413 research outputs found

    Approximating Geometric Knapsack via L-packings

    Full text link
    We study the two-dimensional geometric knapsack problem (2DK) in which we are given a set of n axis-aligned rectangular items, each one with an associated profit, and an axis-aligned square knapsack. The goal is to find a (non-overlapping) packing of a maximum profit subset of items inside the knapsack (without rotating items). The best-known polynomial-time approximation factor for this problem (even just in the cardinality case) is (2 + \epsilon) [Jansen and Zhang, SODA 2004]. In this paper, we break the 2 approximation barrier, achieving a polynomial-time (17/9 + \epsilon) < 1.89 approximation, which improves to (558/325 + \epsilon) < 1.72 in the cardinality case. Essentially all prior work on 2DK approximation packs items inside a constant number of rectangular containers, where items inside each container are packed using a simple greedy strategy. We deviate for the first time from this setting: we show that there exists a large profit solution where items are packed inside a constant number of containers plus one L-shaped region at the boundary of the knapsack which contains items that are high and narrow and items that are wide and thin. As a second major and the main algorithmic contribution of this paper, we present a PTAS for this case. We believe that this will turn out to be useful in future work in geometric packing problems. We also consider the variant of the problem with rotations (2DKR), where items can be rotated by 90 degrees. Also, in this case, the best-known polynomial-time approximation factor (even for the cardinality case) is (2 + \epsilon) [Jansen and Zhang, SODA 2004]. Exploiting part of the machinery developed for 2DK plus a few additional ideas, we obtain a polynomial-time (3/2 + \epsilon)-approximation for 2DKR, which improves to (4/3 + \epsilon) in the cardinality case.Comment: 64pages, full version of FOCS 2017 pape

    Online Knapsack Problem under Expected Capacity Constraint

    Full text link
    Online knapsack problem is considered, where items arrive in a sequential fashion that have two attributes; value and weight. Each arriving item has to be accepted or rejected on its arrival irrevocably. The objective is to maximize the sum of the value of the accepted items such that the sum of their weights is below a budget/capacity. Conventionally a hard budget/capacity constraint is considered, for which variety of results are available. In modern applications, e.g., in wireless networks, data centres, cloud computing, etc., enforcing the capacity constraint in expectation is sufficient. With this motivation, we consider the knapsack problem with an expected capacity constraint. For the special case of knapsack problem, called the secretary problem, where the weight of each item is unity, we propose an algorithm whose probability of selecting any one of the optimal items is equal to 1−1/e1-1/e and provide a matching lower bound. For the general knapsack problem, we propose an algorithm whose competitive ratio is shown to be 1/4e1/4e that is significantly better than the best known competitive ratio of 1/10e1/10e for the knapsack problem with the hard capacity constraint.Comment: To appear in IEEE INFOCOM 2018, April 2018, Honolulu H

    Online Knapsack Problems with a Resource Buffer

    Get PDF
    In this paper, we introduce online knapsack problems with a resource buffer. In the problems, we are given a knapsack with capacity 1, a buffer with capacity R >= 1, and items that arrive one by one. Each arriving item has to be taken into the buffer or discarded on its arrival irrevocably. When every item has arrived, we transfer a subset of items in the current buffer into the knapsack. Our goal is to maximize the total value of the items in the knapsack. We consider four variants depending on whether items in the buffer are removable (i.e., we can remove items in the buffer) or non-removable, and proportional (i.e., the value of each item is proportional to its size) or general. For the general&non-removable case, we observe that no constant competitive algorithm exists for any R >= 1. For the proportional&non-removable case, we show that a simple greedy algorithm is optimal for every R >= 1. For the general&removable and the proportional&removable cases, we present optimal algorithms for small R and give asymptotically nearly optimal algorithms for general R

    Fully Dynamic Algorithms for Knapsack Problems with Polylogarithmic Update Time

    Get PDF
    Knapsack problems are among the most fundamental problems in optimization. In the Multiple Knapsack problem, we are given multiple knapsacks with different capacities and items with values and sizes. The task is to find a subset of items of maximum total value that can be packed into the knapsacks without exceeding the capacities. We investigate this problem and special cases thereof in the context of dynamic algorithms and design data structures that efficiently maintain near-optimal knapsack solutions for dynamically changing input. More precisely, we handle the arrival and departure of individual items or knapsacks during the execution of the algorithm with worst-case update time polylogarithmic in the number of items. As the optimal and any approximate solution may change drastically, we maintain implicit solutions and support polylogarithmic time query operations that can return the computed solution value and the packing of any given item. While dynamic algorithms are well-studied in the context of graph problems, there is hardly any work on packing problems (and generally much less on non-graph problems). Motivated by the theoretical interest in knapsack problems and their practical relevance, our work bridges this gap

    Scheduling Monotone Moldable Jobs in Linear Time

    Full text link
    A moldable job is a job that can be executed on an arbitrary number of processors, and whose processing time depends on the number of processors allotted to it. A moldable job is monotone if its work doesn't decrease for an increasing number of allotted processors. We consider the problem of scheduling monotone moldable jobs to minimize the makespan. We argue that for certain compact input encodings a polynomial algorithm has a running time polynomial in n and log(m), where n is the number of jobs and m is the number of machines. We describe how monotony of jobs can be used to counteract the increased problem complexity that arises from compact encodings, and give tight bounds on the approximability of the problem with compact encoding: it is NP-hard to solve optimally, but admits a PTAS. The main focus of this work are efficient approximation algorithms. We describe different techniques to exploit the monotony of the jobs for better running times, and present a (3/2+{\epsilon})-approximate algorithm whose running time is polynomial in log(m) and 1/{\epsilon}, and only linear in the number n of jobs
    • …
    corecore