8,327 research outputs found

    Resource Management in Grid Computing: A Review

    Get PDF
    A Network Computing System is a virtual computer formed by a networked set of heterogeneous machines that agree to share their local resources with each other. A grid is a very large scale network computing system that scales to internet size environments with machines distributed across multiple organizationsand administrative domains. The resource management system is the central component of grid computing system. Resources in the grid are distributed, heterogeneous, autonomous and unpredictable. A resource management system matches requests to resources, schedules the matched resources, and executes the requests using scheduled resources. Scheduling in the grid environment depends upon the characteristics of the tasks, machines and network connectivity. The paper provides a brief overview of resource management in grid computing considering important factors such as types of resource management in grid computing, resource management models and comparison of various scheduling algorithm in resource management in grid computing

    Theory and Engineering of Scheduling Parallel Jobs

    Get PDF
    Scheduling is very important for an efficient utilization of modern parallel computing systems. In this thesis, four main research areas for scheduling are investigated: the interplay and distribution of decision makers, the efficient schedule computation, efficient scheduling for the memory hierarchy and energy-efficiency. The main result is a provably fast and efficient scheduling algorithm for malleable jobs. Experiments show the importance and possibilities of scheduling considering the memory hierarchy

    A Taxonomy of Data Grids for Distributed Data Sharing, Management and Processing

    Full text link
    Data Grids have been adopted as the platform for scientific communities that need to share, access, transport, process and manage large data collections distributed worldwide. They combine high-end computing technologies with high-performance networking and wide-area storage management techniques. In this paper, we discuss the key concepts behind Data Grids and compare them with other data sharing and distribution paradigms such as content delivery networks, peer-to-peer networks and distributed databases. We then provide comprehensive taxonomies that cover various aspects of architecture, data transportation, data replication and resource allocation and scheduling. Finally, we map the proposed taxonomy to various Data Grid systems not only to validate the taxonomy but also to identify areas for future exploration. Through this taxonomy, we aim to categorise existing systems to better understand their goals and their methodology. This would help evaluate their applicability for solving similar problems. This taxonomy also provides a "gap analysis" of this area through which researchers can potentially identify new issues for investigation. Finally, we hope that the proposed taxonomy and mapping also helps to provide an easy way for new practitioners to understand this complex area of research.Comment: 46 pages, 16 figures, Technical Repor

    A Taxonomy of Workflow Management Systems for Grid Computing

    Full text link
    With the advent of Grid and application technologies, scientists and engineers are building more and more complex applications to manage and process large data sets, and execute scientific experiments on distributed resources. Such application scenarios require means for composing and executing complex workflows. Therefore, many efforts have been made towards the development of workflow management systems for Grid computing. In this paper, we propose a taxonomy that characterizes and classifies various approaches for building and executing workflows on Grids. We also survey several representative Grid workflow systems developed by various projects world-wide to demonstrate the comprehensiveness of the taxonomy. The taxonomy not only highlights the design and engineering similarities and differences of state-of-the-art in Grid workflow systems, but also identifies the areas that need further research.Comment: 29 pages, 15 figure

    Production Scheduling

    Get PDF
    Generally speaking, scheduling is the procedure of mapping a set of tasks or jobs (studied objects) to a set of target resources efficiently. More specifically, as a part of a larger planning and scheduling process, production scheduling is essential for the proper functioning of a manufacturing enterprise. This book presents ten chapters divided into five sections. Section 1 discusses rescheduling strategies, policies, and methods for production scheduling. Section 2 presents two chapters about flow shop scheduling. Section 3 describes heuristic and metaheuristic methods for treating the scheduling problem in an efficient manner. In addition, two test cases are presented in Section 4. The first uses simulation, while the second shows a real implementation of a production scheduling system. Finally, Section 5 presents some modeling strategies for building production scheduling systems. This book will be of interest to those working in the decision-making branches of production, in various operational research areas, as well as computational methods design. People from a diverse background ranging from academia and research to those working in industry, can take advantage of this volume
    • …
    corecore