
WestminsterResearch
http://www.westminster.ac.uk/westminsterresearch

Towards a Cloud Native Big Data Platform using MiCADO

MOSA, A., Kiss, T., Pierantoni, G., Deslauriers, J., Kagialis, D. and 

Terstyanszky, G.

This is a copy of the author’s accepted version of a paper subsequently published in the 

proceedings of ISPDC 2020, on-line event (originally Warsaw, Poland) 05 - 08 Jul 2020.

The final published version will be available online at:

https://ieeexplore.ieee.org/Xplore/home.jsp

© 2020 IEEE . Personal use of this material is permitted. Permission from IEEE must be 

obtained for all other uses, in any current or future media, including 

reprinting/republishing this material for advertising or promotional purposes, creating 

new collective works, for resale or redistribution to servers or lists, or reuse of any 

copyrighted component of this work in other works.

The WestminsterResearch online digital archive at the University of Westminster aims to 

make the research output of the University available to a wider audience. Copyright and 

Moral Rights remain with the authors and/or copyright owners.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by WestminsterResearch

https://core.ac.uk/display/326512222?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ieeexplore.ieee.org/Xplore/home.jsp


Towards a Cloud Native Big Data Platform using
MiCADO

Abdelkhalik Mosa, Tamas Kiss, Gabriele Pierantoni, James DesLauriers, Dimitrios Kagialis, Gabor Terstyanszky
Centre for Parallel Computing, University of Westminster, London, UK

{a.mosa, t.kiss, g.pierantoni, j.deslauriers, d.kagialis, g.z.terstyanszky}@westminster.ac.uk

Abstract—In the big data era, creating self-managing scalable
platforms for running big data applications is a fundamental
task. Such self-managing and self-healing platforms involve a
proper reaction to hardware (e.g., cluster nodes) and software
(e.g., big data tools) failures, besides a dynamic resizing of the
allocated resources based on overload and underload situations
and scaling policies. The distributed and stateful nature of
big data platforms (e.g., Hadoop-based cluster) makes the
management of these platforms a challenging task. This paper
aims to design and implement a scalable cloud native Hadoop-
based big data platform using MiCADO, an open-source, and a
highly customisable multi-cloud orchestration and auto-scaling
framework for Docker containers, orchestrated by Kubernetes.
The proposed MiCADO-based big data platform automates the
deployment and enables an automatic horizontal scaling (in
and out) of the underlying cloud infrastructure. The empirical
evaluation of the MiCADO-based big data platform demonstrates
how easy, efficient, and fast it is to deploy and undeploy Hadoop
clusters of different sizes. Additionally, it shows how the platform
can automatically be scaled based on user-defined policies (such
as CPU-based scaling).

Index Terms—Hadoop big data platform, MiCADO, Docker
Containers, Container-orchestration, cloud native, scaling big
data infrastructure

I. INTRODUCTION

“Big Data consists of extensive datasets — primarily in the
characteristics of volume, variety, velocity, and/or variability
— that require a scalable architecture for efficient storage,
manipulation, and analysis” [1]. Big data is identified by huge
volumes that can span several nodes; greater variety where the
data can be structured, unstructured or semi-structured from
multiple sources and/or domains; the high-velocity of data gen-
eration which requires higher speed for data processing; and
variability, which reflects the change in velocity or structure.
Therefore, there is a striking demand for scalable big data
platforms that can handle the volume, variety, velocity, and
variability challenges to achieve cost-effective performance.
Such big data platforms need to offer appropriate solutions
for the distributed (multi-node) storage and processing of these
big datasets.

Apache Hadoop1 has been known to be the de-facto stan-
dard big data platform. Apache Hadoop is an open-source dis-
tributed processing framework for storing and processing big
data on large clusters of commodity hardware. To effectively
store tremendous amounts of data (volume challenge), Hadoop
stores data in a distributed way over multiple nodes, which

1http://hadoop.apache.org/

provides fault-tolerance and enables the horizontal scaling of
these nodes. To support structured, unstructured, and semi-
structured data (variety challenge), Hadoop does not impose
any schema validation, and hence it can support all types
of data. To process data faster (velocity challenge), Hadoop
moves the processing unit to data instead of moving data
to the processing unit, so the processing logic is sent to
the nodes where data is stored. The core Apache Hadoop
project consists of Hadoop Distributed File System (HDFS),
Yet Another Resource Negotiator (YARN), MapReduce, and
Ozone. HDFS is a distributed file system that provides high-
throughput access to application data stored on multiple nodes.
YARN is a framework for job scheduling (scheduling tasks to
be executed on different cluster nodes) and cluster resource
management (e.g., allocating system resources to the various
applications running in a Hadoop cluster). Hadoop MapReduce
is a YARN-based system for parallel processing of large
data sets. Finally, Ozone is a new scalable, redundant, and
distributed object store for Hadoop.

Hadoop has been introduced before the advent of cloud
computing. Therefore, Hadoop was not originally built for the
cloud, and it aimed to create big data clusters using commodity
hardware. However, tremendous changes have happened since
the launch of Hadoop. As an illustration, compute, storage
and bandwidth resources become much cheaper. Therefore,
with the recent advancement in hardware and software, along
with the adoption of cloud computing, it is essential to move
forward by building cloud native Hadoop-based big data
platforms that can be easily deployed and managed both in
public and private (on-premises) clouds.

“Cloud native technologies empower organisations to build
and run scalable applications in modern, dynamic environ-
ments such as public, private, and hybrid clouds” [2]. In
cloud native computing, the applications are deployed as
microservices using open-source software tools. Every single
microservice is containerised, and eventually, the containers
are dynamically orchestrated to optimise resource utilisation
and efficiently manage the entire application. A microservice
is a small software component that can be independently
developed, tested, deployed, and scaled [3]. The development
and deployment of each microservice do not impact other
parts of the application. With microservices, an application
becomes a collection of loosely coupled services. A container
is a software that packages up the application’s code and
its dependencies so that it can run quickly and reliably



in any computing environment. Containerisation enables fast
development and efficient deployment of services and has
been widely adopted by public providers. For example, Google
runs all services in containers, including YouTube, Gmail, and
Search. Container orchestration tools, such as Kubernetes2 or
Docker Swarm3, automate the deployment, scaling, and man-
agement of containerised applications. Moreover, It is found
that containerising genomic pipelines enable easy distribution
and execution in a portable manner with a little impact on the
performance [4].

Because Hadoop-based big data clusters consist of several
disjoint big data tools and services, it becomes easier to
containerise every single service. Therefore, Hadoop might
be a good fit for cloud native computing and microservices
architectures. In this paper, we are adopting MiCADO to
orchestrate the big data services and manage the underlying
infrastructure. MiCADO is not only utilising the container
orchestration capabilities of Kubernetes or Docker Swarm, but
it also provides flexible and programmable autoscaling based
on user-defined policies. Additionally, MiCADO automates
deployment and scales resources at both container and virtual
machine (VM) levels.

Organisations are migrating 50% of their public cloud
applications and/or data to either on-premises or private cloud
environments in the next two years [5]. The main reason for
this tremendous movement from public to private clouds is
security concerns [5]; however, other top reasons include cost,
performance, and control. Furthermore, automating the man-
agement of the infrastructure with the help of infrastructure
as code (IaC) makes on-premises solutions more cost-effective
than public Cloud for 85%-90% of workloads [6]. Therefore,
providing organisations with a cloud independent (portable)
automated deployment and autoscaling framework, such as the
solution described in this paper, that supports the migration of
various big data tools effortlessly and conveniently between
multiple clouds has paramount importance.

The remainder of this paper is organised as follows: Sec-
tion II describes some of the literature on big data platforms.
Section III provides a quick overview of MiCADO. Section IV
details the main tasks for implementing a cloud native big data
platform using MiCADO. Section V describes the empirical
evaluation of the MiCADO-based big data platform. Finally,
Section VI concludes the work done and describes potential
research directions that may require further investigation.

II. RELATED WORK

This article summarises the literature of big data platforms
in two main directions: (1) academic literature on big data
platforms, (2) managed cloud-based big data services.

On the one hand, the recent academic literature on Hadoop-
based big data solutions has revealed some emphasis on the
cloud-based deployment as well as the performance models.
For example, Loughran et al. [7] introduced a framework for

2https://kubernetes.io/
3https://docs.docker.com/engine/swarm/

the dynamic deployment of Hadoop MapReduce service in
public and private cloud environments. They used SmartFrog4

to manage the deployment, provisioning, and configuration
of the Hadoop MapReduce. However, their proposed solu-
tion neither offers fault-tolerance nor generic policy-based
autoscaling capabilities, which are two essential features in
the modern big data platforms. Gugnani et al. [8] introduced
an infrastructure-aware workflow system that integrates big
data processing capabilities with workflow systems in science
gateways. In their proposed solution, they automate the de-
ployment and undeployment of a Hadoop cluster as part of
the workflow. However, their solution does not offer automated
scaling capability of the underlying Hadoop cluster. Astrova et
al. [9] propose a scalable Hadoop-based infrastructure for
running big data analytics. The proposed infrastructure is auto-
scalable based on computing and storage requirements. As
a step towards building a container-based big data platform,
Naik [10] proposed a container-based platform that is expected
to be portable and hence runs in any cloud environment. The
proposed solution focuses only on the deployment of Hadoop-
based clusters using a containerised version of Apache Am-
bari. The proposed Hadoop-based big data cluster using Am-
bari is simulated in a single machine using Oracle VirtualBox.
Their platform made use of pre-existing Ambari blueprints
to create the Hadoop cluster. This work can be considered
as an investigation of using containerised Ambari; however,
it did not consider the automated orchestration or scaling
of the Hadoop-based big data platform. Lovas et al. [11]
made use of a cloud orchestrator, called Occopus, to fully
automate the deployment and scalability of Hadoop clusters.
Their Occopus-based deployment is portable and scalable;
however, it does not incorporate the fine-grained management
and scalability options found in cloud native deployments.
Finally, for estimating realistic performance models, Gandhi et
al. [12] developed a model-driven autoscaling solution for
Hadoop clusters. They introduced performance models that
relate job execution times to resource allocation and workload.
These models are used to estimate the required resources to
complete the submitted jobs based on the predefined service
level agreement (SLA) requirements.

On the other hand, several public cloud providers offer man-
aged big data solutions in the form of Platform as a Service
(PaaS). Examples of these PaaS managed big data solutions
include Amazon Elastic MapReduce (EMR)5, Google Cloud
Dataproc6, and Azure HDInsight7. Amazon EMR is a cloud-
based big data platform that offers big data tools such as
Spark, Hive, HBase, and Flink. Google Cloud Dataproc offers
data analytics processing suing MapReduce, Apache Hive, Pig,
Flink and Spark. Moreover, Azure HDInsight offers popular
open-source frameworks for enterprise-grade data analytics,
including Apache Hadoop, Spark, and Kafka. However, these
managed data big data platforms are provider-specific; there-

4http://www.smartfrog.org/
5https://aws.amazon.com/emr/
6https://cloud.google.com/dataproc
7https://azure.microsoft.com/en-gb/services/hdinsight/



fore, organisations might face the problem of being locked-
in to a specific cloud provider. Recall from Section I, several
organisations are moving to private clouds for various reasons;
therefore, building portable cloud native big data solutions
that can efficiently work for both private and public clouds
becomes a necessity.

In addition to the managed big data services, Hortonworks
Data Platform (HDP)8 is an example of cloud-agnostic big
data platforms for private and public clouds. HDP is an open-
architecture platform (composed of many Apache Software
Foundation projects) that manages data in motion and at rest.
However, deploying a Hadoop cluster using HDP is found to
be time-consuming and challenging, especially for software
developers who are only interested in using the platform
without being involved in the mundane task of deployment
and scaling (which is manual in HDP). Even though the
deployment and scaling issues in HDP can be solved by using
Cloudbreak, however; it is only limited to HDP blueprints
and loses the benefits of cloud native solutions. This section
emphasises the need for cloud native big data solutions, as the
one demonstrated in this article, that are portable and can fully
automate the deployment and scalability of big data clusters.

III. MICADO OVERVIEW

MiCADO is an application-level multi-cloud orchestration
and auto-scaling framework [13]. Fig. 1 shows the high-level
architecture of MiCADO. MiCADO consists of two main
components, namely Master Node and Worker Node. Master
Node manages the MiCADO cluster by automatically deploy-
ing the Worker Nodes and schedule the microservices. Then,
it monitors the deployed nodes and microservices and applies
scaling policies. Worker Nodes are the ones running the actual
containerised applications. Worker Nodes are continuously
allocated or released based on the demand of the running
microservices. MiCADO master runs and manages microser-
vices on MiCADO workers. In MiCADO, applications are de-
fined using a TOSCA-based Application Description Template
(ADT) [14] which details the applications’ topology and the
required scaling and security policies.

Fig. 1. MiCADO Architecture

The MiCADO Master Node follows a modular design
consisting of six components. MiCADO Submitter is the

8https://www.cloudera.com/products/hdp.html

primary service endpoint for creating an infrastructure to run
an application and managing this infrastructure and the appli-
cation itself. The MiCADO Submitter interprets the incoming
ADT, and related parts are forwarded to other key MiCADO
components. Creating new MiCADO Worker Nodes and de-
ploying application containers on these Worker Nodes are the
responsibility of the Cloud Orchestrator and Container Or-
chestrator components, respectively. The Cloud Orchestrator is
responsible for communication with the Cloud API to allocate
and release resources and create and shut down MiCADO
Worker Nodes when necessary. The Container Orchestrator
allocates new microservices (realised by containers) on the
Worker Nodes, keeps track of their execution and destroys
them if necessary. The Monitoring System collects metrics on
Worker Node resources and on resource usage of the container
services and makes this information available for the Policy
Keeper component. It also provides alerting functionality in
relation to the measured attributes to detect values that require
reaction and sends these alerts to the Policy Keeper. Based on
the metrics and alerts provided by the Monitoring System,
the Policy Keeper applies the implemented scaling policies to
make scaling decisions and call the components (Cloud and
Container Orchestrators) responsible for allocating/releasing
cloud resources and scheduling container services among the
Worker Nodes. Moreover, this component makes sure that
the Cloud and the Container Orchestrators are instructed in
a synchronised way during the operation of the entire system.
Lastly, the Optimiser is a background microservice performing
long-running calculations on-demand for finding optimised
setup of both cloud resources and container infrastructures.

MiCADO Worker Nodes contain the container/Node moni-
tor that is responsible for measuring the load of the resources
and the resource usage of the container services. The measured
attributes are then received by the Monitoring System running
on the Master Node. The Container Executor starts, executes
and destroys containers upon request from the Container
Orchestrator. Container components are realising the user
services defined in the (container) infrastructure description
submitted through the MiCADO Submitter on the Master
Node.

The current version of MiCADO, 0.9, uses both Occo-
pus [15] and Terraform [16] to provision and manage the
infrastructure (such as virtual machines) using code, which
enables execution on multi-cloud environments (OpenStack
or OpenNebula, Amazon, Azure, Google, and CloudSigma),
and also via the CloudBroker Platform [17]. For Container
Orchestration, MiCADO uses Kubernetes [18]. The monitor-
ing component is based on Prometheus [19], a lightweight,
low resource consuming, but powerful monitoring tool. The
MiCADO Submitter [20], Policy Keeper [21], and Optimiser
components were custom implemented during the COLA
Project9.

9https://project-cola.eu/



IV. CLOUD NATIVE BIG DATA PLATFORM USING
MICADO

In this article, we are introducing a self-managing cloud
native big data platform using MiCADO. The proposed plat-
form is portable so that it can be deployed both in public
and private clouds. Fig. 2 exhibits the architecture of the
proposed MiCADO-based big data platform. As shown in
Fig. 2, the MiCADO Master automates the deployment and
the scaling of the big data cluster. The big data cluster follows
a master/slave architecture with a pool of nodes acting as
master nodes and another pool of slave nodes. The master node
runs HDFS NameNode, besides YARN ResourceManager and
Timeline Server. The pool of master nodes can include another
master node to ensure high-availability, as well as a secondary
NameNode. Each slave node runs a HDFS DataNode and a
YARN NodeManager. Other big data services (e.g., Spark,
ZooKeeper, Kafka) can run either on the master or slave pool
based on the required architecture of the big data platform.
The main tasks for building the proposed MiCADO-based
big data platform are summarised into four steps as follows:
(1) containerising big data tools if they are not already
containerised, (2) a choice between coupling and decoupling
of compute and storage, (3) writing application description
templates (ADTs) for the required big data scenario, and (4)
submitting the ADT for deployment and orchestration using
MiCADO. The details of these four steps are demonstrated in
the following subsections.

Fig. 2. Hadoop-based big data Platform using MiCADO

A. Containerising Big Data Tools

The Hadoop ecosystem consists of a set of loosely coupled
tools or services such as HDFS, YARN, ZooKeeper, Kafka,
Spark, and Hive. The first step in building a cloud native
big data platform is to containerise this set of disjoint tools.
The containerisation ensures consistent runtime environment,

elasticity, and software isolation through application sandbox-
ing. Currently, there are some excellent non-official trials to
containerise Hadoop big data tools [22]. Additionally, there
are also some officially containerised big data tools, such as
Zookeeper10. However, at the time of writing this article, there
are no official containers for the majority of the big data tools.
A crucial task during the containerisation process is to create
the proper configuration files from the relevant environment
variables. As an illustration, running a containerised version
of HDFs might involve running one container to act as a
NameNode and other containers as DataNodes. In the case of
YARN, one container can act as a ResourceManager (RM) and
another as a NodeManager (NM). It does worth mentioning
that the only difference between NN, DN, RM, and NM when
running in MiCADO is just the environment variables (as they
are all using the same container of the core Hadoop).

B. Coupling versus Decoupling Compute and Storage

By default, Hadoop couples compute and storage by bring-
ing compute to the data to minimise data movement and
overcome slow network access speed. The coupling of com-
pute and storage is found to be a practical and effective
solution with commodity hardware before adopting the cloud.
However, there are problems associated with this coupling,
which can be summarised in cost and scalability. Compute
resources are usually more expensive than storage, so coupling
will incur an extra cost when the compute resources are not
efficiently utilised. Furthermore, both compute, and storage
do not often need to scale the same way, so the coupling
of compute and storage can lead to resource wastage when
scaling both together. On the other hand, decoupling compute
and storage contradicts the original Hadoop design that aimed
to bring compute to data. Decoupling enables scaling com-
pute and storage independently for better utilisation and cost
savings. Decoupling is the standard in most managed cloud-
based Hadoop clusters, such as HDInsight and Amazon EMR.
However, decoupling may suffer from performance challenges.
The proposed platform couples compute and storage; however,
future work will consider decoupling compute and storage.

C. Creating Application Description Templates (ADTs)

Running containerised applications in MiCADO requires
describing them in a TOSCA-based Application Description
Template (ADT). The ADT is written in YAML format and
describes the details of the application, such as the containers,
volumes, VMs and scaling policies. Fig. 3 demonstrates an
example of defining the NameNode component of the big
data platform, which can be found under the node templates
section of the ADT. As an illustration, the NameNode is
defined under hdfs-namenode and been attached to a node
named hdp-master, while exposing the port 30010 for public
access. The definition of the hdp-master node is shown in
Fig. 4. The required number of VM instances (based on the
min workers, which is an input parameter to the ADT) is

10https://hub.docker.com/ /zookeeper



created in the desired public, or private cloud using either
Occopus or Terraform, as shown under the hdp-master section
of the ADT. In Fig. 4, the VM is created in AWS EC2 using
Occopus. However, it can be created in any other supported
public or private cloud by using the proper type under
hdp-master (e.g., using tosca.nodes.MiCADO.Nova.Compute
for OpenStack, or tosca.nodes.MiCADO.GCE.Compute for
Google Compute Engine). Additionally, another Cloud Or-
chestrator (such as Terraform) can be used by merely replacing
Occopus under interfaces with Terraform.

One challenge is maintaining the state of the big data tools
in the proposed big data platform, which is handled using the
StatefulSet object from Kubernetes. Each pod, the smallest
deployable unit of computing in Kubernetes, in a StatefulSet
have a unique ordinal index and a stable network identity. The
deployment of pods happens in order; for example, DataNode-
0, DataNode-1, DataNode-2. If one of the containers fails, such
as DataNode-1, then Kubernetes will create a new one with
the same name. Moreover, the undeployment of pods happens
in order by undeploying the last deployed one first.

Fig. 3. A snippet of the ADT defining HDFS NameNode

Creating the ADT involves defining the scaling policies for
VMs and big data tools. MiCADO can automatically scale
VMs and the hosted pods (such as DataNodes and NodeMan-
agers) horizontally based on the predefined minimum and the
maximum number of nodes/pods, as shown in Fig. 5. Creating
an autoscaling policy in MiCADO involves defining an alert
and a scaling rule. The alert can be defined based on resources
(e.g., CPU, memory, storage), other application-specific met-
rics (e.g., capacity used for HDFS, or AvailableVCores for
YARN), or deadline-based. When the alert is fired, the scaling
rule is applied by adding or removing pods and/or nodes.

Figure 6 demonstrates the definition of the alerts and the

Fig. 4. Definition of the hdp-master node in the ADT

Fig. 5. Scaling of nodes and services in MiCADO

scaling rule inside the MiCADO ADT. In Figure 6, two alerts
have been defined; for underload and overload detection of the
nodemanager container based on the average CPU utilisation.
The scaling rule is a simplistic Python-based script that
increases or decreases the number of NameNode containers
in case of service overload or underload, respectively. Further
details about the ADT sections can be found here [23].

D. Deployment and Orchestration using MiCADO

MiCADO is used for automating the deployment and offer-
ing fine-grained scalability for the cloud-based big data plat-
forms based on dynamically programmable scalability poli-
cies. Once the three preceding steps, in Sections (IV-A, IV-B,
IV-C), have been completed, then the user can automatically



Fig. 6. CPU-based scaling in MiCADO ADT

deploy the cluster without any deep understanding of the tools
or the infrastructure, and MiCADO will also manage them
at run-time. It should be pointed out that the three previous
steps (dockerising, the choice between coupling/decoupling
compute and storage, and writing the ADT) need to be done
once, and the resulting ADT can be used in an unlimited
number of deployments by several types of users. The final
step is submitting the ADT to MiCADO, which initiates the
fully automated deployment of the big data platform. Using
the cloud orchestrator (Occopus or Terraform), it creates the
specified number and type of VMs on the selected cloud,
based on the node definition in the ADT. Once the nodes have
been created and initialised, MiCADO, with the help of the
container orchestrator (Kubernetes), deploys the big data tools
and exposes these tools over the predefined ports. While the
big data platform is running, MiCADO monitors the state of
the running tools, applies automatic scaling based on user-
defined scaling policies, and maintains the number of replicas
required for each of the big data tools.

The proposed MiCADO-based big data platform supports
the unique capabilities of the cloud (e.g., rapid elasticity and
on-demand self-service). Additionally, the MiCDO-based big
data platform can be considered as cloud agnostic as it can
be deployed both in public and private clouds without being
locked only to a specific cloud provider. Most importantly, it
is a step towards a cloud native big data platforms through
the simplified build, deployment, and management of big
data clusters by different types of users, while hiding the
infrastructure complexities. As an illustration, anyone can
easily and efficiently deploy a multi-node big data cluster
using these four steps: (1) deploy MiCADO using Ansible11,
(2) download the ADT from the Github repository12, (3)
customise the ADT (e.g., using another private or public

11https://micado-scale.readthedocs.io/en/latest/deployment.html
12https://github.com/UoW-CPC/MiCADO-based-big-data-platform

cloud, defining different scaling policies, or changing the
cluster size and the running big data tools), (4) submit the
ADT to the MiCADO master. Finally, the proposed MiCADO-
based big data platform enables defining fine-grained policies
that enable the automatic horizontal scaling of big data tools
and the underlying infrastructure (VMs).

V. EXPERIMENTAL EVALUATION

This section describes the empirical evaluation of the
MiCADO-based big data cluster. The experiments have been
conducted on Amazon EC2 using an t2.medium instance
(2 vCPUs, 2.3 GHz, and 4.0 GiB Memory) for running the
MiCADO master. All the Hadoop master and slave nodes
in first experiment (Section V-A) are running on t2.small
instances (1 vCPUs, 2.5 GHz, and 2.0 GiB Memory). For
the second experiment (Section V-B), EC2 instances of type
t2.xlarge (4 vCPUs, 2.3 GHz, 16 GiB Memory, and 2TB
storage) have been used for the Hadoop master and slave
nodes. The deployed MiCADO-based big data clusters consist
of one Hadoop master node and n Hadoop slave nodes, where
n ranges from three to twenty-seven nodes based on the
required cluster size. The following subsections describe and
analyse the conducted experiments in detail.

A. Hadoop Cluster Deployment Time

The purpose of this experiment is to estimate the average
time required for deploying and undeploying various-sized
Hadoop clusters (ranging from 4 to 28 nodes) using MiCADO.
Fig 7 shows the time (in seconds) required to fully deploy and
undeploy different sizes of Hadoop clusters on Amazon EC2.
Both the deployment and undeployment times represent aver-
age times after deploying and undeploying each cluster size for
seven different times. As can be seen from Fig 7, the average
time for deploying a 28 nodes Hadoop cluster is around four
minutes and 30 seconds. This experiment shows how quickly
it is to deploy and undeploy various MiCADO-based Hadoop
clusters without requiring any specially prepared images. It
is worth mentioning that using a bigger instance type for the
MiCADO master (e.g., t2.xlarge instead of t2.medium) can
result in faster deployment and undeployment of the previously
conducted experiments, particularly for larger cluster sizes.

B. Terasort Banchmark

The TeraSort benchmark sorts data to evaluate the per-
formance of the MapReduce framework in the proposed
MiCADO-based big data platform. TeraSort tests both the
HDFS and MapReduce components of the Hadoop cluster. The
TeraSort benchmark consists of three MapReduce programs
namely, TeraGen, TeraSort, and TeraValidate. TeraGen is a
MapReduce program that generates large data sets, based on
the specified size, which will be the input for TeraSort. Then,
TeraSort sorts the input data files that have been previously
generated by TeraGen. Finally, the results of TeraSort can be
validated using TeraValidate, which ensures that the keys are
accurately sorted within each file.



Fig. 7. Deployment time for various Hadoop cluster sizes

Fig. 8. Scalable and Non-scalable TeraGen and TeraSort

Fig. 8 shows the total execution time for running both
TeraGen and TeraSort on both scalable and non-scalable
MiCADO-based big data platform. TeraGen generates the
input data (300GB, and 1TB in this experiment), which are
then sorted by TeraSort. TeraGen runs only map tasks to
generate the data set, and it does not perform any reduce tasks
in the data generation process. This experiment starts with one
master node and three slave nodes, which is the size of the
Non-scalable cluster. The scalable version of the cluster uses
a CPU-based scaling policy to add a new slave node when the
CPU utilization of any of the slave nodes exceeds 60% for
one minute. The maximum number of slave nodes is five, and
hence the scaling policy adds a maximum of two (one at a
time) extra slave nodes to the original cluster when the CPU
alert is met. As shown in Fig. 8, the automatic scaling of the
cluster, scalable, by adding two additional slave nodes results
in approximately 40% time savings when sorting 1TB of data
as opposed to the non-scalable deployment.

VI. CONCLUSION AND FUTURE DIRECTIONS

This article started by articulating the need for the auto-
mated deployment and scalability of cloud native Hadoop-
based big data clusters without being locked-in to a specific
cloud provider. Moreover, it described the necessity for de-
ploying these clusters in private clouds for several reasons such
as security, cost and control. Accordingly, the article detailed
the process of creating a fully-automated big data cluster using
MiCADO, which is an open-source multi-cloud orchestration
and auto-scaling framework for dockerised applications, or-
chestrated by Kubernetes. As a generic cloud orchestration and
autoscaling framework, MiCADO can automate the deploy-
ment and scalability of various kinds of stateful and stateless
applications in the cloud (e.g., the demonstrated Hadoop-based
big data cluster). The main steps of building a cloud native big
data cluster using MiCADO involves: (1) containerising the
required big data tools is they are not already containerised, (2)
choosing whether to couple or decouple compute and storage,
(3) writing the TOCSA-based application description template,
and (4) deploying and orchestrating using MiCADO. The
proposed MiCADO-based deployment makes it easy for any
user (such as application developer or system administrator)
to automatically deploy and scale Hadoop-based big data
clusters without a thorough understanding of infrastructure
complexities.

Some possible future directions that require further in-
vestigation include: (1) A detailed analysis of the effect of
containerisation on the performance of the big data clusters
(as in the MiCADO-based deployment) as opposed to the non-
containerised ones, such as HDP. (2) Decoupling compute and
storage, besides adopting Apache Ozone in the MiCADO-
based big data platform as it offers a scalable object store
for Hadoop and functions effectively in containerised envi-
ronments. (3) Authoring Hadoop-specific scaling policies that
can estimate the required number of nodes to complete the
execution of the required big data application based on a
predefined amount of time. (4) Incorporating and testing other
big data tools such as Spark, Hive as well as other user-friendly
client interfaces for accessing the cluster.

ACKNOWLEDGMENT

This work was funded by the ASCLEPIOS – Advanced
Secure Cloud Encrypted Platform for Internationally Orches-
trated Solutions in Healthcare – project, No. 826093, European
Commission (EU H2020). This paper is relevant and has
been supported by the RABBDA (Reduce Access Barriers
to Big Data Analytics) project: a Research effort between
the University of Westminster, London and the Westminster
International University, Tashkent.

REFERENCES

[1] NIST Big Data Public Working Group (NBD-PWG), “Nist big data
interoperability framework: Volume 1, definitions (version 3),”
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.1500-
1r2.pdf, Tech. Rep., 2019.

[2] Cloud Native Computing Foundation (CNCF) Char-
ter, (accessed March 30, 2020). [Online]. Available:
https://github.com/cncf/foundation/blob/master/charter.md



[3] J. Thönes, “Microservices,” IEEE software, vol. 32, no. 1, pp. 116–116,
2015.

[4] P. Di Tommaso, E. Palumbo, M. Chatzou, P. Prieto, M. L. Heuer, and
C. Notredame, “The impact of docker containers on the performance of
genomic pipelines,” PeerJ, vol. 3, p. e1273, 2015.

[5] “Businesses moving from public cloud due to security,”
https://www.crn.com/businesses-moving-from-public-cloud-due-to-
security-says-idc-survey, August 13, 2018.

[6] “Michael dell: On-premises solutions are more ’cost effective’
than public cloud for 85 to 90 percent of workloads,”
https://www.crn.com/news/data-center/300100761/michael-dell-on-
premises-solutions-are-more-cost-effective-than-public-cloud-for-85-to-
90-percent-of-workloads.htm, March 16, 2018.

[7] S. Loughran, J. M. Alcaraz Calero, A. Farrell, J. Kirschnick, and
J. Guijarro, “Dynamic cloud deployment of a mapreduce architecture,”
IEEE Internet Computing, vol. 16, no. 6, pp. 40–50, 2012.

[8] S. Gugnani, C. Blanco, T. Kiss, and G. Terstyanszky, “Extending science
gateway frameworks to support big data applications in the cloud,”
Journal of Grid Computing, vol. 14, no. 4, pp. 589–601, 2016.

[9] I. Astrova, A. Koschel, F. Heine, and A. Kalja, “Scalable hadoop-based
infrastructure for big data analytics,” in International Baltic Conference
on Databases and Information Systems. Springer, 2018, pp. 233–242.

[10] N. Naik, “Docker container-based big data processing system in multiple
clouds for everyone,” in 2017 IEEE International Systems Engineering
Symposium (ISSE). IEEE, 2017, pp. 1–7.

[11] R. Lovas, E. Nagy, and J. Kovács, “Cloud agnostic big data platform
focusing on scalability and cost-efficiency,” Advances in Engineering
Software, vol. 125, pp. 167–177, 2018.

[12] A. Gandhi, S. Thota, P. Dube, A. Kochut, and L. Zhang, “Autoscaling
for hadoop clusters,” in 2016 IEEE International Conference on Cloud
Engineering (IC2E). IEEE, 2016, pp. 109–118.

[13] T. Kiss, P. Kacsuk, J. Kovács, B. Rakoczi, A. Hajnal, A. Farkas,
G. Gesmier, and G. Terstyanszky, “Micado—microservice-based cloud
application-level dynamic orchestrator,” Future Generation Computer
Systems, vol. 94, pp. 937–946, 2019.

[14] J. DesLauriers, T. Kiss, G. Pierantoni, G. Gesmier, and G. Terstyan-
szky, “Enabling modular design of an application-level auto-scaling
and orchestration framework using tosca-based application description
templates,” in 11th International Workshop on Science Gateways, IWSG
2019, 2019.

[15] J. Kovács and P. Kacsuk, “Occopus: a multi-cloud orchestrator to
deploy and manage complex scientific infrastructures,” Journal of Grid
Computing, vol. 16, no. 1, pp. 19–37, 2018.

[16] Terraform by HashiCorp, (accessed March 30, 2020). [Online].
Available: https://www.terraform.io/

[17] S. J. Taylor, T. Kiss, A. Anagnostou, G. Terstyanszky, P. Kacsuk,
J. Costes, and N. Fantini, “The cloudsme simulation platform and its
applications: A generic multi-cloud platform for developing and execut-
ing commercial cloud-based simulations,” Future Generation Computer
Systems, vol. 88, pp. 524–539, 2018.

[18] Production-Grade Container Orchestration, (accessed March 30, 2020).
[Online]. Available: https://kubernetes.io/

[19] Prometheus, (accessed March 4, 2020). [Online]. Available:
https://prometheus.io/

[20] G. Pierantoni, T. Kiss, G. Terstyánszky, J. M. M. Rapun, G. Gesmeir,
and J. Deslaurier, “Flexible deployment of social media analysis tools.”
in IWSG, 2018.

[21] J. Kovács, “Supporting programmable autoscaling rules for containers
and virtual machines on clouds,” Journal of Grid Computing, vol. 17,
no. 4, pp. 813–829, 2019.

[22] Apache Hadoop Big data projects on Kubernetes, (accessed March 30,
2020). [Online]. Available: https://github.com/flokkr

[23] G. Pierantoni, T. Kiss, G. Terstyanszky, J. Deslauriers, G. Gesmier, and
H. Dang, “Describing and processing topology and quality of service
parameters of applications in the cloud,” Journal of Grid Computing,
2020.


