45 research outputs found

    Tensor Decompositions for Signal Processing Applications From Two-way to Multiway Component Analysis

    Full text link
    The widespread use of multi-sensor technology and the emergence of big datasets has highlighted the limitations of standard flat-view matrix models and the necessity to move towards more versatile data analysis tools. We show that higher-order tensors (i.e., multiway arrays) enable such a fundamental paradigm shift towards models that are essentially polynomial and whose uniqueness, unlike the matrix methods, is guaranteed under verymild and natural conditions. Benefiting fromthe power ofmultilinear algebra as theirmathematical backbone, data analysis techniques using tensor decompositions are shown to have great flexibility in the choice of constraints that match data properties, and to find more general latent components in the data than matrix-based methods. A comprehensive introduction to tensor decompositions is provided from a signal processing perspective, starting from the algebraic foundations, via basic Canonical Polyadic and Tucker models, through to advanced cause-effect and multi-view data analysis schemes. We show that tensor decompositions enable natural generalizations of some commonly used signal processing paradigms, such as canonical correlation and subspace techniques, signal separation, linear regression, feature extraction and classification. We also cover computational aspects, and point out how ideas from compressed sensing and scientific computing may be used for addressing the otherwise unmanageable storage and manipulation problems associated with big datasets. The concepts are supported by illustrative real world case studies illuminating the benefits of the tensor framework, as efficient and promising tools for modern signal processing, data analysis and machine learning applications; these benefits also extend to vector/matrix data through tensorization. Keywords: ICA, NMF, CPD, Tucker decomposition, HOSVD, tensor networks, Tensor Train

    Employing data fusion & diversity in the applications of adaptive signal processing

    Get PDF
    The paradigm of adaptive signal processing is a simple yet powerful method for the class of system identification problems. The classical approaches consider standard one-dimensional signals whereby the model can be formulated by flat-view matrix/vector framework. Nevertheless, the rapidly increasing availability of large-scale multisensor/multinode measurement technology has render no longer sufficient the traditional way of representing the data. To this end, the author, who from this point onward shall be referred to as `we', `us', and `our' to signify the author myself and other supporting contributors i.e. my supervisor, my colleagues and other overseas academics specializing in the specific pieces of research endeavor throughout this thesis, has applied the adaptive filtering framework to problems that employ the techniques of data diversity and fusion which includes quaternions, tensors and graphs. At the first glance, all these structures share one common important feature: invertible isomorphism. In other words, they are algebraically one-to-one related in real vector space. Furthermore, it is our continual course of research that affords a segue of all these three data types. Firstly, we proposed novel quaternion-valued adaptive algorithms named the n-moment widely linear quaternion least mean squares (WL-QLMS) and c-moment WL-LMS. Both are as fast as the recursive-least-squares method but more numerically robust thanks to the lack of matrix inversion. Secondly, the adaptive filtering method is applied to a more complex task: the online tensor dictionary learning named online multilinear dictionary learning (OMDL). The OMDL is partly inspired by the derivation of the c-moment WL-LMS due to its parsimonious formulae. In addition, the sequential higher-order compressed sensing (HO-CS) is also developed to couple with the OMDL to maximally utilize the learned dictionary for the best possible compression. Lastly, we consider graph random processes which actually are multivariate random processes with spatiotemporal (or vertex-time) relationship. Similar to tensor dictionary, one of the main challenges in graph signal processing is sparsity constraint in the graph topology, a challenging issue for online methods. We introduced a novel splitting gradient projection into this adaptive graph filtering to successfully achieve sparse topology. Extensive experiments were conducted to support the analysis of all the algorithms proposed in this thesis, as well as pointing out potentials, limitations and as-yet-unaddressed issues in these research endeavor.Open Acces

    Recovery under Side Constraints

    Full text link
    This paper addresses sparse signal reconstruction under various types of structural side constraints with applications in multi-antenna systems. Side constraints may result from prior information on the measurement system and the sparse signal structure. They may involve the structure of the sensing matrix, the structure of the non-zero support values, the temporal structure of the sparse representationvector, and the nonlinear measurement structure. First, we demonstrate how a priori information in form of structural side constraints influence recovery guarantees (null space properties) using L1-minimization. Furthermore, for constant modulus signals, signals with row-, block- and rank-sparsity, as well as non-circular signals, we illustrate how structural prior information can be used to devise efficient algorithms with improved recovery performance and reduced computational complexity. Finally, we address the measurement system design for linear and nonlinear measurements of sparse signals. Moreover, we discuss the linear mixing matrix design based on coherence minimization. Then we extend our focus to nonlinear measurement systems where we design parallel optimization algorithms to efficiently compute stationary points in the sparse phase retrieval problem with and without dictionary learning

    Efficient Design, Training, and Deployment of Artificial Neural Networks

    Get PDF
    Over the last decade, artificial neural networks, especially deep neural networks, have emerged as the main modeling tool in Machine Learning, allowing us to tackle an increasing number of real-world problems in various fields, most notably, in computer vision, natural language processing, biomedical and financial analysis. The success of deep neural networks can be attributed to many factors, namely the increasing amount of data available, the developments of dedicated hardware, the advancements in optimization techniques, and especially the invention of novel neural network architectures. Nowadays, state-of-the-arts neural networks that achieve the best performance in any field are usually formed by several layers, comprising millions, or even billions of parameters. Despite spectacular performances, optimizing a single state-of- the-arts neural network often requires a tremendous amount of computation, which can take several days using high-end hardware. More importantly, it took several years of experimentation for the community to gradually discover effective neural network architectures, moving from AlexNet, VGGNet, to ResNet, and then DenseNet. In addition to the expensive and time-consuming experimentation process, deep neural networks, which require powerful processors to operate during the deployment phase, cannot be easily deployed to mobile or embedded devices. For these reasons, improving the design, training, and deployment of deep neural networks has become an important area of research in the Machine Learning field. This thesis makes several contributions in the aforementioned research area, which can be grouped into two main categories. The first category consists of research works that focus on designing efficient neural network architectures not only in terms of accuracy but also computational complexity. In the first contribution under this category, the computational efficiency is first addressed at the filter level through the incorporation of a handcrafted design for convolutional neural networks, which are the basis of most deep neural networks. More specifically, the multilinear convolution filter is proposed to replace the linear convolution filter, which is a fundamental element in a convolutional neural network. The new filter design not only better captures multidimensional structures inherent in CNNs but also requires far fewer parameters to be estimated. While using efficient algebraic transforms and approximation techniques to tackle the design problem can significantly reduce the memory and computational footprint of neural network models, this approach requires a lot of trial and error. In addition, the simple neuron model used in most neural networks nowadays, which only performs a linear transformation followed by a nonlinear activation, cannot effectively mimic the diverse activities of biological neurons. For this reason, the second and third contributions transition from a handcrafted, manual design approach to an algorithmic approach in which the type of transformations performed by each neuron as well as the topology of neural networks are optimized in a systematic and completely data-dependent manner. As a result, the algorithms proposed in the second and third contributions are capable of designing highly accurate and compact neural networks while requiring minimal human efforts or intervention in the design process. Despite significant progress has been made to reduce the runtime complexity of neural network models on embedded devices, the majority of them have been demonstrated on powerful embedded devices, which are costly in applications that require large-scale deployment such as surveillance systems. In these scenarios, complete on-device processing solutions can be infeasible. On the contrary, hybrid solutions, where some preprocessing steps are conducted on the client side while the heavy computation takes place on the server side, are more practical. The second category of contributions made in this thesis focuses on efficient learning methodologies for hybrid solutions that take into ac- count both the signal acquisition and inference steps. More concretely, the first contribution under this category is the formulation of the Multilinear Compressive Learning framework in which multidimensional signals are compressively acquired, and inference is made based on the compressed signals, bypassing the signal reconstruction step. In the second contribution, the relationships be- tween the input signal resolution, the compression rate, and the learning performance of Multilinear Compressive Learning systems are empirically analyzed systematically, leading to the discovery of a surrogate performance indicator that can be used to approximately rank the learning performances of different sensor configurations without conducting the entire optimization process. Nowadays, many communication protocols provide support for adaptive data transmission to maximize the data throughput and minimize energy consumption depending on the network’s strength. The last contribution of this thesis proposes an extension of the Multilinear Compressive Learning framework with an adaptive compression capability, which enables us to take advantage of the adaptive rate transmission feature in existing communication protocols to maximize the informational content throughput of the whole system. Finally, all methodological contributions of this thesis are accompanied by extensive empirical analyses demonstrating their performance and computational advantages over existing methods in different computer vision applications such as object recognition, face verification, human activity classification, and visual information retrieval

    Tensor Networks for Dimensionality Reduction and Large-Scale Optimizations. Part 2 Applications and Future Perspectives

    Full text link
    Part 2 of this monograph builds on the introduction to tensor networks and their operations presented in Part 1. It focuses on tensor network models for super-compressed higher-order representation of data/parameters and related cost functions, while providing an outline of their applications in machine learning and data analytics. A particular emphasis is on the tensor train (TT) and Hierarchical Tucker (HT) decompositions, and their physically meaningful interpretations which reflect the scalability of the tensor network approach. Through a graphical approach, we also elucidate how, by virtue of the underlying low-rank tensor approximations and sophisticated contractions of core tensors, tensor networks have the ability to perform distributed computations on otherwise prohibitively large volumes of data/parameters, thereby alleviating or even eliminating the curse of dimensionality. The usefulness of this concept is illustrated over a number of applied areas, including generalized regression and classification (support tensor machines, canonical correlation analysis, higher order partial least squares), generalized eigenvalue decomposition, Riemannian optimization, and in the optimization of deep neural networks. Part 1 and Part 2 of this work can be used either as stand-alone separate texts, or indeed as a conjoint comprehensive review of the exciting field of low-rank tensor networks and tensor decompositions.Comment: 232 page

    Tensor Networks for Dimensionality Reduction and Large-Scale Optimizations. Part 2 Applications and Future Perspectives

    Full text link
    Part 2 of this monograph builds on the introduction to tensor networks and their operations presented in Part 1. It focuses on tensor network models for super-compressed higher-order representation of data/parameters and related cost functions, while providing an outline of their applications in machine learning and data analytics. A particular emphasis is on the tensor train (TT) and Hierarchical Tucker (HT) decompositions, and their physically meaningful interpretations which reflect the scalability of the tensor network approach. Through a graphical approach, we also elucidate how, by virtue of the underlying low-rank tensor approximations and sophisticated contractions of core tensors, tensor networks have the ability to perform distributed computations on otherwise prohibitively large volumes of data/parameters, thereby alleviating or even eliminating the curse of dimensionality. The usefulness of this concept is illustrated over a number of applied areas, including generalized regression and classification (support tensor machines, canonical correlation analysis, higher order partial least squares), generalized eigenvalue decomposition, Riemannian optimization, and in the optimization of deep neural networks. Part 1 and Part 2 of this work can be used either as stand-alone separate texts, or indeed as a conjoint comprehensive review of the exciting field of low-rank tensor networks and tensor decompositions.Comment: 232 page
    corecore