
An FPTAS for parallel-machine scheduling under a

grade of service provision to minimize makespan

Min Ji1

College of Computer Science & Information Engineering,
Zhejiang Gongshang University, Hangzhou 310035, P.R. China

T. C. E. Cheng2

Department of Logistics, The Hong Kong Polytechnic University,
Kowloon, Hong Kong

1Email: jimkeen@163.com
2Corresponding author. Email: LGTcheng@polyu.edu.hk

Abstract

We consider the m parallel-machine scheduling problem that process service requests from various

customers who are entitled to different levels of grade of service (GoS). The objective is to minimize

the makespan. We give a fully polynomial-time approximation scheme for the case where m is fixed.

Keywords. Machine scheduling; Eligibility; Grade of service; Makespan

1

1 Introduction

It is common practice in any service industry to provide differential services to customers based on

their entitled privileges assigned according to their promised levels of grade of service (GoS). Jobs

are allowed to be processed on a particular machine when the GoS level of the job is no less than

the GoS level of the machine. In fact, the processing capability of the machines labelled with a high

GoS level tends to be reserved for jobs with a high GoS level. Hence, if we assign relatively high

GoS levels to the jobs from valued customers, we can ensure providing better service to more valued

customers. In such situations, assigning jobs to machines becomes a parallel-machine scheduling

problem with a special eligibility constraint.

The problem under consideration can be formally described as follows: There are n independent

jobs J = {J1, J2, · · · , Jn} and m identical machines M = {M1,M2, · · · ,Mm}. The processing time

of job Jj is pj . Each job Jj and each machine Mi are labelled with the GoS levels G(Jj) and G(Mi),

respectively. Job Jj is allowed to be processed on machine Mi only when G(Mi) ≤ G(Jj). A feasible

schedule is, then, a partition of J into m disjoint sets, S =< S1, S2, · · · , Sm > such that Si is allowed

to include Jj only if G(Mi) ≤ G(Jj). Let Cj be the completion time of job Jj in a schedule. The

objective is to minimize the makespan, i.e., Cmax = maxj=1,2,···,n Cj . Using the three-field notation

of Graham et al. [1], we denote this scheduling model as Pm|GoS|Cmax.

The above defined problem dates back to Hwang et al. [2]. They proposed an approximation

algorithm LG-LPT, and proved that its makespan is not greater than 5
4 times the optimal makespan

for m = 2 and not greater than 2− 1
m−1 times the optimal makespan for m ≥ 3. Jiang [5], Park et

al. [9] and Jiang et al. [6] investigated the semi-online and online versions of the considered model.

In this paper we present a fully polynomial-time approximation scheme (FPTAS) for the problem

Pm|GoS|Cmax with a fixed number of m, which greatly improves the bound in Hwang et al. [2]. The

design of the FPTAS closely follows our earlier works [3, 4], in which two FPTASs were presented

for two time-dependent scheduling problems where each job can be processed on any machine.

Consequently, the basic descriptions in this paper are similar to those in [3, 4]. Specifically, we

design a modified FPTAS in this paper to deal with the special eligibility constraint that the jobs

2

and machines each have a GoS level. So the modified FPTAS makes a contribution to the practice

of scheduling.

The presentation of this paper is organized as follows. In Section 2 we propose an FPTAS for the

problem Pm|GoS|Cmax, where m is fixed, and prove its correctness and establish its time complexity.

We conclude the paper in Section 3.

2 An FPTAS

An algorithm A is called a (1+ε)-approximation algorithm for a minimization problem if it produces

a solution that is at most 1+ ε times as big as the optimal value, running in time that is polynomial

in the input size of the problem instance. A family of approximation algorithms {Aε} is called

a fully polynomial-time approximation scheme (FPTAS) if, for each ε > 0, the algorithm Aε is a

(1 + ε)-approximation algorithm that is polynomial in the input size of the problem instance and

in 1/ε. From now on we assume, without loss of generality, that 0 < ε ≤ 1. If ε > 1, then a

2-approximation algorithm can be taken as a (1 + ε)-approximation algorithm.

Without loss of generality, we assume that all the machines are indexed in nondecreasing order

of G(Mi) so that G(M1) ≤ G(M2) ≤ · · · ≤ G(Mm). We first define sj = max{i|G(Mi) ≤ G(Jj)} for

each j = 1, 2, · · · , n. Therefore job Jj can be processed on machine M1, · · · ,Msj . Then we introduce

variables xj , j = 1, 2, · · · , sj , where xj = k if job Jj is processed on machine Mk, k ∈ {1, 2, · · · , sj}.
Let X be the set of all the vectors x = (x1, x2, · · · , xn) with xj = k, j = 1, 2, · · · , n, k = 1, 2, · · · , sj .

We define the following initial and recursive functions on X:

f i
0(x) = 0, i = 1, 2, · · · ,m,

fk
j (x) = fk

j−1(x) + pj , for xj = k,

f i
j(x) = f i

j−1(x), for xj = k, i 6= k,

Thus, the problem Pm|GoS|Cmax reduces to the following problem:

Minimize Q(x) for x ∈ X, where Q(x) = max
i=1,2,···,m

f i
n(x).

We first introduce the procedure Partition(A, e, δ) proposed by Kovalyov and Kubiak [7, 8],

where A ⊆ X, e is a nonnegative integer function on X, and 0 < δ ≤ 1. This procedure partitions A

3

into disjoint subsets Ae
1, A

e
2, · · · , Ae

ke
such that |e(x)−e(x′)| ≤ δ min{e(x), e(x′)} for any x, x′ from the

same subset Ae
j , j = 1, 2, · · · , ke. The following description provides the details of Partition(A, e, δ).

Procedure Partition(A, e, δ)

Step 1. Arrange vectors x ∈ A in the order x(1), x(2), · · · , x(|A|) such that 0 ≤ e(x(1)) ≤ e(x(2)) ≤
· · · ≤ e(x(|A|)).

Step 2. Assign vectors x(1), x(2), · · · , x(i1) to set Ae
1 until i1 is found such that e(x(i1)) ≤ (1 +

δ)e(x(1)) and e(x(i1+1)) > (1+δ)e(x(1)). If such i1 does not exist, then take Ae
ke

= Ae
1 = A, and stop.

Assign vectors x(i1+1), x(i1+2), · · · , x(i2) to set Ae
2 until i2 is found such that e(x(i2)) ≤ (1+δ)e(x(i1+1))

and e(x(i2+1)) > (1+ δ)e(x(i1+1)). If such i2 does not exist, then take Ae
ke

= Ae
2 = A−Ae

1, and stop.

Continue the above construction until x(|A|) is included in Ae
ke

for some ke.

Procedure Partition requires O(|A| log |A|) operations to arrange the vectors of A in nondecreas-

ing order of e(x), and O(|A|) operations to provide a partition. The main properties of Partition

that will be used in the development of our FPTAS {Am
ε } were presented in Kovalyov and Kubiak

[7, 8] as follows.

Property 1 |e(x)− e(x′)| ≤ δ min{e(x), e(x′)} for any x, x′ ∈ Ae
j, j = 1, 2, · · · , ke.

Property 2 ke ≤ log e(x(|A|))/δ + 2 for 0 < δ ≤ 1 and 1 ≤ e(x(|A|)).

A formal description of the FPTAS Am
ε for the problem Pm|GoS|Cmax is given below.

Algorithm Am
ε

Step 1. (Initialization) Number the machines in nondecreasing order of G(Mi) so that G(M1) ≤
G(M2) ≤ · · · ≤ G(Mm). Set Y0 = {(0, 0, · · · , 0)} and j = 1.

Step 2. (Generation of Y1, Y2, · · · , Yn) For set Yj−1, generate Y ′
j by adding k, k = 1, 2, · · · , sj ,

in position j of each vector from Yj−1. Calculate the following for any x ∈ Y ′
j , assuming xj = k:

fk
j (x) = fk

j−1(x) + pj ,

f i
j(x) = f i

j−1(x), for i 6= k,

4

If j = n, then set Yn = Y ′
n, and go to Step 3.

If j < n, then set δ = ε/(2(n + 1)), and perform the following computations.

Call Partition(Y ′
j , f i

j , δ) to partition set Y ′
j into disjoint subsets Y f i

1 , Y f i

2 , · · · , Y f i

kfi
(i =

1, 2, · · · ,m).

Divide set Y ′
j into disjoint subsets Ya1···am = Y f1

a1
∩ · · · ∩ Y fm

am
, a1 = 1, 2, · · · , kf1 ; · · ·; am =

1, 2, · · · , kfm . For each nonempty subset Ya1···am , choose a vector x(a1···am) such that

f i
j(x

(a1···am)) = min{ max
i=1,2,···,m

f i
j(x) | x ∈ Ya1···am}.

Set Yj := {x(a1···am) | a1 = 1, 2, · · · , kf1 ; · · · ; am = 1, 2, · · · , kfm and Y f1

a1
∩ · · · ∩ Y fm

am
6= ∅}, and

j = j + 1.

Repeat Step 2.

Step 3. (Solution) Select vector x0 ∈ Yn such that Q(x0) = min{Q(x) | x ∈ Yn} =

min{maxi=1,2,···,m f i
n(x) | x ∈ Yn}.

Let x∗ = (x∗1, x∗2, · · · , x∗n) be an optimal solution for the problem Pm|GoS|Cmax with a fixed

number of machines. Let L = log(max{n, 1/ε, pmax}), where pmax = maxj=1,2,···,n pj . We show the

main result of this section in the following.

Theorem 1 Algorithm Am
ε finds x0 ∈ X for the problem Pm|GoS|Cmax such that Q(x0) ≤ (1 +

ε)Q(x∗) in O(nm+1Lm+1/εm).

Proof. Suppose that (x∗1, · · · , x∗j , 0, · · · , 0) ∈ Ya1···am ⊆ Y ′
j for some j and a1, · · · am. By the definition

of Am
ε , such a j always exists (e.g., j = 1). Algorithm Am

ε may not choose (x∗1, · · · , x∗j , 0, · · · , 0) for

further construction; however, for a vector x(a1···am) chosen instead of it, we have

|f i
j(x

∗)− f i
j(x

(a1···am))| ≤ δf i
j(x

∗), i = 1, · · · ,m,

due to Property 1. Set δ1 = δ. We consider vector (x∗1, · · · , x∗j , x∗j+1, 0, · · · , 0) and x̃(a1···am) =

(x(a1···am)
1 , · · · , x(a1···am)

j , x∗j+1, 0, · · · , 0). Without loss of generality, we assume x∗j+1 = k. It follows

that

|fk
j+1(x

∗)− fk
j+1(x̃

(a1···am))|

5

= |(fk
j (x∗) + pj+1)− (fk

j (x(a1···am)) + pj+1)|

= |(fk
j (x∗)− fk

j (x(a1···am)))|

≤ δ1f
k
j (x∗) ≤ δ1f

k
j+1(x

∗), (1)

Consequently,

fk
j+1(x̃

(a1···am)) ≤ (1 + δ1)fk
j+1(x

∗).

Similarly, for i 6= k, we have

|f i
j+1(x

∗)− f i
j+1(x̃

(a1···am))| ≤ δ1f
i
j+1(x

∗), (2)

and

f i
j+1(x̃

(a1···am)) ≤ (1 + δ1)f i
j+1(x

∗).

Assume that x̃(a1···am) ∈ Yc1···cm ⊆ Y ′
j+1 and Algorithm Am

ε chooses x(c1···cm) ∈ Yc1···cm instead of

x̃(a1···am) in the (j + 1)-th iteration. We have

|f i
j+1(x̃

(a1···am))− f i
j+1(x

(c1···cm))| ≤ δf i
j+1(x̃

(a1···am)) ≤ δ(1 + δ1)f i
j+1(x

∗), i = 1, · · · ,m. (3)

For i = 1, 2, · · · ,m, from (1), (2) and (3), we obtain

|f i
j+1(x

∗)− f i
j+1(x

(c1···cm))|

≤ |f i
j+1(x

∗)− f i
j+1(x̃

(a1···am))|+ |f i
j+1(x̃

(a1···am))− f i
j+1(x

(c1···cm))|

≤ (δ1 + δ(1 + δ1))f i
j+1(x

∗)

= (δ + δ1(1 + δ))f i
j+1(x

∗). (4)

Set δl = δ + δl−1(1 + δ), l = 2, 3, · · · , n− j + 1. From (4), we obtain

|f i
j+1(x

∗)− f i
j+1(x

(c1···cm))| ≤ δ2f
i
j+1(x

∗).

Repeating the above argument for j + 2, · · · , n, we show that there exists x′ ∈ Yn such that

|f i
n(x∗)− f i

n(x′)| ≤ δn−j+1f
i
n(x∗), i = 1, 2, · · · ,m.

6

Since

δn−j+1 ≤ δ
n∑

j=0

(1 + δ)j

= (1 + δ)n+1 − 1

=
n+1∑

j=1

(n + 1)n · · · (n− j + 2)
j!

δj

=
n+1∑

j=1

(n + 1)n · · · (n− j + 2)
j!(n + 1)j

(
ε

2
)j

≤
n+1∑

j=1

1
j!

(
ε

2
)j

≤
n+1∑

j=1

(
ε

2
)j

≤ ε
n+1∑

j=1

(
1
2
)j

≤ ε.

Therefore, we have

|f i
n(x∗)− f i

n(x′)| ≤ εf i
n(x∗), i = 1, 2, · · · ,m.

It implies

| max
i=1,2,···,m

f i
n(x′)− max

i=1,2,···,m
f i

n(x∗)| ≤ ε max
i=1,2,···,m

f i
n(x∗).

Then in Step 3, vector x0 will be chosen such that

| max
i=1,2,···,m

f i
n(x0)− max

i=1,2,···,m
f i

n(x∗)|

≤ | max
i=1,2,···,m

f i
n(x′)− max

i=1,2,···,m
f i

n(x∗)|

≤ ε max
i=1,2,···,m

f i
n(x∗).

Therefore we have Q(x0) ≤ (1 + ε)Q(x∗).

The time complexity of AlgorithmAm
ε can be established by noting that the most time-consuming

operation of iteration j of Step 2 is a call of procedure Partition, which requires O(|Y ′
j | log |Y ′

j |)
time to complete. To estimate |Y ′

j |, recall that |Y ′
j+1| ≤ m|Yj | ≤ mk1

fk2
f · · · km

f . By Property

2, we have ki
f ≤ 2(n + 1) log(npmax)/ε + 2 ≤ 2(n + 1)L/ε + 2, i = 1, 2, · · · ,m. Thus, |Y ′

j | =

7

O(nmLm/εm), and |Y ′
j | log |Y ′

j | = O(nmLm+1/εm). Therefore, the time complexity of Algorithm

Am
ε is O(nm+1Lm+1/εm).

3 Conclusion

This paper studied the m parallel-machine scheduling problem under a grade of service provision.

For the objective of minimizing makespan, we gave a fully polynomial-time approximation scheme

for the case where m is fixed. Future research may focus on other scheduling objectives.

Acknowledgment

We thank two anonymous referees for their helpful comments on an earlier version of our paper. Ji

was supported by the National Natural Science Foundation of China under grant number 60673179,

and Zhejiang Gongshang University under grant numbers 1130XJ030621 and Q07-03. Cheng was

supported in part by The Hong Kong Polytechnic University under a grant from the Area of

Strategic Development in China Business Services.

References

[1] R.L. Graham, E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, Optimization and approxima-

tion in deterministic sequencing and scheduling: a survey, Annals of Discrete Mathematics, 5

(1979) 287-326.

[2] H.C. Hwang, S.Y. Chang, K. Lee, Parallel machine scheduling under a grade of service provision,

Computers & Operations Research, 31 (2004) 2055-2061

[3] M. Ji and T.C.E. Cheng, An FPTAS for scheduling jobs with piecewise linear decreasing pro-

cessing times to minimize makespan, Information Processing Letters, 102 (2007) 41-47.

[4] M. Ji and T.C.E. Cheng, Parallel-machine scheduling with simple linear deterioration to mini-

mize total completion time, European Journal of Operational Research, 188 (2008) 342-347.

[5] Y.W. Jiang, Online scheduling on parallel machines with two GoS levels, Lecture Notes in

Computer Science, 4041 (2006) 11-21.

8

[6] Y.W. Jiang, Y. He, C.M. Tang, Optimal online algorithms for scheduling on two identical

machines under a grade of service, Journal of Zhejiang University - Science A, 7 (2006) 309-

314.

[7] M.Y. Kovalyov, W. Kubiak, A fully polynomial approximation scheme for minimizing makespan

of deteriorating jobs, Journal of Heuristics, 3 (1998) 287-297.

[8] M.Y. Kovalyov, W. Kubiak, A fully polynomial approximation scheme for the weighted

earliness-tardiness problem, Operations Research, 47 (1999) 757-761.

[9] J. Park, S.Y. Chang, K. Lee, Online and semi-online scheduling of two machines under a grade

of service provision, Operations Research Letters, 34 (2006) 692-696.

	1 Introduction
	2 An FPTAS
	3 Conclusion
	References

