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ABSTRACT 15 

Electric Vehicles (EVs) are an important source of uncertainty, due to their variable demand, departure 16 

time and location. In smart grids, the electricity demand can be controlled via Demand Response (DR) 17 

programs. Smart charging and vehicle-to-grid seem highly promising methods for EVs control. However, high 18 

capital costs remain a barrier to implementation. Meanwhile, incentive and price-based schemes that do not 19 

require high level of control can be implemented to influence the EVs’ demand. Having effective tools to deal 20 

with the increasing level of uncertainty is increasingly important for players, such as energy aggregators. This 21 

paper formulates a stochastic model for day-ahead energy resource scheduling, integrated with the dynamic 22 

electricity pricing for EVs, to address the challenges brought by the demand and renewable sources uncertainty. 23 

The two-stage stochastic programming approach is used to obtain the optimal electricity pricing for EVs. A 24 

realistic case study projected for 2030 is presented based on Zaragoza network. The results demonstrate that it 25 

is more effective than the deterministic model and that the optimal pricing is preferable. This study indicates 26 

that adequate DR schemes like the proposed one are promising to increase the customers’ satisfaction in 27 

addition to improve the profitability of the energy aggregation business. 28 
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1. Introduction 32 

Unlike conventional generation units, renewable sources are characterized by a high level of uncertainty 33 

and variability. Smart Grid (SG) should be highly flexible to accommodate large penetration of renewable 34 

energy and attenuate uncertainty. Increased flexibility of customers can contribute to achieve it, namely with 35 



 

 

controllable loads, i.e. non-critical loads that can be adjusted by the customer or by a third-party utility 36 

companies. Electric Vehicle (EV) can be a candidate for such applications. Nevertheless, in contrast to other 37 

types of loads, EVs can be connected to different locations, thus with higher degree of uncertainty [1]. 38 

Employing an advanced energy management model that takes into account these factors is quiet crucial for the 39 

efficient operation of smart grids. In fact, one of the top R&D needs identified by the department of energy in 40 

United States is to implement robust control and predictive models to deal with stochastic behavior and 41 

uncertainty [2]. 42 

Despite the extreme complexities imposed to the operation and planning tasks of power systems by the 43 

mass integration of EVs, it can also bring significant benefits [3–5]. One of the main concerns in power grids 44 

is the overloading of distribution transformers and voltage irregularities under simultaneous and uncontrolled 45 

charging [6]. To avoid huge investments, controlled charging or price-based mechanisms can be used to 46 

alleviate these concerns. Currently, some initiatives to avoid high peak demand have been started in the retailing 47 

sector. They consist in some special tariffs targeting the EV customers. Some of these initiatives devised by 48 

utility companies in Portugal, Spain and Germany are briefly described in this work. These business models 49 

seem functional and rapidly available in the short-term horizon, but they are very limited to attain the full 50 

potential of SG deployment. Therefore, immediate rethinking is urged and new business models must be 51 

developed to ensure the successful EVs’ integration in the SG. 52 

In this context, Demand Response (DR) has been shaped for EVs as a big opportunity that the power 53 

industry cannot miss. The DR programs can be classified in price-based DR, incentive-based DR, and 54 

emergency DR [4]. DR refers to “changes in electric usage by end-use customers from their normal 55 

consumption patterns in response to changes in the price of electricity over time, or to incentive payments 56 

designed to induce lower electricity use at times of high wholesale market prices or when system reliability is 57 

jeopardized” [7]. According to [8] vehicles are parked more than 90% of the time during a day, thus they can 58 

be available to serve as a storing device to the grid. Indeed, EVs represent additional loads which are well suited 59 

for DR participation as their demand can be shifted or reduced through incentive or price-based schemes. In 60 

addition, EVs charge and discharge can be controlled using optimization algorithms and control means, though 61 

these imply higher complexity and increased infrastructure costs. 62 

1.1. Literature review 63 

Several works regarding benefits of DR considering EVs have been explored in the recent literature. It is 64 

reported in [9] that EV loads are highly flexible, even while accommodating for highly uncertain individual 65 

travel needs. Moreover, grid problems can be entirely eliminated during DR periods when EV charging is 66 

properly coordinated. In fact, the increase of DERs and EVs will contribute to load unbalance in three-phase 67 

networks [10]. The work in [11] presents a multi-objective approach to optimally coordinate the charging of 68 

EVs, considering the energy costs under as well as grid losses under dynamic tariff environment. The approach 69 

is tested in unbalanced three-phase distribution system and the authors suggest that the method is quite efficient 70 

to obtain Pareto solutions. In [12], authors develop an optimal charging approach to minimize energy losses 71 



 

 

considering voltages and power losses. The method is tested in a stressed IEEE-31 bus system, and the results 72 

suggest that nodal voltages are more restricting than thermal rating constraints due to network radial 73 

configuration.  74 

Regarding DR models approaches related to EVs, in [13], a game-based framework, Okeanos, is proposed 75 

to simulate EVs and households with the benefits of DR. The EVs and feed-in tariffs seems to decrease 76 

household electricity costs. In [14], authors claim that the electric heating systems, such as heat pumps, are a 77 

promising way to realize DR. An assessment is made to understand the benefits and interactions between 78 

consumers and producers using different degrees of model complexity. The work proposed in [15], develops a 79 

thermal and energy management of residential energy hubs. The DR program considers load shifting, load 80 

curtailing and flexible thermal loads. In [16], the unit commitment model includes DR (shifting and 81 

curtailment), EV and wind. The uncertainty in wind power is modeled using a fuzzy chance-constrained 82 

program. Recently in [8], EVs have been proposed for frequency control based on the travelling behavior in 83 

Great Britain. The simulation results show that the proposed strategy provides effective EV frequency response 84 

enabling more wind integration. In [17], a DR strategy to optimize EVs in parking lots, without violating grid 85 

operational limits is proposed. The strategy is based on prioritizing PEVs in order to determine the order in 86 

which they are charged. The priorities are assigned by a fuzzy expert system using PEV attributes, including 87 

the state of charge, battery capacity, charger rating, and departure time of the vehicle. Results of the analysis 88 

indicate that the proposed solution is able to serve more critical EVs. In [18], optimization model that considers 89 

EVs load-shifting and Vehicle-to-Grid (V2G) is proposed. Each agent maximizes its profit and acts on their 90 

own interest while a central SG operator validates the technical constraints. It is important to note that the study 91 

conducted in [19] suggests that V2G can increase the renewable utilization levels if adequate infrastructure is 92 

available. However, stationary storage is recognized to be more flexible than V2G. A decentralized DR 93 

approach for EVs is proposed in [20]. The goal is to minimize peak demand and shape the load profile. The 94 

results show evidence of achieving the same peak demand as without EVs for certain trip patterns as well 95 

accommodate a higher number of users in the grid. In [21], a decentralized framework to maximize the welfare 96 

of the EVs and profits of aggregator is proposed. The consumers minimize their costs in response to time-97 

varying prices. Incentives are provided to mitigate potential overloads in the distribution system. Authors in 98 

[22] study the impact of DR interruptions on EVs charging, namely the customer satisfaction and propose an 99 

algorithm that improve the probability of achieving the desired state of charge and thus the increase customer 100 

satisfaction/comfort. In [23], several opportunities are identified for DR with EVs. A stochastic model for EV 101 

planning in DR programs and scheduling is presented. The risk and costs is evaluated and the results suggest 102 

that time-based DR is efficient to reduce costs for aggregators and system operator. 103 

More specific DR programs shaped for EVs have been proposed in [3,4]. In [3], trip reduce and trip shifting 104 

of EVs are proposed as DR programs and integrated with the energy resource management scheduling 105 

optimization with the aim to minimize the aggregator costs. In [4], a fuel shifting DR program for EVs is 106 

developed as an additional alternative that the aggregator has to reduce operational costs. The fuel shifting 107 

program consists in replacing the electric energy by fossil fuels in plug-in hybrid electric vehicles daily trips, 108 



 

 

and the fuel discharge program consists in the use of their internal combustion engine to provide V2G services. 109 

In [24], authors propose a stochastic optimization to solve day-ahead scheduling of a SG. The model also 110 

outputs the optimal pricing of responsive loads, namely EVs. The consumers at each node are assumed to be 111 

the same type and are modeled as a single lumped load. Other kind of loads are assumed to be non-responsive.  112 

Recently, in [25], a two-stage stochastic model is proposed to address the centralized ERM in hybrid 113 

AC/DC microgrids considering DGs, ESS and EVs. The possibility of DR is not considered in the referred 114 

work. The works presented in [26,27] address the day-ahead resource scheduling of a renewable-based virtual 115 

power plant. The work considers uncertainties in price, load demand and renewables but fails to consider the 116 

possibility of ESS, DR, EVs and V2G. A specific work regarding stochastic energy management using 117 

compressed air storage integrated with renewable generation is studied in [28]. In [29], authors provide a robust 118 

optimization for scheduling optimization considering uncertainties. These works demonstrates that it is possible 119 

to mitigate system uncertainties with adequate use of energy resources, namely ESS systems. However, they 120 

fail to consider EVs and its related uncertainties. 121 

These works reveal some gaps that require additional attention and further work. Uncertainty on wind and 122 

solar generation are usually considered, while the variability of EVs and load demand is frequently overlooked. 123 

Furthermore, DR is not considered in most of the studied works considering some source of uncertainty and the 124 

presented case studies are relatively small in terms of optimization problem size. Moreover, specific DR 125 

programs for EVs in the context of aggregator energy management require further innovation. 126 

1.2. Contributions 127 

The motivation of establishing a stochastic modeling framework is associated with the increasing challenge 128 

of addressing the variability and uncertainty of renewable energy resources in smart distribution networks and 129 

microgrids [30]. These resources’ share is significantly increasing and can constitute a large portion of the total 130 

generation portfolio in the near future. In this context, the entities related with the Energy Resources 131 

Management (ERM), such as energy aggregators [31], need adequate tools to deal with the increasing level of 132 

uncertainty. 133 

This paper presents a stochastic programming approach for ERM in a smart distribution network, in the 134 

context of SG considering several forms of energy resources, including DR, namely optimal pricing for EVs 135 

and Direct Load Control (DLC) for regular loads. The proposed model formulates the uncertainty in regular 136 

load demand, wind and photovoltaic (PV) power, and EVs demand. The energy aggregator aims to maximize 137 

the expected profit and obtain the optimal pricing that ultimately influence the behavior of EVs customer, while 138 

managing Distributed Energy Resources (DER), including DG (e.g. Wind, PV, and biomass), EV, ESS, 139 

electricity supplier contracts, market transactions and DR. Thus, the proposed integrated energy management 140 

model with the several sources of uncertainty and considering optimal pricing is innovative in the literature. 141 

The literature review revealed that the very recent work (2016) proposed in [24] is similar to the idea presented 142 

here, but in this paper EVs are grouped into different customers classes, which enables to have an accurate and 143 

differentiated demand model. In addition, the DR in regular loads is not considered in [24], while in this work 144 



 

 

DR program for regular loads is integrated. In the previous work, only the uncertainty in wind power output is 145 

considered by using the two-point estimate method, while other uncertainties are neglected. 146 

Regarding previous works, the major contributions of this paper are as follows: 147 

1) proposing a two-stage stochastic model for SG considering uncertainty in wind, PV, EV integrated in 148 

the same model;  149 

2) considering an energy aggregator characterized by heterogeneous management of energy resources, 150 

including EVs, individually or aggregated form; 151 

3) considering DR program for regular demand in the two-stage stochastic model; 152 

4) integrating optimal pricing for EVs for different customer groups, which are price-sensitive. 153 

1.3. Organization of the paper 154 

This paper is organized in seven main sections: after this introduction, section 2 presents a brief overview 155 

of the current status regarding EVs DR implementation and a few DR business models envisaged for the future 156 

SG, section 3 presents more details about the stochastic model approach that integrates the optimal pricing and 157 

describes the two-stage stochastic formulation, section 4 describes the case study, while the results and the 158 

discussion are presented in section 5. Finally, section 6 presents the conclusions and future works in this area. 159 

2. EVs as a demand response resource 160 

The advent of electric transportation replacing the petrol-fueled transportation, will carry significant 161 

changes in the current business model, e.g. the shifting of money and product transactions from petrol stations 162 

directly to the electricity supplier. In fact, EVs may add a significant portion of the household load demand, 163 

depending on the number of connected EVs and season of the year [20]. In this section some insights are 164 

provided regarding the initiatives launched by utility industries to handle the growing EVs’ demand. These 165 

initiatives constitute means of DR to persuade the EV customers to charge their vehicles in specific periods of 166 

the day. Later in this section, some specific DR programs for EVs aligned with SG technologies are discussed. 167 

2.1. DR initiatives for EVs 168 

Currently, few initiatives are offered by the retailers to motivate the EV adoption and differentiate the EVs 169 

demand. One retailer company in Portugal offers a differentiated tariff for EV adoption. It consists in offering 170 

a 400 EUR discount to those who buy an EV from their partners [32]. The discount is applied for customers on 171 

a monthly basis, i.e. 40 EUR/month during a period of 10 months. The retailer claims that the discount is 172 

equivalent to 15.000 km. In addition to that discount, the same company launched a special time-of-use based 173 

tariff, for those who own an EV. It consists in a bi-tariff with 10% discount during the night (10 p.m. to 8a.m.) 174 



 

 

for the daily option and 1% discount in the remaining periods. A weekly option1 is also available. The discount 175 

rate is also applied to the basic monthly fee. In the case of the tri-tariff option the discount rate is 7% in the 176 

remaining periods. However, the tri-tariff is only available for contracts between 27.6 kVA and 41.4 kVA. The 177 

energy2move has not a single-tariff option. Instead, this retailer is motivating his customers to shift EV load to 178 

economic periods using bi-tariff (or tri-tariff) with some discount. The economic periods are mostly during the 179 

night.  180 

In Spain an hourly pricing scheme is in place, which applies for all the Spanish territory regardless of the 181 

time-zone, known as voluntary price small consumer (PVPC). There are three types of tariffs: default, 2 periods 182 

and electric vehicle. Active energy invoicing term in €/kWh of PVPC for tariffs 2.0 A (default tariff), 2.0 DHA 183 

(2 periods tariff) and 2.0 DHS (EV), are established in section 2 a) of the Article 8 of the Royal Decree 216/2014. 184 

The royal decree states the calculation methodology of PVPC of electrical power and its legal and contracting 185 

system [33]. PVPC includes several terms, namely day-ahead market price, ancillary services, distribution and 186 

transmission tariff, capacity payment, interruptible service and operation, and maintenance fees.  187 

Figure 1 shows the PVPC prices along an entire day (26th April 2016) for the three mentioned tariffs. Those 188 

prices do not include taxes. The prices range for each period can be seen in the xx axis; in green color the hours 189 

with prices lower or equal than 0.10 €/kWh, in yellow color for prices between 0.10 €/kWh and 0.15 €/kWh 190 

and in orange color for prices higher than 0.15 €/kWh (which did not happen in the considered day). For the 191 

26th April 2016 most of the periods are in the green price range. The EV tariff is cheaper at night, namely 192 

between 0 a.m. and 12p.m.. The customers can freely choose PVPC. Retailers are not allowed to charge the 193 

customer higher prices than the PVPC in this mode [34]. 194 

 Figure 1. 
In Germany, despite high electricity prices (>0.25 €/kWh) for a typical household, some utilities are 195 

offering additional benefits for EV owners by proposing different tariffs. The e-mobility night tariff proposed 196 

by a German utility allows customers to charge their cars at lower rates during the night [35]. The same utility 197 

is studying an aggregator model for small generation and controllable loads. EVs, heat pumps, and overnight 198 

electric heating systems can all function as controllable consumption equipment [35]. This German utility 199 

believes that a household’s power rate could be 30 percent lower when controllable consumption is correctly 200 

scheduled, and the cost of charging EV could drop by up to 200 EUR annually. Other retailers such are offering 201 

night tariff reductions for EV charging as well [36]. 202 

A few players in the retailing activity are introducing a variety of appealing schemes for the EVs end-users. 203 

However, it is fair to recognize that these schemes are based on discount rates and still very limited, not 204 

adequately adapted for the future SG. Nevertheless, the paradigm shift is occurring and eventually more 205 

advanced models have to be developed and implemented in practice. In the following section some innovative 206 

                                                             

1 Bi-tariff low price periods:  

Summer week cycle: Monday-Friday: 0h-7h; Saturday: 14h-20h and 22h-9h; Sunday: 24h.  

Winter week cycle: Monday-Friday: 0h-7h; Saturday: 13h-18h30 and 22h-9h3; Sunday: 24h. 



 

 

models are discussed, which could be increasingly viable with proper charging, communication and information 207 

technology infrastructure. 208 

2.2. DR Business models 209 

This subsection discusses some DR models shaped for EVs. These business models envisage a SG context, 210 

and therefore, smart metering and other important infrastructure is assumed to be in place. The presented 211 

programs include incentive-based programs – smart charging, V2G, trip shifting, trip reduced – and the 212 

proposed optimal pricing DR model (price-based). 213 

1) Smart charging and vehicle-to-grid  214 

EVs can provide power to the grid while they are connected to it, which is usually referred as V2G [37]. 215 

The control approach requires a control connection for communication with the grid operator and a meter sensor 216 

to indicate the battery state in each moment [38]. The Society of Automotive Engineers, known as SAE, 217 

establishes a series of requirements and specifications for communication between plug-in vehicles and the 218 

electric power grid, for energy transfer to and from the grid in the standard SAE J2847/1 " Communication for 219 

Smart Charging of Plug-in Electric Vehicles using Smart Energy Profile 2.0" [39]. The International 220 

Organization for Standardization (ISO) and the International Electrotechnical Commission (IEC) are also 221 

developing a similar series of standards known as ISO/IEC 15118 "Road vehicles -- Vehicle to grid 222 

communication interface" [40]. 223 

The smart charging and V2G approaches are effective types of DR resources use in the context of EV 224 

management. The EV charging can be effectively controlled while reducing operation costs and network 225 

problems, while still maintaining the comfort of the users. The drawback of V2G and smart charging is the high 226 

complexity and high capital costs of the infrastructure and the increase of power losses due to frequent charge 227 

and discharge cycles. Nevertheless, aggregators may convince users to shift from uncontrolled charging to smart 228 

charging by financial incentives and convenience of charging, e.g. with smart charging, the user could benefit 229 

from discounted flat tariffs 230 

2) Fuel shifting 231 

Fuel shifting is a special DR program [4], specifically proposed to target a particular kind of EVs, the 232 

Extended Range Electric Vehicles (EREV). These vehicles have an Internal Combustion Engine (ICE) that can 233 

charge the battery when a threshold limit is reached. This greatly increases the travelling range, while mitigating 234 

the user’s range anxiety. The fuel shifting has 2 variants. One is to incentivize customers to leave the charging 235 

point (home/workplace) even if the minimum amount of state of charge was not satisfied (soft constraint). The 236 

customer in turn receives an incentive to cover the fuel costs that may be needed to cover the trips not satisfied 237 

by the electric energy supply. The grid in turn can mitigate and/or avoid network problems and costs and reduce 238 

the peak demand. The other variant of fuel shifting DR is that these cars can participate in V2G services, namely 239 

in extreme situations, and use the ICE more than intended. 240 



 

 

3) Trip reduction 241 

The trip reduction is an incentive-based DR program to provide the aggregator with a flexible resource, in 242 

which users can participate by agreeing to reduce the EVs’ charge requirements as proposed in [3]. This 243 

program enables EVs’ owners to get a financial incentive by agreeing to reduce their trip energy requirements 244 

and consequently the minimum battery level requirements. The participation of users in this DR program can 245 

be performed as follows: users should sign up to the DR trip reduce program and notify the aggregator about 246 

the maximum amount they are willing to reduce. With this information the aggregator runs a daily routine 247 

optimization. In the day-ahead, an initial optimization is made assuming that EVs with contracted DR program 248 

will participate. With the first-round optimization results, it is possible to identify the EVs that are scheduled to 249 

participate in the event and notify the respective users. Then, the notified users should confirm their 250 

participation within a defined time period. With the confirmation responses, the optimization program can 251 

perform a rescheduling with the updated information, fixing the users with confirmed participation and making 252 

the required adjustments. Users that do not confirm their participation within the requested time period are 253 

excluded from the DR event. A penalty scheme can be implemented for the EV users who confirmed the 254 

participation and withdraw it later. 255 

4) Trip shifting 256 

The trip shifting program is an incentive DR program similar to the trip reduce proposed in [3]. However, 257 

this DR program enables EVs’ users to provide a list of flexible departure periods. This could be implemented 258 

in a similar way to the DR trip reduce program, i.e. the users sign up and setup their profiles and definitions by 259 

using an internet-based app. The DR program specifically enables the aggregator to shift EVs charging, which 260 

may help to reduce operational costs and alleviate network contingencies. The shifting is limited to the 261 

alternatives that users introduce, thus limiting the computational complexity of the optimization process. The 262 

users’ participation in the DR shifting program would be similar to the process described for the trip reduce 263 

program. In face of the users positive replies to participate in the DR shifting event after being notified, the 264 

optimization program should perform a rescheduling with the updated information. 265 

5) Proposed optimal pricing 266 

The price-based DR strategy consists in defining the price that the EV owner pays to the aggregator, while 267 

ultimately changing his behavior. In this case it is assumed that the EV charging process cannot be controlled 268 

and consequently smart charging and V2G algorithms are not possible. The advantage of this approach is that 269 

it does not require an advanced and complex infrastructure, such as the previous DR programs. Therefore, the 270 

price is the relationship for indirectly controlling the timing and amount of charging. The proposed price-based 271 

DR assumes that there is a correlation between the quantity of charging and the price to be paid for it. Also, the 272 

decision-maker can describe the behavior of its customers and the correlation between the quantity that the 273 

owners of EVs usually charge and the price they pay. Figure 2 shows an overview of the proposed optimal 274 

pricing integrated with energy resource scheduling. 275 

 Figure 2. 



 

 

The EVs can be classified according to several groups of consumers as suggested in Figure 2, which shows 276 

an example of price elasticity curves for five groups of EVs’ consumers. A relative quantity of 1 means that the 277 

EV would charge whenever it would be possible, while a relative quantity of 0 means that the customer is not 278 

willing to charge at all. The represented data can be obtained using historical data or surveying consumers. The 279 

price is directly correlated with the quantity that the user is willing to charge. In this case, the worker group is 280 

willing to charge more than the shopper group even if the price is higher, whereas the bus fleet group is willing 281 

to pay and charge more than the other two groups due to its higher responsibilities towards third parties. 282 

3. Stochastic Model 283 

The energy scheduling problem is formulated as a two-stage stochastic model. Theoretical background on 284 

two-stage or multi-stage stochastic programming models can be found in [41]. The idea is to make the optimal 285 

decision on the day-ahead energy transactions in the first stage, while taking into account the possible real-time 286 

operations like the wind, solar power and EVs’ uncertainty in the second stage. The objective is to maximize 287 

the expected profits and obtain the optimal pricing, while reducing the risk of the energy transactions for 288 

aggregator. With the proposed model, it is possible to obtain the amount of electricity to be purchased from the 289 

electricity suppliers, the market and the commitment of the dispatchable DG units over the next 24 hours. To 290 

achieve this, a scenario-based approach is used to model the underlying uncertainty. The uncertain production 291 

of wind and solar units and the variable demand are modeled as random variables. Different realizations are 292 

introduced for these variables as distinctive scenarios. The first-stage decisions of the stochastic model must fit 293 

and satisfy the constraints for every scenario, i.e. the variables without uncertainty do not change across the 294 

several scenarios. The first-stage decisions include the schedules of the dispatchable units, the EV pricing, and 295 

the market transactions, which must be met one day in advance. 296 

To enable an efficient and effective, yet profitable operation, the aggregator needs to be equipped with 297 

adequate energy resource management tools, namely a scheduling optimization software. Figure 3 depicts the 298 

general overview of the energy transactions that the aggregator is able to perform in the decision-making 299 

problem under study. 300 

 Figure 3. 
The aggregator can procure energy needs from several resources and the electricity market and makes 301 

revenue from reselling energy to its customers. In addition, it can use its own assets, e.g. storage units, to supply 302 

the load demand [42]. The energy aggregator establishes energy contracts with those who seek electricity 303 

supply, e.g. residential and industry customers. It is designated here as a bilateral contract, i.e. between the 304 

aggregator and the final end-user. In this case, it is assumed that the aggregator establishes a fixed price for 305 

fixed loads and a variable price for EVs charging. The fixed price is set independently for each consumer, based 306 

on single-tariffs. The EVs’ charging price is variable and unkown for both parties before the energy scheduling 307 

optimization has been achieved by the aggregator. Nevertheless, the variable price is bounded between a 308 

minimum and maximum value agreed between both parties. The variable price must be released several hours 309 

in advance. Therefore, the 24-hour EV pricing is known for the EV customers in advance. The main idea is that 310 



 

 

the optimization software can perform the energy resource scheduling, while seeking an effective pricing 311 

approach that influences EVs’ charging decision. The EV customers can freely choose the charging periods, 312 

e.g. low pricing periods, at their most convenience. An automated system may exist, such as an in-vehicle 313 

charging decision system or a home energy management system that is able to receive the aggregator prices by 314 

a web service and perform some local decision or optimization. Ultimately, the aggregator can indirectly shift 315 

the EVs charging decision to periods where it is best to charge the EVs while at the same time maximizing its 316 

profits and obtaining the best use of its contracts and assets, e.g. wind surplus energy. Unfortunately, there are 317 

some barriers that can compromise the quality of the energy resource management. A relevant issue discussed 318 

in this paper regards the sources of uncertainty that make the decision-making much more complicated from 319 

the optimization standpoint. Some discussion of these uncertainty sources is provided in the next subsection. 320 

3.1. Data uncertainty 321 

The presented ERM problem incorporates several sources of uncertainty, namely in the load demand, wind 322 

and solar generation forecasts. Moreover, the presence of EVs poses an additional source of uncertainty in the 323 

ERM problem, because trips and energy demand of EVs depend on the users’ behavior, which is not easy to 324 

predict. Compared to conventional loads that are fixed at a specific bus in the power grid, the location of the 325 

EVs varies inevitably and highly depends on the users’ trips. The aggregator requires knowing the timing of 326 

the trips and the associated expected energy consumption, as well as other parameters, such as battery size. This 327 

means that the drivers would need to notify the aggregator of their planned trips in advance, or eventually 328 

machine learning algorithms could be used to forecast driving needs [31]. 329 

The lack of realistic historical data is a barrier to actually build accurate case studies. Hence, most of the 330 

time, forecasts and associated errors are obtained based on previous experiences and used to simulate real-world 331 

behavior. The stochastic model is used assuming that a correct set of scenarios can be generated, considering 332 

future availability of such historical data. In fact, scenario generation is a broad topic that is beyond the scope 333 

of this work. 334 

Dealing with a finite set of possible outcomes is the adopted way in decision-making problems under 335 

uncertainty, otherwise it would be impossible to solve the problem [43]. Continuous stochastic processes, such 336 

as the generation of the renewable units and the electricity demand, can be well approximated with discrete 337 

processes [43]. In stochastic programming models, the discrete processes are represented with finite set of 338 

realizations to represent the data uncertainty. Each realization of the stochastic process is known as a scenario. 339 

A probability of occurrence associated with each scenario can fully characterize the specifications of the 340 

stochastic process [43,44]. Sufficient number of scenarios should be generated to cover the most plausible 341 

realizations. Generally, it is required to generate a large number of scenarios to represent the stochastic process. 342 

This requirement can make the stochastic optimization problems computationally intractable [43]. Therefore, 343 

the scenario reduction techniques are then used to reduce the number of initial scenarios [43]. Scenario reduction 344 

techniques start with the large set of randomly generated scenarios. The large set is downsized to a small set 345 



 

 

trying to maintain the original probability distribution function. A good reduction has been obtained if the 346 

stochastic information has changed little after the reduction. 347 

In this paper, Monte Carlo Simulation (MCS) is used for generating the required scenario set to represent 348 

the uncertainty, assuming that the source of uncertainties follows a normal distribution error. Another key 349 

assumption is that for the uncertain input we have a forecast given, and with the MCS approach several 350 

realizations for the forecast error is generated. MCS depends on repeated random sampling to compute the 351 

scenarios [45]. In this model, the MCS constructs the scenarios of hourly forecast errors based on probability 352 

distribution [44]. Although the MCS is used in this paper, the proposed model is compatible with other scenario 353 

construction techniques (probably far accurate) able to generate the required inputs. Different realizations of 354 

the random variables can be represented by arcs in a scenario tree. The sum of the probabilities of the generated 355 

scenarios is equal to 1. 356 

3.2. Implementation assumptions 357 

The proposed model is one-step forward towards an effective energy management of the SG resources. The 358 

optimization can be implemented in real-world cases once the main pillars of SG are developed, i.e., technology, 359 

policy and standards. It is assumed that the infrastructure and backbone has the following characteristics: 360 

1) the smart distribution grid and microgrids are independent entities that are able to manage their own assets, 361 

and establish contracts with local DERs and other energy suppliers; 362 

2) the advanced metering infrastructure to allow consumption data collection and monitoring in real-time; 363 

3) also, there is communication capability to allow the broadcast of the electricity prices for the next 24 hours; 364 

4) the control center can communicate with the local controllers of DERs and is equipped with an energy 365 

management system, in which the proposed model can be implemented; 366 

5) the EVs customers are monitored and a price/demand model is kept and updated for different groups using 367 

machine learning techniques. New customers can be assigned to a group according to its preferences or 368 

characteristics; 369 

6) the energy management system runs the two-stage stochastic optimization routine every 24 hours and has 370 

forecasting and scenario generation tools required to run the model; 371 

7) the network conditions are monitored by the distribution system operator; 372 

3.3. Objective function 373 

The objective function (1), ( )1E D
TotalP + , which represents the expected profit for the day-ahead in monetary 374 

units (m.u.), is maximized over the scheduling horizon T (1), usually, hourly periods. The first term in (1) 375 

represents the expected revenue in the day-ahead operation and the second term represents the expected 376 

operation cost.  377 

( ) ( ) ( )1 1 1Maximize D D D
Total Total TotalE P E R E C+ + += −  (1) 



 

 

The revenue is calculated as represented by (2). The first term corresponds to the revenue from the market 378 

sale. The second term represents the revenue from the energy billing with regular load customers, non-owned 379 

storage and EVs charging. 380 
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Where the indices are represented by: E is the index of ESSs; L is the index of loads; M is the index of 381 

market/energy buyer; t is the index of time periods; V is the index of EVs; z is the index of scenarios. The 382 

parameters used are: T is the number of periods; NM is the number of energy markets; MCP(M,t) is the estimated 383 

market clearing price of market M in period t (m.u./kWh). In the second term the Z is the total number of 384 

scenarios; NL is the number of loads; MPLoad(L,t) is the price that load L pays for electricity supply in period t 385 

(m.u./kWh); NE is the number of ESSs; NV is the number of EVs; MPCharge(E,t) is the price that ESS E pays for 386 

charging the battery in period t (m.u./kWh), where price is 0 when ESS E is owned by the managing entity; and 387 

π(z) is the probability assigned to the occurrence of scenario z (%). The variables in (2) are: PSell(M,t) is the active 388 

power offer in market M in period t (kW); PCharge(E,t,z) is the active power charge of ESS E in period t in scenario 389 

z (kW); PLoad(L,t,z) is the active power demand of load L in period t in scenario z (kW); TEVcharge(t) is the charging 390 

tariff of EV in period t; EEstimatedCharge(V,t,z) depends on TEVcharge(t) (see section 3.4) and corresponds to the active 391 

energy charge of EV V in period t in scenario z (kWh); λChargePenalty(V,t,z) is the penalty term for the charge of EV 392 

V in period t in scenario z (kWh) (see section 3.4). 393 

Finaly, the expected cost is represented by (3). The first term corresponds to the cost with the energy 394 

acquisition from external suppliers, dispatchable DG, and market purchase. The second term considers the cost 395 

with intermittent generation, DR, storage, non-supplied demand (NSD) and generation excess (GCP). 396 
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(3) 

Where the sets are: d

DGΩ  is a set of dispatchable DG units; nd

DGΩ  is a set of non-dispatchable DG units. In addition 397 

to the indices used by (2), there are: I is the index of DG units; S is the index of external suppliers. The 398 

parameters are: in the first term, NS is the number of external electricity suppliers; and CSupplier(S,t) is the costs of 399 

the energy supplier S in period t (m.u./kWh) and CDG(I,t)  is the generation cost of DG unit I in period t 400 

(m.u./kWh); In the second term, CLoadDR(L,t)  is the load reduction (DR) cost of load L in period t (m.u./kWh); 401 

CDischarge(E,t)  is the discharging cost of ESS E in period t (m.u./kWh); CNSD(L,t) is the non-supplied demand (NSD) 402 

cost of load L in period t (m.u./kWh); NDG is the number of DG units; andCCGP(I,t) is the curtailment cost of DG 403 

unit I in period t (m.u./kWh); and PDG(I,t,z) is the forecasted non-dispatchable DG unit I in period t in scenario z 404 

(kW). The variables of (3) are. PSupplier(S,t) is the active power scheduled for external supplier S in period t (kW); 405 

PDG(I,t) is the active power generation of DG unit I in period t (kW); PPurchase(M,t) is the active power bid in market 406 

M in period t (kW); PLoadDR(L,t,z) is the active power reduction of load L in period t in scenario z (kW); 407 

PDischarge(E,t,z) is the active power discharge of ESS E in period t in scenario z (kW); PCGP(I,t,z) is the generation 408 

curtailment power of DG unit I in period t in scenario z (kW); and PNSD(L,t,z) is the active power of NSD of load 409 

L in period t in scenario z (kW). 410 

The scheduling horizon covers 24 hours, and the decision-making is done for the next day. The first-stage 411 

variables correspond to the dispatchable and controllable DG units, external suppliers, market bids and market 412 

offers. The objective function includes a multiplication of two decision variables, namely TEVCharge(t) and 413 

EEstimatedCharge(V,t), i.e. a  nonlinear function. In addition, the absolute value of a penalty term, λChargePenalty(V), is 414 

added to the objective function and multiplied by 10. 415 

3.4. Stochastic model constraints  416 

The constraints incorporate the multi-period equations for considering predicted demand, technical limits 417 

of ESSs, balance and capacity in each period, dispatchable DG capacity and supplier’s limits. In addition, the 418 

DR (direct load control) is considered in the constraints, namely the maximum amount of power reduction of 419 

each load. It is important to note that some of the constraints spread across all scenarios, like the energy balance 420 



 

 

equation. However, there are few constraints that are not dependent on the variation of the scenarios, e.g. the 421 

dispatchable generation. 422 

1) Energy balance constraint 423 

The balance constraint (2) is included in the proposed model. The amount of generated energy should equal 424 

the amount of consumed energy at every instant t. The stochastic balance constraint will validate if the first 425 

stage variables can match the load balance among the different scenarios z as follows: 426 
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2) Generation 427 

A binary variable is used to represent the commitment status of dispatchable DG units. A value of 1 means 428 

that the unit is connected. Maximum and minimum limits for active power in each period t can be formulated 429 

as: 430 

( , ) ( , ) ( , ) ( , ) ( , )           , d
DG I t DGMinLimit I t DG I t DG I t DGMaxLimit I t DGX P P X P t I⋅ ≤ ≤ ⋅ ∀ ∀ ∈Ω  (5) 

( , , ) ( , , )           , ,nd
DG I t z DGScenario I t z DGP P t I z= ∀ ∀ ∈Ω ∀  (6) 

where 431 

Variables  

XDG(I,t) binary variable of state of DG unit I in period t 

Parameters  

PDGScenario(I,t,z) forecasted non-dispatchable DG unit I in period t in scenario z (kW) 

PDGMinLimit(I,t) minimum active power of dispatchable DG unit I in period t (kW)  

PDGMaxLimit(I,t) maximum active power of dispatchable DG unit I in period t (kW) 

 432 

The upstream supplier maximum limit in each period t regarding active power and reactive power can be 433 

formulated as: 434 



 

 

Supplier( , ) ( , ) ( , ) Supplier( , ) ( , )        ,S t SMinLimit S t Supplier S t S t SMaxLimit S tX P P X P t S⋅ ≤ ≤ ⋅ ∀ ∀  (7) 

where 435 

Variables  

XSupplier(S,t)) binary variable of choosing supplier S in period t 

Parameters  

PSMinLimit(S,t) minimum active power of supplier S in period t (kW) 

PSMMaxLimit(S,t) maximum active power of supplier S in period t (kW) 

3) Energy storage systems 436 

The constraints for the ESS (batteries) are described below. The ESS charge and discharge cannot be 437 

simultaneous. Therefore, two binary variables guarantee this condition for each ESS: 438 

( , , ) ( , ,z) 1      , ,ESS E t z ESS E tX Y t E z+ ≤ ∀ ∀ ∀  (8) 

where 439 

Variables  

XESS(E,t,z) binary variable representing discharging state of ESS E in period t in scenario z 

YESS(E,t,z) binary variable representing charging state of ESS E in period t in scenario z 

 440 

The maximum battery balance for each ESS can be formulated as: 441 
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where 442 

Variables  

EStored(E,t,z)) energy stored in ESS E in period t in scenario z (kWh) 

Parameters  

ηc(E) charging efficiency of ESS E (%) 

ηd(E) discharging efficiency of ESS E (%) 

 443 

The maximum discharge limit for each ESS can be represented by: 444 

( , ,z) ( , , ) ( , )         ,Discharge E t DischargeLimit E t z ESS E tP P X t E≤ ⋅ ∀ ∀  (10) 

where 445 

Parameters  

PDischargeLimit(E,t,z) maximum active discharge rate of ESS E in period t in scenario z (kW) 

 446 

The maximum charge limit for each ESS can be represented by: 447 



 

 

( , , ) ( , , ) ( , , ) , ,     Charge E t z ChargeLimit E t z ESS E t z t E zP P Y ∀ ∀ ∀≤ ⋅  (11) 

where 448 

Parameters  

PChargeLimit(E,t,z) maximum active charge rate of ESS E in period t in scenario z (kW) 

 449 

The maximum battery capacity limit for each ESS can be represented by: 450 

( , , ) ( ) , ,          Stored E t z BatCap E t E zE E ∀ ∀ ∀≤  (12) 

where 451 

Parameters  

EBatCap(E) maximum energy stored allowed by ESS E (kWh) 

 452 

Minimum stored energy to be guaranteed at the end of period t can be represented by: 453 

( , , ) ( , , ) , ,Stored E t z MinCharge E t z t E zE E ∀ ∀ ∀≥  (13) 

where 454 

Parameters  

EMinCharge(E,t,z) minimum energy stored required in ESS E in period t in scenario z (kWh) 

4) Electric vehicle tariff 455 

To formulate the price-based model, new constraints are developed in this subsection. The aggregator 456 

may need to limit the bounds of the tariff price in order to keep it appealing to the consumer. Therefore, the 457 

maximum tariff price is defined as follows: 458 

( )EVCharge t EVChargeMaxLimitT T t≤ ∀  (14)  

where the following represent 459 

parameters  

TEVChargeMaxLimit maximum EV charge tariff (m.u./kWh) 

and variables:  

TEVCharge(t) EV charge tariff price in period t (m.u./kWh) 

The minimum price of the tariff is defined as follows: 460 

( ) ,EVCharge t EVChargeMinLimitT T t V≥ ∀ ∀  (15)  

where the following represent 461 

parameters:  

TEVChargeMinLimit minimum EV charge tariff (m.u./kWh) 

5) Electric vehicle demand 462 

The charge demand of a given vehicle in period t depends on the price TEVCharge(t) and the coefficients 463 

of elasticity. These coefficients depend on the group, that the EV customer belongs. 464 



 

 

( ) ( , )( , ) ( ) ( ) ( ) ,ChargeMaxLimit V tEstimatedCharge V t LinearA V EVCharge t LinearB V PE T t t Vκ κ= + ⋅ ⋅ ⋅Δ ∀ ∀  (16)  

where the following represent 465 

parameters:  

κLinearA(V) fixed coefficient of linear elasticity equation for EV V 

κLinearB(V) linear coefficient of elasticity equation for EV V 

PChargeMaxLimit(V,t) maximum charge limit of vehicle V in period t (kW) 

and variables:  

EEstimatedCharge(V,t) estimated charge of EV V in period t based on elasticity equation (kWh) 

The quadratic relantionship between the price and the quantity can be employed instead of the linear 466 

approximation (17) as follows: 467 

( )
( , )

( )

( , ) ( ) ( )

2

( ) ( )

,ChargeMaxLimit V t

QuadA V

EstimatedCharge V t EVCharge t QuadB V

EVCharge t QuadC V

PE T t t V

T

κ

κ

κ

⎛ ⎞+⎜ ⎟
⎜ ⎟= ⋅ + ⋅ ⋅Δ ∀ ∀
⎜ ⎟
⎜ ⎟⋅⎝ ⎠

 (17)  

where the following represent 468 

parameters:  

κQuadA(V) fixed coefficient of elasticity equation for EV V 

κQuadB(V) linear coefficient of quadratic elasticity equation for EV V 

κQuadC(V) quadratic coefficient of elasticity equation for EV V 

The demand charge of the vehicle V in period t should be equal to the forecasted trip demand, i.e. the 469 

necessary amount of energy to accomplish a given trip before departure. The penalty term, λChargePenalty(V), is 470 

positive if the charge is higher than the demand of the expected trips and negative if the charge is insufficient. 471 

The optimization tries to find the value that match estimated charge with the forecasted demand without 472 

incurring in these penalties. However, this is quite hard to solve as the estimated demand also depends on the 473 

price, TEVCharge(t), that the EVs’ owners pay (price/demand model), and the goal is to obtain the optimal hourly 474 

price that satisfies all EV customers’ needs (18), while maximizing the profit function (1). 475 

( , , ) ( , , ) ( , , ) , ,EstimatedCharge V t z ForecastedDemand V t z ChargePenalty V t zE E V t zλ= + ∀ ∀ ∀  (18)  

where the following represent 476 

parameters:  

EForecastedDemand(V,t,z) forecasted amount of charge demand of EV V in period t in scenario z (kWh) 

and variables:  

λChargePenalty(V,t,z) charge penalty of EV V in period t in scenario z (kWh) 

6) Demand response 477 

Load demand response program, namely the direct load control program, can be formulated as: 478 



 

 

( , , ) ( , , ) , ,         LoadDR L t z LoadDRMaxLimit L t z t L zP P ∀ ∀ ∀≤  (19) 

where 479 

Parameters  

PLoadDRMaxLimit(L,t,z) maximum limit of active power reduction of load L in period t in scenario z (kW) 

7) Market 480 

The market offers and bids are constrained by (20-24), namely maximum and minimum energy sale and 481 

purchase, respectively. A market bid cannot coexist with a market offer (sale) at the same time in the same 482 

marketplace (24). 483 

( , ) ( , ) ( , ) ,         Sell M t MarketOfferMax M t Market M t t MP P X ∀ ∀≤ ⋅  (20) 

( , ) ( , ) ( , ) ,         Sell M t MarketOfferMin M t Market M t t MP P X ∀ ∀≥ ⋅  (21) 

( , ) ( , ) ( , ) ,         Purchase M t MarketPurchaseMax M t Market M t t MP P Y ∀ ∀≤ ⋅  (22) 

( , ) ( , ) ( , ) ,         Purchase M t MarketPurchaseMin M t Market M t t MP P Y ∀ ∀≥ ⋅  (23) 

( , ) ( , ) 1Market M t Market M tX Y+ ≤  (24) 

where 484 

Parameters  

PMarketOfferMax(M,t) maximum energy sale allowed in market M in period t (kW) 

PMarketOfferMin(M,t) minimum energy sale allowed in market M in period t (kW) 

PMarketPurchaseMax(M,t) maximum energy purchase allowed in market M in period t (kW) 

PMarketPurchaseMin(M,t) minimum energy purchase allowed in market M in period t (kW) 

XMarket(M,t) binary variable that represents an offer in market M in period t 

YMarket(M,t) binary variable that represents a bid in market M in period t 

3.5. Implementation algorithm and metrics 485 

The formulated model is a Mixed Integer Nonlinear Programming (MINLP), due to the presence of both 486 

continuous and integer variables and nonlinear objective function. The MINLP is implemented in TOMLAB 487 

[46], which is an advanced optimization toolbox for MATLAB [47], using KNITRO solver.  488 

To measure the advantage of using stochastic programming, some metrics are implemented. The Expected 489 

value of Perfect Information (EVPI) for maximization problems, described by (25), represents the quantity that 490 

the decision maker would need to pay to obtain perfect information about the future. 𝑧"∗ is the optimal value of 491 

the original stochastic objective function, and 𝑧$∗ denotes the optimal value of the same problem after relaxing 492 

the nonanticipativity of the decisions. This problem is known as the wait-and-see problem. In wait-and-see 493 

problem, all variables are defined as scenario-dependent [43]. The Value of Stochastic Solution (VSS), defined 494 

by (26), represents the economic advantage of using stochastic programming over a deterministic model. A 495 

deterministic problem should be solved first to obtain 𝑧%∗. In this deterministic problem, the uncertain 496 



 

 

parameters in the original two-stage problem are replaced with their expected values. Another stochastic 497 

problem is developed by replacing the first stage decision variables of the original problem with the optimal 498 

values obtained from solving the deterministic problem. 𝑧%∗ is the optimal objective function of this modified 499 

problem [43]. For more information about the quality metrics of the stochastic programming problems, the 500 

reader can refer to [43]. 501 
P* S*EVPI z z= −  (25) 

where 502 

ZP* profit of the wait-and-see solution (P stands for perfect information) 

ZS* profit of the stochastic solution 

 503 
S* D*VSS z z= −  (26) 

where 504 

ZD* profit of the modified stochastic problem 

ZS* profit of stochastic solution 

4. Case study 505 

The developed DR optimization model is tested using a case study based on a real distribution network with 506 

201 buses, in Zaragoza, Spain [48]. The original data is slightly modified with regard to the production and 507 

consumption targets of 2030. Therefore, a high penetration of DG units is considered, corresponding to about 508 

70% of the installed capacity in the considered network, according to what is expected in 2030 [49]. Regarding 509 

DG, the cogeneration installed capacity represents 33%, the photovoltaic represents about 30%, wind represents 510 

22 %, small hydro represents 11%, and biomass represents 4%. Moreover, an approximate number of 1300 EVs 511 

has been estimated in the corresponding grid, taking into account the expected penetration rate (14%), in the 512 

fleet size of Spain for 2030 [50]. The mentioned penetration rate (14%) is the recommended value to understand 513 

the effects of the mass integration of EVs in the different applications, according to [50]. The EVs’ scenarios 514 

are initially generated using the tool provided by [51], taking into account these parameters. The generated 515 

scenario is assumed to be the initial forecast of the EVs demand. 516 

In this case study, the energy aggregator is able to manage 118 DG units, the energy bought from external 517 

supplier, 6 ESS2 units (the charging and discharging efficiency considered for the ESS units is 90%), 1300 518 

EVs3, 168 loads aggregated by bus and 89 aggregated consumers with DR programs (direct load control). It is 519 

assumed that the aggregator manages the customers in the area, using the proposed stochastic model, with the 520 

aim to maximize the total expected profits. Table 1 shows the energy data and respective prices. The information 521 

                                                             

2 ESS units are assumed to be advanced utility-scale storage units of 1 MWh capacity each. 
3 1300 EVs are aggregated in 100 equivalent units to reduce computational burden. 



 

 

of price is depicted in monetary units per kWh (m.u./kWh)4 and the capacity in MW. The prices have been 522 

designed according to [52]. 523 

 Table 1. 

The scenario-based approach requires to have scenarios that catch the representative uncertainty in the 524 

underlying data. A higher number of sampling scenarios translates to a higher degree of uncertainty 525 

representativeness. To demonstrate the application of the stochastic model, 50 scenarios for each source of 526 

uncertainty have been generated using MCS sampling. More scenarios could have been generated but at a cost 527 

of higher computational demand. Uncertainty in renewable-based generation, EVs and load demand is 528 

considered. The initial forecast is assumed to have an error followed by a normal distribution for each of the 529 

different sources of uncertainty. The standard deviation is assumed to be as follows: 15% for the EVs demand 530 

(σEVs); 10% for the load demand σload; and 15% for the renewable-based demand σrenewable.  531 

The stochastic model presented in section 3 is used to solve the presented case study. Determining the 532 

optimal day-ahead EV pricing implies knowing the reaction to price of the EV customers. In this case study, 5 533 

distinct EV customers’ groups are assumed and empirically classified: bus fleet, taxi, salesman, worker and 534 

shopper groups. Each group has distinct characteristics as shown in Figure 4, where bus fleets are less sensitive 535 

to price variation. The data has been assumed for demonstration purposes as currently no such data is available. 536 

In a real-world situation and with sufficient data, the aggregator could maintain a historic file to understand the 537 

behavior of its customers towards different prices and perform some surveys to obtain a more reliable model. 538 

 Figure 4. 

Figure 5 depicts the distribution of the 1300 EVs, e.g. 64% of them belong to worker group. In parentheses 539 

the estimated trip demand of each group is presented. Although, only 3% of EVs are bus fleets, their trip demand 540 

represents more than 20% of the total. The worker group represents more than 40% of the total estimated trip 541 

demand. 542 

 Figure 5. 

The trip demand forecast of the considered 1300 EVs customers can be seen in Figure 6. The uncertainty is 543 

catch by the MCS for 50 scenarios and the variation is represented in the figure by a bold line. For instance, in 544 

period 18 the demand forecast varies between 0.95 MWh and 1.26 MWh, according to the scenario generation. 545 

The initial state of the charge of EV battery is of stochastic nature. 546 

 Figure 6. 

Figure 7 shows the box plot regarding the variation catch by MCS, which corresponds to about 1 MWh of 547 

uncertain variation. All of these data serves as inputs for the developed stochastic energy resource model. 548 

 Figure 7. 

                                                             

4 The monetary unit corresponds to $ (dollar) in this case study. 



 

 

5. Results and Discussion 549 

The proposed two-stage stochastic model is applied to the described case study. In addition, the counterpart 550 

deterministic model is assessed to evaluate the performance of the proposed stochastic model. The dimension 551 

of the optimization problem is 1,294,152 variables with 373,488 constraints in the stochastic version. The 552 

deterministic counterpart formulation only uses 26,424 variables with 7,919 constraints. 553 

5.1. Deterministic solution 554 

Figures 8 present the deterministic energy resource scheduling. The total scheduled energy resources is 555 

251.22 MWh. Concerning the total external supplier acquisition, the amount is 126.13 MWh (dark blue in the 556 

figure), while the controllable generation (dispatchable) is 75.86 MWh (light pink). The non-controllable 557 

generation (dark grey) is 19.03 MWh. The total storage discharge is 6.00 MWh (yellow), while the total 558 

scheduled DR is 6.81 MWh (orange). The total market purchase is 17.39 MWh (light blue). 559 

 Figure 8. 

Figure 9 presents the deterministic consumption scheduling. The optimal solution for the market sale is 560 

4.52 MWh (in light blue), storage charge is 7.41 MWh (yellow), and the expected vehicle charge is 26.43 MWh 561 

(light green). The NSD is not verified in this solution. However, the deterministic solution does not takes into 562 

account the uncertainty underlying in the problem inputs. Therefore, the given deterministic solution may easily 563 

not be optimal if these forecasts are not accurate. 564 

 Figure 9. 

To understand how two-stage stochastic programming can improve the decision-making, a comparison is 565 

made by considering a reasonable accuracy error in the underlying uncertain parameters (forecasts) as discussed 566 

in section 4. Hence, the solution obtained in the stochastic programming is analyzed and compared with the 567 

deterministic counterpart next. 568 

5.2. Stochastic solution comparison 569 

Before analyzing the obtained EV tariff, the energy scheduling decision variables are compared. Figure 10 570 

shows the temporal variation of the stochastic solution compared with the deterministic, namely regarding the 571 

first-stage decision variables, except for the EV tariff variables (analyzed later). It can be seen in Figure 10 that 572 

the most part of the decision’s variations occur in the earlier periods of the energy scheduling, namely in the 573 

market sale, purchase and controllable DG variables. In fact, the highest variation occur in the market purchase 574 

in period 9, i.e. 52% market purchase reduction when compared with the deterministic solution. In addition, it 575 

can be seen that positive variations occur in market sale (+20% in period 4) and also positive variations in 576 

controllable DG variables (despite slightly negative in period 3 and 24). Finally, very few variations are 577 

registered with the external supplier variables. In this case NSD is not registered either. 578 

 Figure 10. 



 

 

Table 2 depicts the aggregated sum of controllable DG, external supplier energy acquisition, market sales 579 

and market purchases for the deterministic and stochastic solution. Hence, it can be seen that the variations are 580 

relatively small from this perspective (aggregated sum). 581 

 Table 2. 

Table 2 shows that the stochastic solution prefers to increase market sale by 2% while reducing market 582 

purchase by 3% in comparison with the deterministic approach. The total controllable DG is increased by 1%, 583 

while there is insignificant variation in the total scheduling of the external supplier. 584 

The following analysis focus in the comparison of the obtained EV tariff in both approaches. Figure 11 585 

shows the resulting tariff in m.u./kWh for solutions obtained with the deterministic (black line) and stochastic 586 

model optimization (green line). In the figure, the resulting tariff is rounded to the second decimal. Analyzing 587 

the obtained solutions, it is possible to see that the differences between both methods are considerably small. 588 

The maximum difference in the obtained tariff is 0.01 m.u./kWh. The differences happen in periods 1, 10, 12, 589 

15 and 23. There are 3 periods (1, 10, 23) where the stochastic solution presents a higher price than the 590 

deterministic solution and 2 periods otherwise (12, 15). 591 

 Figure 11. 

Figure 12 depicts the EV tariff (light transparent green) obtained in the stochastic solution compared 592 

with the amount of expected EV charging by group. The different groups are represented by different colors, 593 

where it can be seen that the worker group represents a significant part of the expected charging (69%). The 594 

bus fleet group is also significant (10%) but its presence is more concentrated in certain periods, e.g. 1-2, 10, 595 

14-16 and 20. Moreover, it can be identified that the demand/price model is being followed as more demand is 596 

expected when the prices are low and lower demand when prices are higher. 597 

 Figure 12. 

5.3. Advantages of the stochastic solution 598 

Table 3 depicts VSS and EVPI metrics that demonstrate the advantage of the two-stage stochastic 599 

programming over the deterministic counterpart for this case. The ZD* was obtained by running the deterministic 600 

model with the average scenario and then locking the first-stage variables in the two-stage stochastic 601 

programming with the result of the first deterministic optimization. The expected profit of the stochastic 602 

solution (ZS*) was 5120 m.u., against 4824 m.u. in ZD. Consequently, the VSS is 296 m.u., while the EVPI is 603 

170 m.u. in this case. The EVPI means how much the aggregator would be willing to pay to have perfect 604 

information (utopian idea). The execution time of the stochastic solution was 3680s, while the deterministic 605 

counterpart was 7s. This computational time increase is mainly attributed to problem dimensionality and its 606 

nonlinearity, namely because of over 1 million variables in the stochastic model. In fact, the curse of 607 

dimensionality poses a hard limitation in the number of scenarios it is possible to deal under reasonable time 608 

and available computer resources. 609 

 Table 3. 



 

 

Although, the VSS indicated that the stochastic solution was better in the long-term than the deterministic 610 

counterpart, i.e. an advantage of 296 m.u. or 6%, the differences realized in the solutions were not very 611 

noticeable as initially presumed. Even so, the most noticeable difference verified in the solutions was in the 612 

market transactions, namely market purchases, where the stochastic solution was 3% more conservative than 613 

the deterministic solution, i.e. less 520 kWh market purchases. Even though, these small differences translate 614 

into a more profitable solution in the long-term. A daily difference of 296 m.u. could potentially represent more 615 

than 108,000 m.u./year in savings. 616 

5.4. Results under different EV pricing scheme 617 

Table 4 depicts the expected operation performance under different EVs pricing schemes. The proposed 618 

EV pricing scheme (optimal pricing) is compared with several fixed price schemes using the previously 619 

discussed EV price/demand model.  620 

 Table 4. 

The implemented EV fixed pricing schemes vary from 0.15 m.u./kWh to 0.19 m.u./kWh for comparison 621 

with the optimal pricing. It can be seen that that the expected profit increases when the fixed price increases as 622 

well. However, the expected revenue decreases, and eventually, the profit would start to decrease. The EVs 623 

revenue represents the EVs’ owner bill, i.e. what they pay for EVs charging. In other words, the EVs are willing 624 

to charge more at lower prices and far less at higher prices. The EV revenue does not seem to increase as the 625 

EV price increases. At lower prices the expected profit seems to be significantly lower and the ∑|λChargePenalty(V)| 626 

penalties are also higher, due to high increase of EV demand. The ideal situation would be when ∑|λChargePenalty(V)| 627 

is 0 where the customers would be satisfied. The case where this is more likely to happen is with the proposed 628 

dynamic pricing approach. In addition to a relatively high profit, the EVs demand is satisfied at reduced energy 629 

costs (lowest EV revenue). At a fixed price of 0.19 m.u./kWh the expected profit could be higher, i.e. 5247 630 

m.u., than in the proposed dynamic pricing. However, there is a higher level of penalties, including potentially 631 

unrealized EVs demand, while customers pay much more for less energy, thus potentially leading to customers’ 632 

dissatisfaction. 633 

5.5. Limitations 634 

A few limitations in the current proposal have been identified, which could be improved in future works. 635 

The major limitation in the current model is the computational burden, namely when a high number of scenarios 636 

(higher accuracy of uncertainty representation) is desired. Nevertheless, the nonlinearity of the problem may be 637 

mitigated by using metaheuristics and decomposition-based approaches. Moreover, the results strongly depend 638 

on the accuracy of the price/demand model, which can be difficult to obtain as specific data regarding 639 

customers’ preferences and behavior are needed. In the future, better use and techniques in the field of big data 640 

may provide easy answers to this.  641 



 

 

6. Conclusions and future work 642 

With mass integration of EVs in a near future, a significant part of the consumers’ electric bill will be due 643 

to mobility. In fact, EVs may increase costs related to infrastructure supply and energy without appropriate 644 

actions. Therefore, sophisticated demand response models are crucial to leverage power grid efficiency and 645 

postpone high investment costs in generation and transmission infrastructure. The currently proposed tariffs by 646 

the energy providers to tackle the envisaged problem consist in fixed time of use strategies, which are limited 647 

to attain the full SG potential. The dynamic environment of a SG calls for better exploitation of its resources, 648 

namely maximizing renewables use and improve consumer participation. 649 

This paper discusses the DR models for EVs and proposes a price-based strategy to deal with a large 650 

number of EVs in the grid. These DR programs are shaped for EVs and can be offered by energy providers in 651 

their business models, which can take full advantage of the upcoming opportunities. In addition to the large 652 

number of EVs, these utilities face a growing number of other DERs. These resources must be considered in 653 

the ERM problem, which require sophisticated software tools that can handle its complexity, consider the 654 

involved uncertainty, and achieve an effective and efficient operation. Therefore, this paper presents a new 655 

stochastic model that considers several sources of uncertainty, including the variability of the load demand, 656 

intermittency of wind and PV generation and stochastic demand of EVs, while considering the optimal dynamic 657 

pricing (DR) for EVs. These features have been considered in the same optimization model. The results suggest 658 

that the two-stage stochastic programming approach can provide a better result for the aggregator, i.e. a higher 659 

profit (more 6%) than the deterministic counterpart approach, which considers only the average scenario. 660 

However, the current computational burden of the stochastic solution (>1 hour) is incomparable to the 661 

deterministic approach (7 s). This issue may be mitigated in a near future as technology evolves. The integrated 662 

optimal pricing scheduling demonstrates to improve the profits of the aggregator while satisfying the expected 663 

EV customers’ requirements in comparison with the regular flat price schemes, which do not influence user’s 664 

behavior. The users’ satisfaction is conveniently exploited, by minimizing the unrealized trips and the unwanted 665 

charges the objective function. Indeed, the results show that the proposed approach is the most suitable one to 666 

match the users’ needs and the energy price, thus contributing to the highest satisfaction. 667 

Future proposals may include obtaining more than one tariff for each of the different groups, including 668 

other kinds of load demand, such as residential, commercial and industrial loads. This may improve the 669 

operational results and the increase the flexibility of the current proposal. In addition, the idea could be tested 670 

under an agent-based simulation platform with several energy aggregators offering their services to several 671 

customers in a market competitive environment. In this platform it would be possible to refine the developed 672 

model and further understand its advantages and benefits to the involved players, including the consumers, 673 

whose active role could be explored. 674 
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Fig. 2. Integrated energy resource scheduling with the proposed optimal pricing 832 
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Fig. 3. Energy aggregator transactions and customer’s contracts: EVs contract a variable price term 835 
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Fig. 4. Considered price/demand model of the 5 EV groups 838 
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Fig. 5. EVs group distribution and trip demand forecast by group in parentheses 841 
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Fig. 6. Electric vehicles trip demand forecast: 50 scenarios in MCS simulation (σEVs =15%) 844 
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Fig. 7. Uncertainty in the initial state of charge of the EVs (σEVs =15%) 847 
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Fig. 8. Energy resource scheduling in the deterministic model 850 
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Fig. 9. Consumption scheduling in the deterministic model 853 
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Fig. 10. Variation of decision variables for the deterministic and stochastic solution 856 
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Fig. 11. Comparison of the proposed EV pricing solution between the deterministic and stochastic model 859 

  860 



 

 

 861 
Fig. 12. EV tariff vs expected EV charging by group (average) of the stochastic solution 862 
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Table 1. Zaragoza 2030 scenario characterization 870 

Energy resources 
Prices 

(m.u./kWh) 
Capacity/forecast 

(MW) Units # 
min – max min – max 

Biomass 0.15 – 0.15 0.00 – 0.52 1 
CHP 0.10 – 0.12 0.00 – 4.00 4 

Small Hydro 0.13 – 0.13 0.12 – 0.35 1 
Photovoltaic 0.20 – 0.20 0.00 – 1.70 82 

Wind 0.12 – 0.12 0.07 – 0.94 30 
External Supplier 0.09 – 0.20 0.00 – 7.30 1 

Storage Charge 0.12 – 0.12 0.00 – 1.50 6 Discharge 0.18 – 0.18 0.00 – 1.50 
Electric 
Vehicle Charge Decision variable 0.00 – 6.94 1300 

Demand 
Response 

Direct load control 
(reduce) 0.11 – 0.17 0.35 – 0.85 89 

Load 0.09 – 0.15 5.04 – 12.38 168 
Market 0.08 – 0.13 0.00 – 1.00 1 
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Table 2. Comparison of results between deterministic and stochastic solution 873 

 Deterministic (ZP*) Stochastic (ZS*)  Variation (%) 
Controllable DG (MWh) 75.86 76.36 1 
External supplier (MWh) 126.13 126.04 0 

Market sale (MWh) 4.52 4.62 2 
Market purchase (MWh) 17.39 16.87 -3 
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Table 3. Advantage of stochastic programming approach 876 

Indicator Value 
ZS* (m.u.) 5120 
ZD* (m.u.) 4824 

VSS (m.u.) 296 (6%) 
EVPI (m.u.) 170 (3%) 

Execution 
time (s) 

ZS* 3680 
ZD* 7 
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Table 4. Expected operation performance under different pricing schemes 879 

EV pricing scheme Expected profit 
(m.u.) 

Expected EVs 
revenue (m.u.) 

Unrealized EVs 
forecast (MWh) ∑|λChargePenalty(V)| 

Optimal pricing 5120 4743 0.02 1.6 
Fixed: 0.15 m.u./kWh 4325 5665 0.00 36.6 
Fixed: 0.16 m.u./kWh 4643 5570 0.00 26.35 
Fixed: 0.17 m.u./kWh 4903 5416 0.00 16.4 
Fixed: 0.18 m.u./kWh 5105 5203 0.10 7.4 
Fixed: 0.19 m.u./kWh 5247 4931 0.32 4.6 
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