7,133 research outputs found

    Smart handoff technique for internet of vehicles communication using dynamic edge-backup node

    Get PDF
    ยฉ 2020 The Authors. Published by MDPI. This is an open access article available under a Creative Commons licence. The published version can be accessed at the following link on the publisherโ€™s website: https://doi.org/10.3390/electronics9030524A vehicular adhoc network (VANET) recently emerged in the the Internet of Vehicles (IoV); it involves the computational processing of moving vehicles. Nowadays, IoV has turned into an interesting field of research as vehicles can be equipped with processors, sensors, and communication devices. IoV gives rise to handoff, which involves changing the connection points during the online communication session. This presents a major challenge for which many standardized solutions are recommended. Although there are various proposed techniques and methods to support seamless handover procedure in IoV, there are still some open research issues, such as unavoidable packet loss rate and latency. On the other hand, the emerged concept of edge mobile computing has gained crucial attention by researchers that could help in reducing computational complexities and decreasing communication delay. Hence, this paper specifically studies the handoff challenges in cluster based handoff using new concept of dynamic edge-backup node. The outcomes are evaluated and contrasted with the network mobility method, our proposed technique, and other cluster-based technologies. The results show that coherence in communication during the handoff method can be upgraded, enhanced, and improved utilizing the proposed technique.Published onlin

    A Review on Energy Consumption Optimization Techniques in IoT Based Smart Building Environments

    Get PDF
    In recent years, due to the unnecessary wastage of electrical energy in residential buildings, the requirement of energy optimization and user comfort has gained vital importance. In the literature, various techniques have been proposed addressing the energy optimization problem. The goal of each technique was to maintain a balance between user comfort and energy requirements such that the user can achieve the desired comfort level with the minimum amount of energy consumption. Researchers have addressed the issue with the help of different optimization algorithms and variations in the parameters to reduce energy consumption. To the best of our knowledge, this problem is not solved yet due to its challenging nature. The gap in the literature is due to the advancements in the technology and drawbacks of the optimization algorithms and the introduction of different new optimization algorithms. Further, many newly proposed optimization algorithms which have produced better accuracy on the benchmark instances but have not been applied yet for the optimization of energy consumption in smart homes. In this paper, we have carried out a detailed literature review of the techniques used for the optimization of energy consumption and scheduling in smart homes. The detailed discussion has been carried out on different factors contributing towards thermal comfort, visual comfort, and air quality comfort. We have also reviewed the fog and edge computing techniques used in smart homes

    Application and Control Aware Communication Strategies for Transportation and Energy Cyber-Physical Systems

    Get PDF
    Cyber--Physical Systems (CPSs) are a generation of engineered systems in which computing, communication, and control components are tightly integrated. Some important application domains of CPS are transportation, energy, and medical systems. The dynamics of CPSs are complex, involving the stochastic nature of communication systems, discrete dynamics of computing systems, and continuous dynamics of control systems. The existence of communication between and among controllers of physical processes is one of the basic characteristics of CPSs. Under this situation, some fundamental questions are: 1) How does the network behavior (communication delay, packet loss, etc.) affect the stability of the system? 2) Under what conditions is a complex system stabilizable?;In cases where communication is a component of a control system, scalability of the system becomes a concern. Therefore, one of the first issues to consider is how information about a physical process should be communicated. For example, the timing for sampling and communication is one issue. The traditional approach is to sample the physical process periodically or at predetermined times. An alternative is to sample it when specific events occur. Event-based sampling requires continuous monitoring of the system to decide a sample needs to be communicated. The main contributions of this dissertation in energy cyber-physical system domain are designing and modeling of event-based (on-demand) communication mechanisms. We show that in the problem of tracking a dynamical system over a network, if message generation and communication have correlation with estimation error, the same performance as the periodic sampling and communication method can be reached using a significantly lower rate of data.;For more complex CPSs such as vehicle safety systems, additional considerations for the communication component are needed. Communication strategies that enable robust situational awareness are critical for the design of CPSs, in particular for transportation systems. In this dissertation, we utilize the recently introduced concept of model-based communication and propose a new communication strategy to address this need. Our approach to model behavior of remote vehicles mathematically is to describe the small-scale structure of the remote vehicle movement (e.g. braking, accelerating) by a set of dynamic models and represent the large-scale structure (e.g. free following, turning) by coupling these dynamic models together into a Markov chain. Assuming model-based communication approach, a novel stochastic model predictive method is proposed to achieve cruise control goals and investigate the effect of new methodology.;To evaluate the accuracy and robustness of a situational awareness methodology, it is essential to study the mutual effect of the components of a situational awareness subsystem, and their impact on the accuracy of situational awareness. The main components are estimation and networking processes. One possible approach in this task is to produce models that provide a clear view into the dynamics of these two components. These models should integrate continuous physical dynamics, expressed with ordinary differential equations, with the discrete behaviors of communication, expressed with finite automata or Markov chain. In this dissertation, a hybrid automata model is proposed to combine and model both networking and estimation components in a single framework and investigate their interactions.;In summary, contributions of this dissertation lie in designing and evaluating methods that utilize knowledge of the physical element of CPSs to optimize the behavior of communication subsystems. Employment of such methods yields significant overall system performance improvement without incurring additional communication deployment costs
    • โ€ฆ
    corecore