2,656 research outputs found

    Smart Finite State Devices: A Modeling Framework for Demand Response Technologies

    Get PDF
    We introduce and analyze Markov Decision Process (MDP) machines to model individual devices which are expected to participate in future demand-response markets on distribution grids. We differentiate devices into the following four types: (a) optional loads that can be shed, e.g. light dimming; (b) deferrable loads that can be delayed, e.g. dishwashers; (c) controllable loads with inertia, e.g. thermostatically-controlled loads, whose task is to maintain an auxiliary characteristic (temperature) within pre-defined margins; and (d) storage devices that can alternate between charging and generating. Our analysis of the devices seeks to find their optimal price-taking control strategy under a given stochastic model of the distribution market.Comment: 8 pages, 8 figures, submitted IEEE CDC 201

    Carbon Free Boston: Transportation Technical Report

    Get PDF
    Part of a series of reports that includes: Carbon Free Boston: Summary Report; Carbon Free Boston: Social Equity Report; Carbon Free Boston: Technical Summary; Carbon Free Boston: Buildings Technical Report; Carbon Free Boston: Waste Technical Report; Carbon Free Boston: Energy Technical Report; Carbon Free Boston: Offsets Technical ReportOVERVIEW: Transportation connects Boston’s workers, residents and tourists to their livelihoods, health care, education, recreation, culture, and other aspects of life quality. In cities, transit access is a critical factor determining upward mobility. Yet many urban transportation systems, including Boston’s, underserve some populations along one or more of those dimensions. Boston has the opportunity and means to expand mobility access to all residents, and at the same time reduce GHG emissions from transportation. This requires the transformation of the automobile-centric system that is fueled predominantly by gasoline and diesel fuel. The near elimination of fossil fuels—combined with more transit, walking, and biking—will curtail air pollution and crashes, and dramatically reduce the public health impact of transportation. The City embarks on this transition from a position of strength. Boston is consistently ranked as one of the most walkable and bikeable cities in the nation, and one in three commuters already take public transportation. There are three general strategies to reaching a carbon-neutral transportation system: • Shift trips out of automobiles to transit, biking, and walking;1 • Reduce automobile trips via land use planning that encourages denser development and affordable housing in transit-rich neighborhoods; • Shift most automobiles, trucks, buses, and trains to zero-GHG electricity. Even with Boston’s strong transit foundation, a carbon-neutral transportation system requires a wholesale change in Boston’s transportation culture. Success depends on the intelligent adoption of new technologies, influencing behavior with strong, equitable, and clearly articulated planning and investment, and effective collaboration with state and regional partners.Published versio

    Smart Procurement of Naturally Generated Energy (SPONGE) for Plug-in Hybrid Electric Buses

    Get PDF
    We discuss a recently introduced ECO-driving concept known as SPONGE in the context of Plug-in Hybrid Electric Buses (PHEB)'s.Examples are given to illustrate the benefits of this approach to ECO-driving. Finally, distributed algorithms to realise SPONGE are discussed, paying attention to the privacy implications of the underlying optimisation problems.Comment: This paper is recently submitted to the IEEE Transactions on Automation Science and Engineerin

    Learning Price-Elasticity of Smart Consumers in Power Distribution Systems

    Full text link
    Demand Response is an emerging technology which will transform the power grid of tomorrow. It is revolutionary, not only because it will enable peak load shaving and will add resources to manage large distribution systems, but mainly because it will tap into an almost unexplored and extremely powerful pool of resources comprised of many small individual consumers on distribution grids. However, to utilize these resources effectively, the methods used to engage these resources must yield accurate and reliable control. A diversity of methods have been proposed to engage these new resources. As opposed to direct load control, many methods rely on consumers and/or loads responding to exogenous signals, typically in the form of energy pricing, originating from the utility or system operator. Here, we propose an open loop communication-lite method for estimating the price elasticity of many customers comprising a distribution system. We utilize a sparse linear regression method that relies on operator-controlled, inhomogeneous minor price variations, which will be fair to all the consumers. Our numerical experiments show that reliable estimation of individual and thus aggregated instantaneous elasticities is possible. We describe the limits of the reliable reconstruction as functions of the three key parameters of the system: (i) ratio of the number of communication slots (time units) per number of engaged consumers; (ii) level of sparsity (in consumer response); and (iii) signal-to-noise ratio.Comment: 6 pages, 5 figures, IEEE SmartGridComm 201

    On the Role of Renewable Energy Policies and Electric Vehicle Deployment Incentives for a Greener Sector Coupling

    Get PDF
    Various incentives are introduced for the expansion of electric vehicle fleets and electricity generation from renewable energy resources. Although many researchers studied the effect of these policies on the related sector, there is no study investigating the indirect effect of renewable energy incentives on the deployment of electric vehicles or the indirect effect of electric vehicle adoption policies on the long-term integration of renewable energy resources. The main contribution of this paper is to analyze the impact of the specific incentives on both deployment of electric vehicles in the transportation system and investment in capacity generation in the electricity market. For this purpose, a new framework was designed to analyze the effect of policies on the electric vehicle deployment and development of DC charging stations based on the system dynamics approach. Then, this framework was combined with the existing dynamic models of the electricity market to study the interaction and behavior of both coupled systems from the policymakers' perspective. The effect of policies implementation was interpreted in a mathematical framework and the Net Present Value method was used for assessing the investment in charging infrastructures. Simulation results of a case study in the United States and sensitivity analysis illustrate that increasing the wind capacity incentives accelerated the electrification of the transportation system and increasing the incentives for electrification of transportation system influences wind capacity positively. Moreover, the sensitivity of the electric vehicle adoption to gas price is more than the sensitivity of the wind capacity penetration to gas price

    A Bi-Layer Multi-Objective Techno-Economical Optimization Model for Optimal Integration of Distributed Energy Resources into Smart/Micro Grids

    Full text link
    The energy management system is executed in microgrids for optimal integration of distributed energy resources (DERs) into the power distribution grids. To this end, various strategies have been more focused on cost reduction, whereas effectively both economic and technical indices/factors have to be considered simultaneously. Therefore, in this paper, a two-layer optimization model is proposed to minimize the operation costs, voltage fluctuations, and power losses of smart microgrids. In the outer-layer, the size and capacity of DERs including renewable energy sources (RES), electric vehicles (EV) charging stations and energy storage systems (ESS), are obtained simultaneously. The inner-layer corresponds to the scheduled operation of EVs and ESSs using an integrated coordination model (ICM). The ICM is a fuzzy interface that has been adopted to address the multi-objectivity of the cost function developed based on hourly demand response, state of charges of EVs and ESS, and electricity price. Demand response is implemented in the ICM to investigate the effect of time-of-use electricity prices on optimal energy management. To solve the optimization problem and load-flow equations, hybrid genetic algorithm (GA)-particle swarm optimization (PSO) and backward-forward sweep algorithms are deployed, respectively. One-day simulation results confirm that the proposed model can reduce the power loss, voltage fluctuations and electricity supply cost by 51%, 40.77%, and 55.21%, respectively, which can considerably improve power system stability and energy efficiency.</jats:p

    Dynamic electricity pricing for electric vehicles using stochastic programming

    Get PDF
    Electric Vehicles (EVs) are an important source of uncertainty, due to their variable demand, departure time and location. In smart grids, the electricity demand can be controlled via Demand Response (DR) programs. Smart charging and vehicle-to-grid seem highly promising methods for EVs control. However, high capital costs remain a barrier to implementation. Meanwhile, incentive and price-based schemes that do not require high level of control can be implemented to influence the EVs’ demand. Having effective tools to deal with the increasing level of uncertainty is increasingly important for players, such as energy aggregators. This paper formulates a stochastic model for day-ahead energy resource scheduling, integrated with the dynamic electricity pricing for EVs, to address the challenges brought by the demand and renewable sources uncertainty. The two-stage stochastic programming approach is used to obtain the optimal electricity pricing for EVs. A realistic case study projected for 2030 is presented based on Zaragoza network. The results demonstrate that it is more effective than the deterministic model and that the optimal pricing is preferable. This study indicates that adequate DR schemes like the proposed one are promising to increase the customers’ satisfaction in addition to improve the profitability of the energy aggregation business.info:eu-repo/semantics/acceptedVersio
    • …
    corecore