network.We compare two kinds of predictionmodels: one is
our SAPredictor which uses ensemble classification based on
predicted metrics from BMC, the other is DTMC combining
different single classifiersmentioned above.The performance
of system anomaly prediction is evaluated by the same criteria
used in Section 3.3: precision, recall, and 𝐹-measure.

Table 10 presents the experiment results of SAPredictor
and other classifiers integrating DTMC on the dataset of
PlanetLab. We notice that Näıve Bayes and KNN have the
worst performance: its recall scores are 26.6% and 50.5%,
respectively, and 𝐹-measure scores are 25.0% and 57.3%,
respectively. SAPredictor receives the highest scores in recall
and 𝐹-measure on this dataset, which are 84.6% and 77.5%.
Thus, our SAPredictor is much more accurate than the other
models.

4. Conclusions and Future Work

In this paper, we propose a novel system anomaly prediction
model SAPredictor: it has clear advantages over discrete-time
Markov chain which combines other classifiers. SAPredictor
consists of two parts, one is belief Markov chain method
which extends Evidential Markov chain by being capable of
dealing with stream data, and the other is aggregate ensemble
classification which identifies anomaly based on the value
predicted by BMC. To conclude, SAPredictor can handle data
stream from real application and systems with noise and
measurement error.

Our experiments show that the BMC model achieves
higher prediction accuracy than DTMC at any noise level
and is especially fit for imminent anomaly prediction. SAPre-
dictor achieves better system status prediction quality than
the other popular models such as DTMC + Näıve Bayes,
DTMC + C4.5, and DTMC + KNN. Our SAPredictor has
small overhead,whichmakes itmore practical for performing
online prediction of system anomalies.

In the future, we plan to test and make possible improve-
ment of SAPredictor in more real applications. In this paper,
we consider the system as either normal or abnormal, while
in reality the situation could have been more complicated.
SAPredictor also can be improved to distinguish each kind
of anomalies when making prediction and sending different
level of alert. We also plan to publish a tool of SAPredictor
and apply it to complex, distributed systems.
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