Generating Humanoid Multi-Contact through Feasibility Visualization

Abstract

We present a feasibility-driven teleoperation framework designed to generate humanoid multi-contact maneuvers for use in unstructured environments. Our framework is designed for motions with arbitrary contact modes and postures. The operator configures a pre-execution preview robot through contact points and kinematic tasks. A fast estimation of the preview robot's quasi-static feasibility is performed by checking contact stability and collisions along an interpolated trajectory. A visualization of Center of Mass (CoM) stability margin, based on friction and actuation constraints, is displayed and can be previewed if the operator chooses to add or remove contacts. Contact points can be placed anywhere on a mesh approximation of the robot surface, enabling motions with knee or forearm contacts. We demonstrate our approach in simulation and hardware on a NASA Valkyrie humanoid, focusing on multi-contact trajectories which are challenging to generate autonomously or through alternative teleoperation approaches

    Similar works

    Full text

    thumbnail-image

    Available Versions