9,232 research outputs found

    An FPTAS for parallel-machine scheduling under a grade of service provision to minimize makespan

    Get PDF
    Author name used in this publication: T. C. E. Cheng2008-2009 > Academic research: refereed > Publication in refereed journalAccepted ManuscriptPublishe

    Scheduling with processing set restrictions : a survey

    Get PDF
    2008-2009 > Academic research: refereed > Publication in refereed journalAccepted ManuscriptPublishe

    Scheduling parallel machines with inclusive processing set restrictions and job release times

    Get PDF
    2009-2010 > Academic research: refereed > Publication in refereed journalAccepted ManuscriptPublishe

    Towards a Cloud Native Big Data Platform using MiCADO

    Get PDF
    In the big data era, creating self-managing scalable platforms for running big data applications is a fundamental task. Such self-managing and self-healing platforms involve a proper reaction to hardware (e.g., cluster nodes) and software (e.g., big data tools) failures, besides a dynamic resizing of the allocated resources based on overload and underload situations and scaling policies. The distributed and stateful nature of big data platforms (e.g., Hadoop-based cluster) makes the management of these platforms a challenging task. This paper aims to design and implement a scalable cloud native Hadoop-based big data platform using MiCADO, an open-source, and a highly customisable multi-cloud orchestration and auto-scaling framework for Docker containers, orchestrated by Kubernetes. The proposed MiCADO-based big data platform automates the deployment and enables an automatic horizontal scaling (in and out) of the underlying cloud infrastructure. The empirical evaluation of the MiCADO-based big data platform demonstrates how easy, efficient, and fast it is to deploy and undeploy Hadoop clusters of different sizes. Additionally, it shows how the platform can automatically be scaled based on user-defined policies (such as CPU-based scaling)

    Data-Driven Intelligent Scheduling For Long Running Workloads In Large-Scale Datacenters

    Get PDF
    Cloud computing is becoming a fundamental facility of society today. Large-scale public or private cloud datacenters spreading millions of servers, as a warehouse-scale computer, are supporting most business of Fortune-500 companies and serving billions of users around the world. Unfortunately, modern industry-wide average datacenter utilization is as low as 6% to 12%. Low utilization not only negatively impacts operational and capital components of cost efficiency, but also becomes the scaling bottleneck due to the limits of electricity delivered by nearby utility. It is critical and challenge to improve multi-resource efficiency for global datacenters. Additionally, with the great commercial success of diverse big data analytics services, enterprise datacenters are evolving to host heterogeneous computation workloads including online web services, batch processing, machine learning, streaming computing, interactive query and graph computation on shared clusters. Most of them are long-running workloads that leverage long-lived containers to execute tasks. We concluded datacenter resource scheduling works over last 15 years. Most previous works are designed to maximize the cluster efficiency for short-lived tasks in batch processing system like Hadoop. They are not suitable for modern long-running workloads of Microservices, Spark, Flink, Pregel, Storm or Tensorflow like systems. It is urgent to develop new effective scheduling and resource allocation approaches to improve efficiency in large-scale enterprise datacenters. In the dissertation, we are the first of works to define and identify the problems, challenges and scenarios of scheduling and resource management for diverse long-running workloads in modern datacenter. They rely on predictive scheduling techniques to perform reservation, auto-scaling, migration or rescheduling. It forces us to pursue and explore more intelligent scheduling techniques by adequate predictive knowledges. We innovatively specify what is intelligent scheduling, what abilities are necessary towards intelligent scheduling, how to leverage intelligent scheduling to transfer NP-hard online scheduling problems to resolvable offline scheduling issues. We designed and implemented an intelligent cloud datacenter scheduler, which automatically performs resource-to-performance modeling, predictive optimal reservation estimation, QoS (interference)-aware predictive scheduling to maximize resource efficiency of multi-dimensions (CPU, Memory, Network, Disk I/O), and strictly guarantee service level agreements (SLA) for long-running workloads. Finally, we introduced a large-scale co-location techniques of executing long-running and other workloads on the shared global datacenter infrastructure of Alibaba Group. It effectively improves cluster utilization from 10% to averagely 50%. It is far more complicated beyond scheduling that involves technique evolutions of IDC, network, physical datacenter topology, storage, server hardwares, operating systems and containerization. We demonstrate its effectiveness by analysis of newest Alibaba public cluster trace in 2017. We are the first of works to reveal the global view of scenarios, challenges and status in Alibaba large-scale global datacenters by data demonstration, including big promotion events like Double 11 . Data-driven intelligent scheduling methodologies and effective infrastructure co-location techniques are critical and necessary to pursue maximized multi-resource efficiency in modern large-scale datacenter, especially for long-running workloads

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig

    On-Line Booking Policies and Competitive Analysis of Medical Examination in Hospital

    Get PDF
    From the on-line point, we consider the hospital’s medical examination appointment problem with hierarchical machines. This approach eliminates the need for both demand forecasts and a risk-neutrality assumption. Due to different unit revenue, uncertain demand, and arrival of patients, we design on-line booking policies for two kinds of different situations from the perspective of on-line policy and competitive analysis. After that, we prove the optimal competitive ratios. Through numerical examples, we compare advantages and disadvantages between on-line policies and traditional policies, finding that there is different superiority for these two policies under different arrival sequences
    corecore