362 research outputs found

    Effects of haptic feedback in dual-task teleoperation of a mobile robot

    Get PDF
    Teleoperation system usage is challenging to human operators, as this system has a predominantly visual interface that limits the ability to acquire situation awareness, (e.g. maintain a safe teleoperation). This limitation coupled with the dual-task problem of teleoperating a mobile robot, negatively affects the operators cognitive load and motor skills. Our motivation is to offload some of the visual information to a secondary perceptual channel (haptic), by proposing an assisted teleoperation system. This system uses haptic feedback to alert the operator of obstacle proximity, without directly influencing the operator’s command inputs. The objective of this paper, is to evaluate and validate the efficacy of our system’s haptic feedback, by providing the obstacle proximity information to the operator. The user experiment was conducted to emulate the dual-task problem, by having a concurrent task for cognitive distraction. Our results showed significant differences in time to complete the navigation task and the duration of collisions, between the haptic feedback condition and the control condition.info:eu-repo/semantics/acceptedVersio

    Generating Humanoid Multi-Contact through Feasibility Visualization

    Full text link
    We present a feasibility-driven teleoperation framework designed to generate humanoid multi-contact maneuvers for use in unstructured environments. Our framework is designed for motions with arbitrary contact modes and postures. The operator configures a pre-execution preview robot through contact points and kinematic tasks. A fast estimation of the preview robot's quasi-static feasibility is performed by checking contact stability and collisions along an interpolated trajectory. A visualization of Center of Mass (CoM) stability margin, based on friction and actuation constraints, is displayed and can be previewed if the operator chooses to add or remove contacts. Contact points can be placed anywhere on a mesh approximation of the robot surface, enabling motions with knee or forearm contacts. We demonstrate our approach in simulation and hardware on a NASA Valkyrie humanoid, focusing on multi-contact trajectories which are challenging to generate autonomously or through alternative teleoperation approaches

    Reducing the Barrier to Entry of Complex Robotic Software: a MoveIt! Case Study

    Full text link
    Developing robot agnostic software frameworks involves synthesizing the disparate fields of robotic theory and software engineering while simultaneously accounting for a large variability in hardware designs and control paradigms. As the capabilities of robotic software frameworks increase, the setup difficulty and learning curve for new users also increase. If the entry barriers for configuring and using the software on robots is too high, even the most powerful of frameworks are useless. A growing need exists in robotic software engineering to aid users in getting started with, and customizing, the software framework as necessary for particular robotic applications. In this paper a case study is presented for the best practices found for lowering the barrier of entry in the MoveIt! framework, an open-source tool for mobile manipulation in ROS, that allows users to 1) quickly get basic motion planning functionality with minimal initial setup, 2) automate its configuration and optimization, and 3) easily customize its components. A graphical interface that assists the user in configuring MoveIt! is the cornerstone of our approach, coupled with the use of an existing standardized robot model for input, automatically generated robot-specific configuration files, and a plugin-based architecture for extensibility. These best practices are summarized into a set of barrier to entry design principles applicable to other robotic software. The approaches for lowering the entry barrier are evaluated by usage statistics, a user survey, and compared against our design objectives for their effectiveness to users

    PoinTap system: a human-robot interface to enable remotely controlled tasks

    Get PDF
    In the last decades, industrial manipulators have been used to speed up the production process and also to perform tasks that may put humans at risk. Typical interfaces employed to teleoperate the robot are not so intuitive to use. In fact, it takes longer to learn and properly control a robot whose interface is not easy to use, and it may also increase the operator’s stress and mental workload. In this paper, a touchscreen interface for supervised assembly tasks is proposed, using an LCD screen and a hand-tracking sensor. The aim is to provide an intuitive remote controlled system that enables a flexible execution of assembly tasks: high level decisions are entrusted to the human operator while the robot executes pick-and-place operations. A demonstrative industrial case study showcases the system potentiality: it was first tested in simulation, and then experimentally validated using a real robot, in a laboratory environment

    GENERIC MIDI DEVICES AS NEW INPUT FOR SPECIALIZED SOFTWARE

    Get PDF
    There are plenty of sublime devices, including input devices, for all kinds of specialists working with computers available on the market. Furthermore, the more specific solutions are needed, the more expensive and complicated they are. At the time when many people prefer to try as many things as possible before selecting the specific learning paths, both high price and high entry threshold, can appear as blockers. In the paper, there are  selected some hardware and software solutions for facilitating the work of the professionals , who expect more analog-like interfaces and more natural ways to control computers presented. Additionally, the authors describe original software and hardware solution that allows the use of wide range MIDI devices as custom input devices. The concept of the software made is being presented, as well as some results of initial interaction of different kind of professionals and the proposed solution software and hardware

    Body-Borne Computers as Extensions of Self

    Get PDF
    The opportunities for wearable technologies go well beyond always-available information displays or health sensing devices. The concept of the cyborg introduced by Clynes and Kline, along with works in various fields of research and the arts, offers a vision of what technology integrated with the body can offer. This paper identifies different categories of research aimed at augmenting humans. The paper specifically focuses on three areas of augmentation of the human body and its sensorimotor capabilities: physical morphology, skin display, and somatosensory extension. We discuss how such digital extensions relate to the malleable nature of our self-image. We argue that body-borne devices are no longer simply functional apparatus, but offer a direct interplay with the mind. Finally, we also showcase some of our own projects in this area and shed light on future challenges
    corecore