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Abstract

District heating networks are commonly addressed in the literature as one of the most effective solutions for decreasing the 
greenhouse gas emissions from the building sector. These systems require high investments which are returned through the heat
sales. Due to the changed climate conditions and building renovation policies, heat demand in the future could decrease, 
prolonging the investment return period. 
The main scope of this paper is to assess the feasibility of using the heat demand – outdoor temperature function for heat demand 
forecast. The district of Alvalade, located in Lisbon (Portugal), was used as a case study. The district is consisted of 665 
buildings that vary in both construction period and typology. Three weather scenarios (low, medium, high) and three district 
renovation scenarios were developed (shallow, intermediate, deep). To estimate the error, obtained heat demand values were 
compared with results from a dynamic heat demand model, previously developed and validated by the authors.
The results showed that when only weather change is considered, the margin of error could be acceptable for some applications
(the error in annual demand was lower than 20% for all weather scenarios considered). However, after introducing renovation 
scenarios, the error value increased up to 59.5% (depending on the weather and renovation scenarios combination considered). 
The value of slope coefficient increased on average within the range of 3.8% up to 8% per decade, that corresponds to the 
decrease in the number of heating hours of 22-139h during the heating season (depending on the combination of weather and 
renovation scenarios considered). On the other hand, function intercept increased for 7.8-12.7% per decade (depending on the 
coupled scenarios). The values suggested could be used to modify the function parameters for the scenarios considered, and 
improve the accuracy of heat demand estimations.
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Abstract 

Among water management policies, the preservation and the saving of energy demand in water supply and treatment systems play 
key roles. When focusing on energy, the customary metric to determine the performance of water supply systems is linked to the 
definition of component-based energy indicators. This approach is unfit to account for interactions occurring among system 
elements or between the system and its environment. On the other hand, the development of information technology has led to the 
availability of increasing large amount of data, typically gathered from distributed sensor networks in so-called smart grids. In this 
context, data intensive methodologies address the possibility of using complex network modeling approaches, and advocate the 
issues related to the interpretation and analysis of large amount of data produced by smart sensor networks. 
In this perspective, the present work aims to use data intensive techniques in the energy analysis of a water management network. 
The purpose is to provide new metrics for the energy rating of the system and to be able to provide insights into the dynamics of 
its operations. The study applies neural network as a tool to predict energy demand, when using flowrate and vibration data as 
predictor variables. 
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1. Introduction 

Water is a fundamental element for life but its scarcity is caused by a number of factors such as climate change, 
population growth, urbanization, agricultural and industrial activities. Global water withdrawals are projected to 
increase by 55% through 2050 due to growing demands from manufacturing (400%), thermal electricity generation 
(140%) and domestic use (130%). In addition, there is clear evidence that groundwater supplies are diminishing, with 
an estimated 20% of the world's aquifers [1]. Energy is required for two components of water provision: pumping and 
treatment (before and after use). In these applications, electricity costs are estimated to be responsible of a share 
ranging from 5% to 30% of the total operating cost of water and wastewater utilities, but in some developing countries 
such as India and Bangladesh, it is as high as 40% of the total operating cost [1]. It is therefore of the utmost importance 
to address the sustainability of water cycle from the viewpoint of both an efficient use of the resource, and the 
maintenance of high quality service standards. In this respect, water infrastructures require a profound transformation 
in terms of withdrawal, resilience and reliability. 

The Water Supply System (WSS) consists of a series of operations based on the distribution of drinkable or treated 
water to end-users, as well as the collection and treatment of wastewater and their restitution into the environment. 

In parallel to the preservation of water resources, the reduction of the energy flows involved in the process has to 
be taken into account also, by promoting the proper management of the energy use in the various operations required 
to guarantee the service. Water and energy flows represent the main resources involved in the WSS and as such they 
have to be preserved through sound management. 

Specific Energy Performance Indicators (EnPI) have been defined for WSSs [2-4], most of them proposed by the 
International Water Association (IWA) [5]. In this number, customarily used metrics are the pumping capacity 
utilization, normalized energy demand, reactive energy demand and energy recovery [5]. 

In the energy rating of WSS issues can be correlated to: i) the correct selection of EnPI to account for the 
dependence from the observed (and monitored) process, and ii) the impossibility to describe the system dynamics 
using a single energy indicator at component of system levels [6, 7]. 

The energy behavior of WSS depends upon a large number of variables, even external to the process itself [8, 9] 
(e.g. amount of water source, seasonality, rainfall, and other environmental parameters). A simple indicator is not able 
to catch all these dependences. The analysis of these interconnections allows to achieve full understanding of the 
energy behavior; for this reason data intensive techniques prove to be a valuable tool. 

Data intensive techniques consist of several disciplines, including statistics, data mining, machine learning, neural 
networks, social network analysis, signal processing, pattern recognition, optimization methods and visualization 
approaches. There are many specific techniques in these disciplines, and they overlap with each other [10]. Among 
these, Artificial Neural Network (ANN) has wide range of application coverage: pattern recognition, image analysis, 
adaptive control, and other areas. Research on neural-network-based control systems has received a significant 
consideration over the years. Many methods have been developed and successfully applied to real industrial processes 
[11, 12].  

A neural network based control architecture is used to estimate the behavior of unknown nonlinear systems and the 
controller is then formulated using the estimation results. The estimation uses the measured inputs, the formulation of 
the control signal is then determined from the neural-network model, which approximates the system which is 
nonlinear with respect to its input arguments [13]. In particular, in many engineering problems, such as process 
controllers employing model predictive algorithms, it is essential that at any given time the process outputs will be 
predicted many time-steps into the future without the availability of output measurements in the horizon of interest. 
For this reason, in forecasting and in fault monitoring and diagnosis applications, the availability of accurate empirical 
models with multi-step-ahead (MS) predictive aptitudes are desirable [14, 15].  

Among predictor design based on nonlinear model structures, Nonlinear Auto Regressive models with eXogenous 
input (NARX model) has proven to be successful in many applications [16], and more recently, has been proposed 
and extensively used in the identification and control of dynamic systems [17, 18]. 

This paper aims to define and apply new metrics for the energy rating of a water supply system. These metrics are 
defined employing data intensive tools, specifically the NARX neural network. NARX performs the forecasting of 
the energy demand providing a model for the energy behavior of the system. The deviation of the energy demand 
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from the model provides the metrics for the evaluation of energy performance. The proposed methodology was 
evaluated on a water supply system. 

2. Methodology 

2.1. NARX Neural Network 

The Nonlinear Auto Regressive model with eXogenous input (NARX model), therefore called NARX recurrent 
neural networks [19, 20], is a powerful class of models which proven to be well suited for modeling non-linear systems 
and time series [21].  

Two crucial qualities about NARX networks with gradient-descending learning gradient algorithm are: first, the 
learning is more effective than in other neural networks (the gradient descent is better in NARX), and second these 
networks converge much faster than other networks [19, 20]. The simulated results show that NARX networks are 
often much better at discovering long time dependences than conventional recurrent neural networks [21]. For 
instance, an explanation why output delays can help long-term dependences can be found by considering how 
gradients are calculated using the Back-Propagation-Through-Time (BPTT) algorithm [21].  

The network used in this study to optimize the objective function is the Recurrent MultiLayer Perceptron (RMLP) 
network. The employed training configuration is the series-parallel implementation; where the output regressor is 
made only by effective output values of the system (open loop). On the other hand, for testing and multi-step-ahead 
prediction phases, the parallel mode configuration was employed; in this instance the estimated outputs are feedbacks 
and include the output regression (closed loop). Fig. 1 provides a representation of closed (Fig. 1(a)) loop and open 
loop (Fig. 1(b)) network architecture. The network hidden layer has ten nodes and time delay equal to two was chosen.  

The equation describing the autoregressive model reads as: 
 

y(n+1) = f[y(n),...,y(n−dy +1); x(n),x(n−1),...,x(n−dx+1)], 
 

where x(n) and y(n) respectively represent the input and output of the model with discrete time step n, and dx ≥ 1 
and dy ≥ 1, dx≥ dy, are the input and output memory. 

In particular, the Bayesian Regularization algorithm was used as the training algorithm; it is a training network 
function that updates the weight and polarization values according to Levenberg-Marquardt optimization. It minimizes 
a combination of square and weights errors, and then determines the correct combination to produce a generalizing 
network. In this way, it is possible to get the increase in the accuracy of model parameters.  

 

Fig. 1. Representation of (a) closed loop and (b) open loop network architecture. 

3. Case Study 

The work interested a water supply system located in Prossedi, province of Latina (Italy) and providing drinkable 
water to five towns, i.e. Priverno, Pisterzo, Prossedi, Roccagorga-Maenza and Villa S. Stefano. The system consists 
of two pumps for each town line, one of them for backup. Fig.2 shows the water supply system layout, displaying the 
pump size for each district supplied. 

a b 
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Fig. 2 –Water supply system layout 

Data collected by the monitoring systems are: output pressure (bar), flowrate (m3), energy demand (kWh), pump 
casing vibration (dB), rotational frequency (rpm). Data provided from the supply system manager ranging from 13th 
January to 9th February. Data sample frequency is 15 minutes and the size of dataset is 1386 samples. The pump 
considered in the study provide the water to Priverno district with magnitude 160 kW. Among these the measures 
employed in the analysis are flowrate (m3) and vibration (dB). 

4. Results 

The neural network was trained on a time interval representative of stable pump operation. Then the trained network 
was used to predict the energy demand of the pump. Finally, the prediction, used as the pump energy base-line, was 
compared with real energy demand to provide an energy rating of the pump in a view to provide diagnostics. 

Figure 3 shows the results of the train-and-predict network phases. The training and testing was performed in the 
range 13th January - 8th February and the prediction on energy demand extend to a day interval, i.e. 9th February. Data 
employed during the network training and testing are water flowrate, casing vibration and energy demand. Then during 
the network validation or prediction phase, the network input included only mechanical information such as flowrate 
and vibration level. 

Figure 3(a) compares real energy demand to that predicted by network. Blue curve is the energy demand provided 
to train and test the network (original target), yellow and red curves respectively represent the expected output and 
the network prediction. Fig. 3(b) provides the percentage error of prediction, computed trough the difference between 
prediction and expectation. Red and blue curves represent the training and testing percentage error, both with the same 
order of magnitude. 

The network testing results show the ability of the network to predict quite well one-day time interval with a 
maximum error of 0.16 % on energy demand. 
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Fig. 3 – Network testing phase: (a) comparison between real energy demand and  predicted by network; (b) percentage error of prediction. 

The network training and testing was performed on a time interval related to a stable running of the pump ranging 
from 13th to 24th January. Then it was validated on 25th January – 9th February. Fig. 4 shows results related to pump 
energy modeling and rating. Fig. 4(a) compares the real energy demand to that predicted by the network. Blue curve 
is the energy demand provided to train and test the network (original target), yellow and red curves represent 
respectively the expected output and the network prediction. Here we observe deviations between prediction and 
expectation; these deviations are used to rating the energy behavior of the pump. Fig. 4(b) provides the percentage 
error of prediction, computed trough the difference between prediction and expectation. Red and blue curve represent 
the training and testing percentage error on energy demand. We observe that during training the percentage error is 
holding steady, instead during validation interval change on time increasing and decreasing. Employing the network 
prediction as energy model, deviations of real consumption from the model are seen as performance improvement or 
worsening; providing the energy rating of the system. More specifically, positive and negative values of percentage 
error represent respectively the worsening and the improvement of energy performance. 

Fig. 5 compares the percentage error (Fig. 5 (a)) with the energy demand and flowrate normalized graphs (Fig. 
5(b)). Both the percentage error and acquired data graphs were mediated, with the aim to mitigate the sharp fluctuation. 
Green dashed and dotted rectangle represent respectively high and low energy performance. Observing Fig. 5 we 
observe the improvement of energy performance when the normalized energy decreases compared to flowrate and 
vice-versa its worsening when normalized energy increases compared to flowrate. In conclusion, Figure (5) 
graphically confirms the ability of percentage error to provide an energy rating of the system.  

Fig. 4 – Network application phase: (a) Comparison between real energy demand predicted by network; (b) percentage error of prediction 

a 

b 

a 

b 
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Fig. 5 - (a) percentage error; (b) energy demand and flowrate normalized graphs 

The selection of predictor variables (flowrate, and vibration) was dictated by the need of the installations operator 
to get indications about energy performance from very little monitored variables. On the other hand, the selected 
quantities are related both to the process (flowrate) and to the pump working condition (vibration); and are usually 
monitored in water supply systems. 

To demonstrate the right choice of variables, from the point of view of model construction and consequently for 
the evaluation of energy efficiency, the percentage error of network prediction was checked against another network 
prediction trained with pressure and flowrate (Fig. 6). 

Percentage error in Fig. 6 (a) results very similar to percentage error in Fig. 6 (b), proving the validity of the model 
constructed on flowrate and vibration as training variables. 

Fig. 6: (a) percentage error of network trained with flowrate and vibration;(b) percentage error of network trained with flowrate and pressure 
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The work aimed to define new metrics for the energy rating of a water supply system. The purpose is to define a 
methodology able to understand the dynamics within the system and to provide a metrics for the evaluation of the 
energy performance. On the other hand, the requirement to investigate the correlation among different monitored data, 
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for its ability in the forecasting of dynamic system. The methodology was applied to the evaluation of energy 
efficiency of a pump that is part of a water supply system located in Latina (Italy). 

In this work, NARX network was employed to provide a model of the energy use of the system.  
At first the ability of the network prediction was tested on one day. The network testing results show the ability of 

the network to satisfying predict one-day time interval with a maximum error of 0.16 % on energy demand. The 
network was trained on a time interval related to a stable running of the pump. Employing the network prediction as 
energy model, deviations of real consumption from the model are seen as performance improvement or worsening; 
providing the energy rating of the system. This value was compared with the energy demand and flowrate normalized 
graphs which visually confirm the ability of percentage error to provide an energy rating of the system. 
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for its ability in the forecasting of dynamic system. The methodology was applied to the evaluation of energy 
efficiency of a pump that is part of a water supply system located in Latina (Italy). 

In this work, NARX network was employed to provide a model of the energy use of the system.  
At first the ability of the network prediction was tested on one day. The network testing results show the ability of 

the network to satisfying predict one-day time interval with a maximum error of 0.16 % on energy demand. The 
network was trained on a time interval related to a stable running of the pump. Employing the network prediction as 
energy model, deviations of real consumption from the model are seen as performance improvement or worsening; 
providing the energy rating of the system. This value was compared with the energy demand and flowrate normalized 
graphs which visually confirm the ability of percentage error to provide an energy rating of the system. 
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