4 research outputs found

    Multiple Timescale Energy Scheduling for Wireless Communication with Energy Harvesting Devices

    Get PDF
    The primary challenge in wireless communication with energy harvesting devices is to efficiently utilize the harvesting energy such that the data packet transmission could be supported. This challenge stems from not only QoS requirement imposed by the wireless communication application, but also the energy harvesting dynamics and the limited battery capacity. Traditional solar predictable energy harvesting models are perturbed by prediction errors, which could deteriorate the energy management algorithms based on this models. To cope with these issues, we first propose in this paper a non-homogenous Markov chain model based on experimental data, which can accurately describe the solar energy harvesting process in contrast to traditional predictable energy models. Due to different timescale between the energy harvesting process and the wireless data transmission process, we propose a general framework of multiple timescale Markov decision process (MMDP) model to formulate the joint energy scheduling and transmission control problem under different timescales. We then derive the optimal control policies via a joint dynamic programming and value iteration approach. Extensive simulations are carried out to study the performances of the proposed schemes

    Adaptive Prioritized Random Linear Coding and Scheduling for Layered Data Delivery From Multiple Servers

    Get PDF
    In this paper, we deal with the problem of jointly determining the optimal coding strategy and the scheduling decisions when receivers obtain layered data from multiple servers. The layered data is encoded by means of prioritized random linear coding (PRLC) in order to be resilient to channel loss while respecting the unequal levels of importance in the data, and data blocks are transmitted simultaneously in order to reduce decoding delays and improve the delivery performance. We formulate the optimal coding and scheduling decisions problem in our novel framework with the help of Markov decision processes (MDP), which are effective tools for modeling adapting streaming systems. Reinforcement learning approaches are then proposed to derive reduced computational complexity solutions to the adaptive coding and scheduling problems. The novel reinforcement learning approaches and the MDP solution are examined in an illustrative example for scalable video transmission . Our methods offer large performance gains over competing methods that deliver the data blocks sequentially. The experimental evaluation also shows that our novel algorithms offer continuous playback and guarantee small quality variations which is not the case for baseline solutions. Finally, our work highlights the advantages of reinforcement learning algorithms to forecast the temporal evolution of data demands and to decide the optimal coding and scheduling decisions

    Resource allocation in networks via coalitional games

    Get PDF
    The main goal of this dissertation is to manage resource allocation in network engineering problems and to introduce efficient cooperative algorithms to obtain high performance, ensuring fairness and stability. Specifically, this dissertation introduces new approaches for resource allocation in Orthogonal Frequency Division Multiple Access (OFDMA) wireless networks and in smart power grids by casting the problems to the coalitional game framework and by providing a constructive iterative algorithm based on dynamic learning theory.  Software Engineering (Software)Algorithms and the Foundations of Software technolog
    corecore