2,422 research outputs found

    Robot Teardown, Stripping Industrial Robots for Good

    Get PDF
    Building a robot requires a careful selection of components that interact across networks while meeting timing deadlines. Given the complexity associated, as robots get damaged or security compromised, their components will increasingly require updates and replacements. Contrary to the expectations and similar to Ford in the 1920s with cars, most robot manufacturers oppose to this. They employ planned obsolescence practices organizing dealers and system integrators into "private networks", providing repair parts only to "certified" companies to discourage repairs and evade competition. In this article, we introduce and advocate for robot teardown as an approach to study robot hardware architectures and fuel security research. We show how teardown can help understanding the underlying hardware and demonstrate how our approach can help researchers uncovering security vulnerabilities. Our case studies show how robot teardown becomes an essential practice to security in robotics, helping us identify and report a total of 100 security flaws with 17 new CVE IDs over a period of two years. Lastly, we finalize by demonstrating how, through teardown, planned obsolescence hardware limitations can be identified and bypassed obtaining full control of the hardware, which poses both a threat to the robot manufacturers' business model as well as a security threat

    Robot Teardown, Stripping Industrial Robots for Good

    Get PDF
    Building a robot requires a careful selection of components that interact across networks while meeting timing deadlines. Given the complexity associated, as robots get damaged or security compromised, their components will increasingly require updates and replacements. Contrary to the expectations and similar to Ford in the 1920s with cars, most robot manufacturers oppose to this. They employ planned obsolescence practices organizing dealers and system integrators into "private networks", providing repair parts only to "certified" companies to discourage repairs and evade competition. In this article, we introduce and advocate for robot teardown as an approach to study robot hardware architectures and fuel security research. We show how teardown can help understanding the underlying hardware and demonstrate how our approach can help researchers uncovering security vulnerabilities. Our case studies show how robot teardown becomes an essential practice to security in robotics, helping us identify and report a total of 100 security flaws with 17 new CVE IDs over a period of two years. Lastly, we finalize by demonstrating how, through teardown, planned obsolescence hardware limitations can be identified and bypassed obtaining full control of the hardware, which poses both a threat to the robot manufacturers' business model as well as a security threat

    Optimal Repair Strategy Against Advanced Persistent Threats Under Time-Varying Networks

    Full text link
    Advanced persistent threat (APT) is a kind of stealthy, sophisticated, and long-term cyberattack that has brought severe financial losses and critical infrastructure damages. Existing works mainly focus on APT defense under stable network topologies, while the problem under time-varying dynamic networks (e.g., vehicular networks) remains unexplored, which motivates our work. Besides, the spatiotemporal dynamics in defense resources, complex attackers' lateral movement behaviors, and lack of timely defense make APT defense a challenging issue under time-varying networks. In this paper, we propose a novel game-theoretical APT defense approach to promote real-time and optimal defense strategy-making under both periodic time-varying and general time-varying environments. Specifically, we first model the interactions between attackers and defenders in an APT process as a dynamic APT repair game, and then formulate the APT damage minimization problem as the precise prevention and control (PPAC) problem. To derive the optimal defense strategy under both latency and defense resource constraints, we further devise an online optimal control-based mechanism integrated with two backtracking-forward algorithms to fastly derive the near-optimal solution of the PPAC problem in real time. Extensive experiments are carried out, and the results demonstrate that our proposed scheme can efficiently obtain optimal defense strategy in 54481 ms under seven attack-defense interactions with 9.64%\% resource occupancy in stimulated periodic time-varying and general time-varying networks. Besides, even under static networks, our proposed scheme still outperforms existing representative APT defense approaches in terms of service stability and defense resource utilization

    Rectification and Super-Resolution Enhancements for Forensic Text Recognition

    Get PDF
    [EN] Retrieving text embedded within images is a challenging task in real-world settings. Multiple problems such as low-resolution and the orientation of the text can hinder the extraction of information. These problems are common in environments such as Tor Darknet and Child Sexual Abuse images, where text extraction is crucial in the prevention of illegal activities. In this work, we evaluate eight text recognizers and, to increase the performance of text transcription, we combine these recognizers with rectification networks and super-resolution algorithms. We test our approach on four state-of-the-art and two custom datasets (TOICO-1K and Child Sexual Abuse (CSA)-text, based on text retrieved from Tor Darknet and Child Sexual Exploitation Material, respectively). We obtained a 0.3170 score of correctly recognized words in the TOICO-1K dataset when we combined Deep Convolutional Neural Networks (CNN) and rectification-based recognizers. For the CSA-text dataset, applying resolution enhancements achieved a final score of 0.6960. The highest performance increase was achieved on the ICDAR 2015 dataset, with an improvement of 4.83% when combining the MORAN recognizer and the Residual Dense resolution approach. We conclude that rectification outperforms super-resolution when applied separately, while their combination achieves the best average improvements in the chosen datasets.SIInstituto Nacional de CiberseguridadThis research has been funded with support from the European Commission under the 4NSEEK project with Grant Agreement 821966. This publication reflects the views only of the author, and the European Commission cannot be held responsible for any use that may be made of the information contained therein.This research has been supported by the grant ’Ayudas para la realización de estudios de doctorado en el marco del programa propio de investigación de la Universidad de León Convocatoria 2018’ and by the framework agreement between Universidad de León and INCIBE (Spanish National Cybersecurity Institute) under Addendum 01. We acknowledge NVIDIA Corporation with the donation of the Titan Xp GPU used for this research
    corecore