5 research outputs found

    A simplified and novel technique to retrieve color images from hand-drawn sketch by human

    Get PDF
    With the increasing adoption of human-computer interaction, there is a growing trend of extracting the image through hand-drawn sketches by humans to find out correlated objects from the storage unit. A review of the existing system shows the dominant use of sophisticated and complex mechanisms where the focus is more on accuracy and less on system efficiency. Hence, this proposed system introduces a simplified extraction of the related image using an attribution clustering process and a cost-effective training scheme. The proposed method uses K-means clustering and bag-of-attributes to extract essential information from the sketch. The proposed system also introduces a unique indexing scheme that makes the retrieval process faster and results in retrieving the highest-ranked images. Implemented in MATLAB, the study outcome shows the proposed system offers better accuracy and processing time than the existing feature extraction technique

    Novel hybrid generative adversarial network for synthesizing image from sketch

    Get PDF
    In the area of sketch-based image retrieval process, there is a potential difference between retrieving the match images from defined dataset and constructing the synthesized image. The former process is quite easier while the latter process requires more faster, accurate, and intellectual decision making by the processor. After reviewing open-end research problems from existing approaches, the proposed scheme introduces a computational framework of hybrid generative adversarial network (GAN) as a solution to address the identified research problem. The model takes the input of query image which is processed by generator module running 3 different deep learning modes of ResNet, MobileNet, and U-Net. The discriminator module processes the input of real images as well as output from generator. With a novel interactive communication between generator and discriminator, the proposed model offers optimal retrieval performance along with an inclusion of optimizer. The study outcome shows significant performance improvement

    Incremental hashing with sample selection using dominant sets

    Get PDF
    In the world of big data, large amounts of images are available in social media, corporate and even personal collections. A collection may grow quickly as new images are generated at high rates. The new images may cause changes in the distribution of existing classes or the emergence of new classes, resulting in the collection being dynamic and having concept drift. For efficient image retrieval from an image collection using a query, a hash table consisting of a set of hash functions is needed to transform images into binaryhash codeswhich are used as the basis to find similar images to the query. If the image collection is dynamic, the hash table built at one time step may not work well at the next due to changes in the collection as a result of new images being added. Therefore, the hash table needs to be rebuilt or updated at successive time steps. Incremental hashing (ICH) is the first effective method to deal with the concept drift problem in image retrieval from dynamic collections. In ICH, a new hash table is learned based on newly emerging images only which represent data distribution of the current data environment. The new hash table is used to generate hash codes for all images including old and new ones. Due to the dynamic nature, new images of one class may not be similar to old images of the same class. In order to learn new hash table that preserves within-class similarity in both old and new images,incremental hashing with sample selection using dominant sets(ICHDS) is proposed in this paper, which selects representative samples from each class for training the new hash table. Experimental results show that ICHDS yields better retrieval performance than existing dynamic and static hashing methods

    Online Supervised Sketching Hashing for Large-Scale Image Retrieval

    No full text
    corecore