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Smart Procurement of Naturally Generated Energy
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Abstract—We discuss a recently introduced ECO-driving con-
cept known as SPONGE in the context of Plug-in Hybrid Electric
Buses (PHEB)’s. Examples are given to illustrate the benefits of
this approach to ECO-driving. Finally, distributed algorithms to
realise SPONGE are discussed, paying attention to the privacy
implications of the underlying optimisation problems.

Note to Practitioners: Abstract—In this paper we present a
new idea for ECO-driving for buses. It is an IoT concept -
that instead of connecting devices in space, connects devices in
time via forecasting engines. Basically, a bus uses knowledge
of the available energy at the next charging step, to optimise
its performance beforehand. The system can be implemented
using available (free) forecasting engines, and existing distributed
optimisation tools. A sample implementation is described using
a Toyota plug-in Prius (as a proxy for a hybrid bus). Apart from
the forecasting and optimisation analytics, the only additional
work needed was the development of an interface unit to control
EV mode of the vehicle, and the development of a smart-phone
app. Future work will investigate impacts of our approach on
the grid, integration of the ideas into the hybrid drive cycle, and
using driver behaviour as an input into the design of the utility
functions.

Index Terms—Primary Topics: Number 8, Number 9; Sec-
ondary Topic Keywords: Distributed Systems, Control Theory

I. INTRODUCTION

WE discuss a recently introduced holistic ECO-driving
concept known as SPONGE (Smart Procurement of

Naturally Generated Energy) in the context of Plug-in Hybrid
Electric Buses (PHEB)’s. PHEB’s are increasingly seen as an
effective tool in combating air pollution in our cities, and as
a tool for reducing our cities reliance on fossil fuels (thereby
reducing greenhouse gas emissions) [1], [2]1. Consequently,
the design and operation of such buses has been the subject of
much research interest. Hitherto, significant research effort has
focused on improving the fuel economy while guaranteeing
that both the engine and the electric machine work in the high-
efficiency area; typically, by taking into account knowledge of
both bus routes and passenger loadings in a predictive manner.
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Selected examples of work in this direction can be found in
[3]–[5].

Our objective in this paper is to extend this line of inquiry
further. Our basic setting is to consider a bus operator that
has access to a fixed amount of cheap renewable energy on
a daily basis. For example, some operators may own solar
farms or have access to wind generation. It makes sense to
use this (inexpensive) free energy before consuming electrical
energy that is bought from the grid, and in situations where
there is an oversubscription for this free energy, the operator
then has a choice as to how this energy is distributed to each
bus. For example, some drivers may be more efficient than
others. Thus, it makes eminent economic sense, to distribute
this free energy to reduce the impact of less efficient drivers
in optimising the hybrid engine cycle, while at the same time
ensuring that sufficient energy is consumed to make room for
every unit of free energy that arrives the next time the buses
recharge. Specifically, SPONGE for buses operates as follows.
A. We introduce the forecast of generation of energy from

renewable resources on a day ahead basis as a further
variable to influence the energy management system for
the bus operator.

B. We use this forecast to prioritise the manner in which
individual buses choose their driving mode.

C. We do this by prioritising the utilisation of energy from
renewable sources over other resources, and by taking
account of the fact that some drivers/routes are more
energy efficient than others.

Prioritising energy from renewable sources in this manner
introduces a number of benefits for the bus operator and
society.
• The use of energy from renewable sources (e.g., wind

turbines, dynamic water power, or solar power) achieves
environmental health benefits with respect to the use of
the “power grid average” electricity [6].

• Financial benefits for the bus operator.
• Depleting PHEBs’ batteries of a pre-specified quantity

of energy allows better grid-demand balancing. That
is, the energy provider knows in advance how much
energy will be required by PHEBs, when connected for
charging. This makes the electrical load of PHEBs to
be fully predictable and dispatchable, thus mitigating the
burden of the power grid to accommodate a not-known-
in-advance electrical load.

Note that the proposed energy management approach
closely resembles the widely discussed practice of demand
side management, where electricity customers shift their elec-
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trical loads taking into account the expected availability of
energy from renewable sources (e.g., solar panels on the roofs
of their houses). In fact, in this paper we are considering
the possibility that buses orchestrate the consumption of their
batteries by considering the amount of energy that will be
available from renewable sources when recharging.

A. Contribution

This paper extends previous work of some of the authors
in [7] for the case of electric cars. While the seminal idea
of matching energy from renewable sources with space in
the battery of the EVs remains the same, the case of PHEBs
substantially differs from the case of PHEVs for a number
of reasons: (i) in the case of buses it is possible to know the
route in advance, thus, in contrast to [7] such knowledge is
considered in the optimisation formulation; (ii) in the case
of buses, it makes perfect sense to assume that buses of the
same company will collaborate to achieve a common goal
(e.g., the minimisation of the electric energy bought by the
company to supply the electric public transport services); (iii)
another difference is however that the optimisation problem
is here solved off-line in a batch fashion, taking advantage
of the available information (i.e., power generation forecasts
and the knowledge of the daily routes). On the other hand,
the optimisation problem must be solved in real-time in
the case of single cars, given that the time of use and the
daily routes are not known in advance. Accordingly, speed
of convergence is of paramount importance when choosing
an algorithm to be applied in real-time, while here we are
more interested in other aspects that include communication
requirements, agent actuation, and privacy preservation. With
this latter aspect in mind, our final contribution is to give
a brief comparison of two competitive optimisation algorithms.

The paper is structured as follows. The SPONGE problem
formulation is presented in Section II. The discussion of
the proposed Additive Increase Multiplicative decrease
(AIMD) optimisation algorithm is presented in Section III.
The experimental results are presented in Section IV. The
practical implementation of the proposed SPONGE system is
briefly discussed in Section V. Finally, a brief conclusion is
presented in Section VI.

II. SPONGE PROBLEM FORMULATION

A. Assumptions

The starting point in our work is to consider the actuation
possibilities offered by a hybrid powertrain, namely the ability
to switch in and out of EV mode, as a means not only to
improve the efficiency of an individual vehicle, but also to
serve the needs of other stakeholders. This view is consistent
with other recent works where the engine management logic
is used to help other stakeholders - such as pedestrians by
keeping local air quality clean, and energy suppliers by helping
to balance the needs of the grid and the transportation network
[8]. In particular, it is with this latter view in mind that the
paper is written.

Let N = {1, 2, ..., N} denote the set of N PHEBs par-
ticipating to the SPONGE programme. We shall make the
following assumptions:

• We assume that after a number of trips along their
(different) routes, the N PHEBs stop for charging at the
bus station. For instance, we can assume that the PHEBs
will not drive from 11pm to 6am, and they will be charged
in this time frame;

• We also assume that a 24-hour ahead forecast of energy
from the renewable energy sources available to the opera-
tor will be available as well (e.g., a forecast of how much
energy will be generated by the wind plants connected
with the charging station at night time). We denote this
amount of available energy by Eav;

• Early in the morning, before being dispatched along
their routes, the buses will compute how the energy Eav
should be optimally shared among themselves during the
day (i.e., in terms of energy consumption of their own
batteries);

• In order to compute the optimal allocations of energy,
we shall assume that each PHEB is equipped with a
device to transmit messages to the central infrastructure
via Vehicle-to-Infrastructure (V2I) technology;

• The central infrastructure has the ability to broadcast
messages to the whole network of PHEBs using some
Infrastructure-to-Vehicles (I2V) technology.

Note that in our set-up we shall not require vehicles to
exchange information among themselves, and thus, we shall
not require PHEBs to be equipped with Vehicle-to-Vehicle
(V2V) communication devices. A schematic diagram of the
above SPONGE scenario is illustrated in Fig. 1.

Fig. 1: A schematic diagram of the SPONGE programme.

B. Optimisation problem

In this context, we denote by di the energy consumption
by the i′th bus during the day. Then we are interested in
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computing the solution of the following optimisation:
max

d1,d2,...,dN

∑
i∈N

fi (di)

s.t.
∑
i∈N

di = Eav

. (1)

In the optimisation problem (1), the terms di can be interpreted
as a “budget” of energy that is allocated to the i′th bus in order
to maximise a utility function of interest, such that the sum of
the energy budgets allocated to all the buses matches Eav as in
the SPONGE spirit. Although in principle the utility function
fi (di) may be chosen in an arbitrary fashion, to represent any
utility, in this work we shall explore the particular case where
one is interested in the utility of CO2 emissions savings fi (di)
as achieved by each bus. Clearly, each fi (di) is an increasing
function of di as no CO2 emissions are saved when the bus
travels all the time in ICE mode, while no pollution occurs
when all the vehicles travel in electric mode all the time.

Remark 1 - Swicthing mode: The assumption that a hybrid
bus can travel in pure ICE or pure electric mode is realistic
(e.g., for parallel hybrids) but it is not strictly required.
In fact, our work can be generalised to include switching
between two (or even more) arbitrary driving modes (e.g.,
ECO-drive and sportive mode) that give rise to different energy
consumption patterns when undergoing the same driving cycle.
More specifically, for ease of exposition, the next section
describes how the utility functions fi are constructed based
on the assumption of two driving modes only.

Remark 2 - Exploiting hybrid vehicles to provide ancillary
services: Note that traditionally, the principal concern of
the hybrid architecture is the fuel efficiency of the vehicle.
However, the hybrid architecture allows cities to move from
a sole focus of optimising the performance of the bus (with
the driver, or the bus company, as the stakeholder) to opti-
mising the performance of the vehicle with respect to other
stakeholders (pedestrians) etc. See [8] for examples of work
in this direction. Our present strategy can be viewed as a mix
of these two approaches, where energy budgets are used to
optimise bus performance, but where the vehicle can choose
where and when to deploy the pure EV mode with a view to
maximising some social utility.

C. Construction of the utility functions

Our main assumption in constructing the utility functions is
that a forecast of the expected energy consumption and CO2

emissions (perhaps with some other higher order statistics) is
available for each route, for each of the two driving modes.
Such a forecast is itself a function of the time of the day and
the specific day of the week. The forecasts can be easily made
by measuring such quantities directly on-board for each trip of
each bus-line in order to build a data-base of data, and post-
processing the recorded data (e.g., averaging measurements to
remove stochastic effects). In fact, while instantaneous energy
consumption or emissions can not be accurately predicted
in advance, it is reasonable to assume that the consumption

patterns associated with a given bus trip at a given time on a
given day is predictable to some degree; i.e., similar bus trips
require on average a similar aggregate amount of energy (or
generate comparable quantities of CO2 emissions).

Fig. 2: Road network of Dublin City, Ireland, imported from
OpenStreetMap, used in our simulations. The trajectory in the
map illustrates one bus trip starting from a bus-stop located
in the south-west of Dublin city to another situated in Dublin
city centre.

By “trip” we intend a single journey from a bus terminus to
the other terminus, as illustrated in Fig. 2. Then it is assumed
that the next trip will correspond to the return journey, and
so on for the remainder of the day. For the purpose of this
paper, we employ simulation measurements rather than real
measurements to obtain the energy consumption and emission
averages, by adopting the popular mobility simulator SUMO
and simulating the routes of 16 PHEBs in Dublin city, Ireland.
More details about the mobility platform and the simulation
set-up will be provided in Section IV-A. The final utility
functions are shown in Fig. 3 as a function of the percentage
of the use of the electrical engine for each bus.

The utility functions fi(di) depicted in Fig. 3 show how
much CO2 has been saved by the i′th bus, provided that the
bus is allowed to travel in EV mode a given percentage of its
route. In particular, it can be noted that the utility functions are
non-decreasing functions (i.e., the more one PHEB is allowed
to travel in EV mode the more CO2 is saved) and that some
bus-lines generate more CO2 than others (this information can
be retrieved by observing how much pollution can be saved by
each bus-line if the bus travels all the time in electric mode).
In order to derive the mathematical formulation of the utility
functions, let us denote by eij and pij the expected energy
consumption by the i′th bus during its j′th trip when travelling
in EV mode, and the expected pollution by the i′th bus during
its j′th trip when travelling in ICE mode, respectively. Then
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Fig. 3: Utility functions of 16 PHEBs in Dublin city (con-
sidered outside the greenzone). Note that some buses pollute
more than others (and thus, have a greater potential in terms of
CO2 savings) depending on the characteristics of their routes
(e.g., speed limits, traffic conditions, topography of the route).
The “.” points are fitted using cubic splines. For the trips
passing by the city centre, we here show the utility functions
corresponding to the part of the trip outside the green zone
(for which the driving mode has to be decided).

we have that 

fi(di) = max
γij

∑
j∈Ti

γij · pij

s.t.
∑
j∈Ti

γij · eij = di

0 ≤ γij ≤ 1,∀j ∈ Ti

γij · eij ≥ eij

(2)

where γij is the fraction of time that the i′th bus spends in
EV mode during the j′th trip and Ti is the set of daily trips
made by the i′th bus. The last equation of (2) takes into
account that some trips need to be partly travelled in EV
mode due to possible strict laws. In fact, in some cities it is
mandatory to travel in EV mode to access some areas denoted
as “green zones” (e.g., in the proximity of the city centre).
See for instance the case of Germany2. Mathematically, this
corresponds to assuming that the energy allocated for each
trip has to exceed a lower bound eij that corresponds to the
(expected) energy required to travel in EV mode in the green
zone. In our work, we assumed that the green zone can be
exemplified with a circular area in the city centre, as shown
in Fig. 2.

Due to the fact that all bus routes are fixed and known
a priori, and given a fixed di, then (2) is a linear program
with a single budget constraint (i.e., a continuous linear
knapsack problem [9]) and thus the optimal electric energy
allocation can be easily computed by sorting the trips by

2http://gis.uba.de/website/umweltzonen/umweltzonen.php

decreasing order of the values of pij and then activating
the electric energy according to the sorted order. The utility
function of each PHEB can thus be computed off-line.
Particularly, for each bus i, we vary di between 1 and 100 in
steps of 1 and compute the optimal fi(di). We note that (2)
is a parametric linear program with parameter di, and thus
fi(di) for all i ∈ N is a piece-wise concave function [10],
and as such possibly non-differentiable. However, since the
derivative f ′i(di) is required by the optimisation algorithm
that is proposed next, fi(di) for each bus i is approximated
using cubic spline functions. The resulting (normalised) utility
functions for the 16 PHEBs that are used in the illustrative
example of this paper are shown in Fig. 3. Note that some
utility functions, corresponding to the specific buses passing
by the city centre, are not defined for small values of di, as
some minimum budget was required anyway to travel in EV
mode in the green zones.

Remark 3 - Feasibility: Problem (2) may not be feasible
if the overall available energy is smaller than the electrical
energy required to travel in the green zones. Accordingly, in
the following we shall assume that Eav ≥

∑
i∈N

∑
j∈Ti eij .

Alternatively, one could relax the green zones hard constraints,
and compute a best-effort solution (i.e., the buses try to travel
in EV mode in the green zones as much as possible, given the
scarce level of their batteries).

III. ALGORITHMS AND OPTIMAL SOLUTION

The optimisation problems (1) and (2) can in principle be
easily solved in a centralised way adopting simple Linear
Programming (LP) techniques. In order to do so, it is required
that all the utility functions are known to the central agent.
In this work however, we are interested in solving equations
(1) and (2) in a distributed manner, to avoid having to reveal
the utility functions to the central agent. Such a possibility
has a number of advantages over the centralised one. In
particular, this allows us to handle the privacy preservation
and agent actuation aspects, as discussed in the introduction.
More specifically, the utility functions (i.e., average energy
consumption and pollution along a trip) depend on some
publicly known information (e.g., road characteristics and
traffic) and on other more private information (e.g., number
of passengers on board, driving style of the driver) that may
not be wanted to be revealed. Also, it could happen that
a single energy provider serves different bus companies,
which obviously may not be interested in sharing such data.
Accordingly, in this paper we are interested in a distributed
solution that is more flexible in handling a larger number of
possible scenarios.

In principle, many different methods may be used to
solve the optimisation problem (1) that arises in our work (for
instance ADMM-like algorithms [11]). ADMM (Alternating
Direction Method of Multipliers) is a popular optimisation
algorithm, that has been recently proposed as an evolution
of other well-known optimisation algorithms, like the dual
ascent and the method of multipliers. As an alternative
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to ADMM-like algorithms, our choice here is to adopt
an AIMD-like algorithm [12] to solve the problem in a
distributed fashion. Such a choice is motivated by many
reasons:
• Low-communication requirements: Although we

have presented here a simple case study with a small
number of buses, the same programme can be easily
generalised to include hundreds of buses. Also, the
batch optimisation formulation might be solved in
real-time to account for non fully-predictable aspects
(for example to respond to traffic peaks or weather
forecast updates). In this context, it is convenient
to consider the communication cost of solving the
optimisation algorithm. AIMD based optimisation can
be solved using only intermittent binary feedback and
can thus, unlike many other distributed optimisation
techniques, be solved without the need to broadcast of
the Lagrange multipliers in a pseudo-continuous manner.

• Privacy-preservation requirements: In our application,
the utility functions fi(di) for all i ∈ N potentially
reveal sensitive private information. For example, these
functions contain historical information of how good a
particular driver is on a given route. This information
is potentially very useful for an employer and could
potentially be used in a nefarious manner. In addition,
in unionised environments, revealing these functions to
an employer could also be of concern and consequently
impede the adaptation of ideas like SPONGE. Given
this context, a natural question is whether the distributed
optimisation can be solved without revealing private
information. As we shall see, AIMD has some very nice
privacy properties.

• Agent actuation: AIMD requires very little actuation
ability on the agent-side. This is in contrast to ADMM
where at each time step, agents must solve a local
optimisation problem.

• Algorithm parameterisation: In AIMD the gain param-
eters of the network are independent of network dimen-
sion; rather, they only depend on the largest derivative
over all utility functions. Thus, selecting a gain for the
algorithm is extremely simple in the case of AIMD.

As we shall further discuss in the following section, AIMD
is thus a convenient alternative to ADMM, when the previous
aspects are relevant.

A. AIMD Algorithm

Additive Increase Multiplicative Decrease (AIMD) algo-
rithms were originally applied for solving issues arising in
network congestion in the Internet [13]. To date, this idea has
been widely explored for the design of practical algorithms for
other applications as well, as for instance, network applications
see [14]–[16], and smart grid applications see [17]–[20]. More
recently, an unsynchronised AIMD algorithm based on the
nonhomogeneous place-dependent Markov chains model was

proposed in [12] to solve utility optimisation problems. The
pseudo-code of the proposed algorithm is given in Algo-
rithm 1. Note that the algorithm does not compute the optimal

Algorithm 1 Unsynchronised AIMD Algorithm

1: Initialisation: k = 1, di(k) = 0;
2: Broadcast the parameter Γ to the entire networks;
3: while k < kmax do
4: if

∑N
i=1 di(k) < Eav then

5: di(k + 1) = di(k) + α
6: else
7: generate uniform random number, 0 < ri < 1, and
8: calculate pi(k) = Γ 1

di(k)f ′
i(di(k))

9: if ri < pi(k) then
10: di(k + 1) = βdi(k)
11: else
12: di(k + 1) = di(k) + α
13: end if
14: end if
15: k = k + 1
16: end while

budgets di in a single step, but in an iterative fashion, as di(k)
represents the value of the unknown energy to be allocated to
the i′th PHEB, computed at time step k. For large values of
k, di(k) will eventually converge to the optimal solution that
maximises the environmental benefits (while still satisfying
the energy constraint). In Algorithm 1, kmax represents the
maximum number of iterations before the algorithm stops
(e.g., after five minutes of iterations).

The basic idea of Algorithm 1 is that if the sum of the
di(k) of all PHEBs is smaller than Eav , then each PHEV
increases its target energy consumption di(k) at the next
iteration k + 1 by a quantity α. However, if the sum of the
energy budgets of all PHEVs exceeds Eav (this situation
is usually called as a congestion event), then each PHEB
decreases its energy consumption by a multiplicative factor
0 < β < 1 with probability pi(k) = Γ 1

di(k)f ′
i(di(k))

, where

Γ is a constant common broadcast parameter, and di(k) is
the time average of the sequence of di(k) at congestion
events, up to the last iteration. It is proved in [12] that di(k)
approaches to the optimal solution of the problem when
Algorithm 1 converges and where the optimisation is carried
out over the fi(d̄i) for all i ∈ N .

The philosophy underlying the AIMD algorithm is to
adjust pi(k) and di(k) at every time step k such that for large
values of k, f ′i(di(k)) = f ′j(dj(k)), ∀i 6= j ∈ N , or in other
words the PHEBs achieve consensus on the derivatives of
their utility functions. This, with strict convexity of the utility
functions, is both necessary and sufficient for optimality
when feasibility is guaranteed. This property is known from
elementary optimisation theory. Algorithm 1 was originally
designed in [12] to minimise a cost function of interest, here
we slightly adapt it to maximise CO2 savings. Accordingly,
given that each approximated utility function fi in our case
is strictly concave, and that the pi are strictly non-increasing
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in our problem, then we can adapt the algorithm in [12] so
that consensus is achieved on 1/f ′i , and the convergence and
optimality properties of the algorithm are preserved.

The AIMD algorithm with finite window is an example
of an iterated function system [21]. Such systems have
been been widely studied in the literature; see [22] and the
references therein. Strict concavity of the utility functions
is not necessary for convergence of the system to a unique
stationary invariant measure (ergodicity). Strict concavity
is however required in our context for convergence to the
optimal point of the associated optimisation problem.

The AIMD algorithms as described are stochastic
algorithms. Almost sure convergence of the long term average
to the optimal point is proved in [12]. Consequently, for
every convergent trajectory, the variance about the optimal
point converges to zero asymptotically. Convergence to the
optimum follows convergence of the long term average and
can be slow when defined in terms of congestion epochs.
However, as only low bit communication is required to
ensure convergence, convergence measured in terms of
communication effort may not be so bad. In fact, and as we
shall see, when this is taken into account, simple experiments
suggest that its convergence properties are comparable with
other better known schemes.

B. Privacy aspects

We now make some brief comments concerning the privacy
properties of AIMD based optimisation. Recall that we assume
that the central agent may receive the value di from agent i,
and performs the aggregation A =

∑N
i=1 di. We also assume

that there are no incentives for an agent to cooperate with the
central agent to help deduce the f ′i ; that is, all agents, other
than the central agent, are honest. Given this basic setting, one
may discern the following four basic levels of privacy.
(i) Absolute utility privacy (AUP): Here, the central agent

cannot deduce fi(d) based on knowledge available to it.
This is a basic level of privacy.

(ii) Relative utility privacy (RUP): Here the central agent
cannot deduce whether fi(d) > fj(d). This again, is a
basic level of privacy.

(iii) Absolute derivative privacy (ADP): Here, the central
agent cannot deduce f ′i(d) based on knowledge available
to it. This information is important since it allows the
central agents to estimate the price elasticity of individual
agents.

(iv) Relative derivative privacy (RDP): Here the central
agent cannot deduce whether f ′i(d) > f ′j(d).

A more rigorous discussion on privacy preservation is clearly
beyond the scope of this paper. However, we note briefly that
the stochastic AIMD algorithm allows us to give guarantees
regarding some of these privacy categories. First, since the
optimisation is based on f ′i(di), the AIMD algorithm can be
considered AUP- and ADP-private. Deducing any f ′i(di) would
require estimation of the pi(k) in Algorithm 1. Clearly, this is

difficult (but not impossible) except at optimal points. How-
ever, since our algorithm only requires an implicit consensus
among all derivatives, one may replace in the formula for pi(k)
(i.e., line 8 of Algorithm 1), f ′i(di) with g(f ′i(di)), where g is
chosen so that the convergence conditions in [12] are satisfied.
Clearly, without knowledge of the function g, the central agent
cannot deduce f ′i(di) even if the probabilities pi’s are correctly
estimated when the algorithm converges.

IV. SUMO SIMULATIONS

A. Simulation Set-up

In this section, we evaluate the performance of the proposed
AIMD algorithm in a realistic traffic scenario 3 , where vehic-
ular flows are simulated using the popular mobility simulator
SUMO [23]. In doing so, we shall also compare the results
obtained using AIMD with those obtained with the ADMM
algorithm. All the simulations are performed over the road
network of Dublin, Ireland, depicted in Fig. 2, imported from
OpenStreetMap [24].

B. Simulation Results

We assume that 16 PHEBs participate to the SPONGE
programme in Dublin city, Ireland. We further assume that
weather forecasting tools predict an availability of 10MWh
(about 55% of the energy required by the buses to travel in EV
mode for the whole time) in the next charging period. Before
starting their routes, the optimisation problem is solved using
the described AIMD algorithm with parameters α = 1 and
β = 0.5, and the available energy is optimally allocated to
the 16 different buses. Fig. 4 compares the overall energy that
would be required for each of the 16 trips when travelling all
the time in EV mode (blue bars) with the optimal allocated
budgets (red bars). Note that the first 6 buses also need
some minimum energy to travel in the green zones, which is
reported with the yellow bars. Fig. 5 shows how much energy
is expected to be required to travel in EV mode for each bus
route, and the expected CO2 emissions as well. Note that
the quantity is not constant, as it depends at what time of the
day a single trip will take place (i.e., with different expected
traffic conditions). Finally, Fig. 6 shows the details of the final
solution (i.e., how much energy is allocated per route per bus).

Fig. 7 and Fig. 8 show that the AIMD algorithm indeed
converges to the optimal solution and that the necessary
condition for optimality (KKT) is when AIMD converges
(i.e., the derivatives of the utility functions converge to the
same value), respectively. Comparatively, Fig. 9 demonstrates
that ADMM converges to the optimal solution as well. We
note that although ADMM requires less iterations to converge
(15 iterations to the first time reaching 5% error of the
optimal solutions) compared to AIMD (5720 iterations to the
first time 90% of samples are within 5% error of the optimal
solutions, by using a window of 1000 congestion events),

3This paper has supplementary downloadable material provided by the
authors. This includes the trip of one PHEB simulated in SUMO and a readme
file. This material is 77.7MB in size.
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ADMM requires more data to be transmitted to the agents.
For instance, if we consider that at each iteration ADMM
needs to broadcast a packet (with multiplier) to each bus in
64 bits, then the total data required for algorithm convergence
is 15 · 16 · 64 = 1.92kB. On the other hand, AIMD needs
to transmit one bit for all buses only on congestion events
so the maximum data that is transmitted is 0.715kB. This
shows that AIMD is competitive from the perspective of
communication overhead when compared to the ADMM
algorithm. Finally, Fig. 10 shows that the distributed solution
obtains the same results of a centralised LP solution, even if
the utility functions have been slightly changed (i.e., to make
them strictly concave), for values of the available energy
Eav ranging from 10% to 100% of the all energy required to
travel in EV mode all the time.
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Fig. 4: Comparison of different energy consumption patterns
for 16 PHEBs.
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for all bus routes.

V. COMMENTS ON THE PRACTICAL IMPLEMENTATION OF
SPONGE

To conclude the paper we now briefly comment on the
feasibility of the testing and implementation of a SPONGE
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Fig. 7: AIMD converges to the correct solution.
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Fig. 9: Evolution of the distributed ADMM.
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Fig. 10: Overall CO2 savings of all PHEBs with respect to
different percentage of energy available.

programme.

A. Large-Scale Traffic Simulator: As we have mentioned, all
simulations are based on the SUMO simulation environment.
SUMO [23] is an open source, microscopic road traffic
simulation package primarily being developed at the Institute
of Transportation Systems at the German Aerospace Centre
(DLR). SUMO is designed to handle large road networks,
and comes with a “remote control” interface, TraCI (short for
Traffic Control Interface) [25], that allows one to adapt the
simulation and to control singular vehicles on the fly. Based
on this, large-scale hardware-in-the-loop emulations with
both actual vehicles and (possibly) thousands of simulated
vehicles can be easily performed as described in [26].

B. Test Vehicle: While we have not yet implemented
SPONGE in a real bus, the algorithm has been implemented
in a real test vehicle. Our test vehicle is a 2015 Toyota Prius
VVTi 1.8 5DR CVT Plugin Hybrid vehicle and is pictured in
Fig. 11. The engine management system of the Prius allows
the vehicle to be powered by the ICE alone, the battery, or
using a combination of both, and it is this degree of freedom
that we exploit to implement SPONGE. For the purpose of

Fig. 11: Field-test vehicle: 2015 Toyota Prius.

this programme, we have made some important modifications
to the basic vehicle to make it behave as a context-aware
vehicle. First, we automate the switching of the vehicle from
ICE to EV mode by adapting the EVmode button hardware
in the vehicle. For this purpose, a dedicated Bluetooth-
controlled mechanical interface was constructed to override
the manual EV button based on signals from a smartphone.
The switching is based on GPS location, external context
information, and onboard signals such as speed and battery
level. Second, special-purpose hardware was constructed
to permit communication between a smartphone and the
controller area network (CAN) bus. The Prius provides a
CAN access on the vehicle diagnosis On Board Diagnosis II
(OBDII) interface. Our hardware module acts as a gateway
between this CAN interface and the smartphone. The module
is directly connected to CAN and to the smartphone via
Bluetooth. Communication to other vehicles, to GPS, and to
a cloud server is also realised using a smartphone device. To
control the driving mode, the software connects via Bluetooth
to a mechanical switch to toggle driving mode between the
EV mode and non-EV driving modes. In our application we
use a Samsung Galaxy S III mini (model no. GT-I8190N)
running the Android Jelly Bean operating system (version
4.1.2) and the OBD2 interface device that we used was the
Kiwi Bluetooth OBD-II Adaptor by PLX Devices.4.

C. Weather forecasting: An important component in any
real practical implementation of the SPONGE programme is
the ability to have a reasonably accurate, and cheap, prediction
of the expected energy that will be available for charging Eav.
To obtain a feeling for fidelity of such tools, we evaluated
the accuracy of a free online forecasting tool over a 3 month
period. The tool that we evaluated is provided by the Technical
University of Crete and is described in [27], where the energy

4PLX Devices Inc., 440 Oakmead Parkway, Sunnyvale, CA 94085, USA.
Phone: +1 (408) 7457591. Website: http://www.plxdevices.com



JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 9

generated by a solar plant can be predicted (anywhere in the
world) by simply providing the technical parameters of the
plant. We collected real data on-site from PV panels mounted
on the flat roof of the building in University College Dublin,
Ireland. We recorded a total of 100 days and the predicted and
the actual recorded energy are shown in Fig. 12. As also shown
in Fig. 13 the predictions are relatively accurate with 80% of
the predictions within 3% of Normalised Mean Absolute Error
(NMAE) and the maximum NMAE is 7%. Thus, our data
suggests that accurate predictions can be performed even for
small powers, and even when a free online tool is employed.
As for wind power forecasts, we note that a recent study
in Germany reported that “typical wind-forecast errors for
representative wind power forecasts for a single wind project
are 10% − 15% root mean square error of installed wind
capacity but can drop down to 6% − 8% for day-ahead wind
forecasts for a single control area and to 5% − 7% for day-
ahead wind forecasts for all of Germany”5. The accuracy may
further be increased if other (commercial) tools are employed.
From the previous discussion it appears reasonable to claim
that on average the prediction error is below 10%, and this is
consistent with other recent studies as well, see for instance
[28] and [29].
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Fig. 12: Comparison between the real and the predicted energy
generated from PV panels in UCD.

Comment: While the effect of uncertainty is beyond the
scope of this paper, we note briefly that, it is simple to
accommodate for forecasting errors by buying extra energy, if
required, from the outer grid, or by appropriately using other
storage devices, if available. However, interactions with the
grid are not always convenient, either in terms of price, or in
terms of environmental friendliness of the average power mix
from the grid (see [30]). An alternative to this is to formulate
an uncertainty description as part of the optimisation, and this
will be part of future work.

VI. CONCLUSION

In this paper, we introduce an optimal energy allocation
scheme for the SPONGE system in the context of PHEBs.
We describe a distributed AIMD algorithm for solving the

5http://www.nrel.gov/electricity/transmission/resource forecasting.html
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Fig. 13: Histogram of the percentage of NMAE.

optimisation problem. The main features of the proposed
AIMD approach are the low-communication requirements and
the privacy-preserving properties. The proposed approach is
demonstrated on a case study with 16 buses with different
energy requirements. The results demonstrate significant en-
vironmental benefits in terms of CO2 emissions that can be
achieved with optimal use of free renewable energies.
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