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Abstract

The paradigm of adaptive signal processing is a simple yet powerful method for the

class of system identification problems. The classical approaches consider standard one-

dimensional signals whereby the model can be formulated by flat-view matrix/vector

framework. Nevertheless, the rapidly increasing availability of large-scale multisensor/-

multinode measurement technology has render no longer sufficient the traditional way

of representing the data. To this end, the author, who from this point onward shall be

referred to as ‘we’, ‘us’, and ‘our’ to signify the author myself and other supporting con-

tributors i.e. my supervisor, my colleagues and other overseas academics specializing in

the specific pieces of research endeavor throughout this thesis, has applied the adaptive

filtering framework to problems that employ the techniques of data diversity and fusion

which includes quaternions, tensors and graphs. At the first glance, all these structures

share one common important feature: invertible isomorphism. In other words, they are

algebraically one-to-one related in real vector space. Furthermore, it is our continual

course of research that affords a segue of all these three data types. Firstly, we proposed

novel quaternion-valued adaptive algorithms named the n-moment widely linear quater-

nion least mean squares (WL-QLMS) and c-moment WL-LMS. Both are as fast as the

recursive-least-squares method but more numerically robust thanks to the lack of matrix

inversion. Secondly, the adaptive filtering method is applied to a more complex task: the

online tensor dictionary learning named online multilinear dictionary learning (OMDL).

The OMDL is partly inspired by the derivation of the c-moment WL-LMS due to its par-

simonious formulae. In addition, the sequential higher-order compressed sensing (HO-CS)

is also developed to couple with the OMDL to maximally utilize the learned dictionary for

the best possible compression. Lastly, we consider graph random processes which actually

are multivariate random processes with spatiotemporal (or vertex-time) relationship. Sim-
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ilar to tensor dictionary, one of the main challenges in graph signal processing is sparsity

constraint in the graph topology, a challenging issue for online methods. We introduced a

novel splitting gradient projection into this adaptive graph filtering to successfully achieve

sparse topology. Extensive experiments were conducted to support the analysis of all

the algorithms proposed in this thesis, as well as pointing out potentials, limitations and

as-yet-unaddressed issues in these research endeavor.
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Chapter 1

Introduction

D
IGITAL signal processing began its root in electrical engineering but recently has

intertwined more with the field of applied mathematics, especially machine learning

and artificial intelligence. All these fields share one attribute: the use of linear algebra as an

analytical building block which discretizes all the analysis and synthesis of problem solving.

Almost half a century the digitization has simplified the analogue systems from natural

processes and opened up more creative mathematical manoeuvre for better computing

technology. The field has branched into many areas of research spanned across many

applications. This thesis extends our previous MSc dissertation [4], which concentrated

on an unconventional data structure called quaternions, by considering the utilization of

data diversity and data fusion and their related adaptive signal processing usage.

1.1 Brief on Adaptive Signal Processing

As suggested in the title, the main topics of the thesis are adaptive signal processing and

its applications on different different data structures. Its necessary basics is explained

in details in this section. Everything would revolve around the concept of stochastic

gradient descent which requires knowledge of linear algebra, linear estimation, optimisation

techniques and probability. For complete treatment of classical adaptive filtering, please

refer to [5].
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The stochastic gradient descent is literally the gradient descent method applied to a

stochastic optimization problem i.e. optimization problem where the data is generated by

some underlying probability distribution. The ultimate philosophy of such tools is to im-

plicitly capture necessary underlying statistics of the stochastic processes via the stochas-

tic gradient without explicitly calculating the autocorrelation and cross-correlation) [6].

Moreover, the flexibility in the construction of the gradient descent means the properties

of memoryless or with memory can be adjusted to suit specific applications dealing with

stationary/non-stationary processes [7]. This learning technique is now popular across

different fields with different names (e.g. online, real-time, etc), but ultimately boils down

to the creation of a system that can adapt itself to the environment at hands.

In this section, we review two of the most well known stochastic gradient algorithms:

the Least Mean Squares (LMS) and the Recursive Least Squares (RLS).

1.1.1 Least Mean Squares Algorithm

The LMS algorithm minimizes the instantaneous complex-valued quadratic cost function

Jt associated with epoch t

Jt = ete
∗
t (1.1a)

et = yt −wH
t−1xt (1.1b)

where et ∈ C is the instantaneous a priori error of the target signal yt ∈ C, adaptive weight

(coefficient) vector wt ∈ Cp, and tap input data xt = [xt xt−1 xt−2 · · · xn−p+1)]
T ∈ Cp,

for a filter of lag order p. The subsequent update of the coefficient vector is then expressed

as

wt = wt−1 + µetx
∗
t (1.2)

where scalar µ is the step size. The value of w0 is defaulted to zero.

Due to its simplicity and mathematical elegance [5], the LMS algorithm has always

been the mainstay of the adaptive filter related research topics. It can be shown even

further that these elegant formulae eqs. (1.1) and (1.2) also hold up in a more general

non-commutative construct like quaternion LMS (see [8]).
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1.1.2 Recursive Least Squares Algorithm

The original derivation of the RLS algorithm relies on the least squares problem, which

could be interpreted as an approximation to stochastic quadratic cost function with mem-

ory and given by [5]

Jt =
t∑

τ=1

λt−τeτe
∗
τ (1.3)

where λ ∈ (0, 1] is the forgetting factor, giving the algorithm memory, and the output

error et is defined as in eq. (1.1b). Observe that the cost function of RLS takes more than

one values of error into account, with full memory (λ = 1), fading memory (0 < λ < 1),

or no memory (λ = 0), which becomes an LMS algorithm! The complete recursion of the

RLS algorithm is as follows [5]

kt =
Pt−1xt

λ+ xH
t Pt−1xt

(1.4a)

Pt =
1

λ
[Pt−1 − ktx

H
t Pt−1] (1.4b)

wt = wt−1 + etk
∗
t (1.4c)

where Pt ∈ Cp×p and kt ∈ Cp are referred to respectively as the inverse correlation matrix

and the Kalman gain vector, such that xt = [xt xt−1 xt−2 · · · xn−p+1)]
T for a filter of lag

order p.

The RLS algorithm is clearly more complicated to implement than the LMS algo-

rithm but achieves faster convergence and attains lowest steady state error in the case of

stationary processes [5]. However, the RLS is more likely to be unstable numerically than

the LMS algorithm [9] and hence its steady-state performance could be worse than that

of the LMS due to its sensitivity to input disturbance [10]. Similarly, eqs. (1.3) and (1.4c)

are still valid in non-commutative ring of quaternions via some manipulation of eqs. (1.4a)

and (1.4b) (see [11]).
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1.2 Thesis Overview

1.2.1 Motivations

The adaptive filters has been intensively studies with many production-ready relevant

algorithms, still there are rooms for exploring and improving upon. When classical meth-

ods are augmented into higher dimension to cope with more complex data, the overall

analysis needs more comprehensive re-work but generally stays unchanged [12]. This has

initially meant to tackle multidimensional data until its usage can transcend into different

data sources fused into the same model as long as the underlying correlation exists [13].

The way this thesis put an emphasis on data diversity and fusion also stemmed from this

respect, since the unconventional data types studied in the thesis, namely quaternions,

tensors and graphs, are also multivariate in their nature. In our previous work [4], the

novel recursive algorithm based on quaternion-valued total least squares was proposed. In

this continuation, the data types mentioned above were studied and employed to underpin

the new algorithms grounded on the construction of adaptive filtering techniques motivat-

ing this entire thesis to transpire which we hope that would add noteworthy contribution

to the research community, despite the scale of improvement.

1.2.2 Objectives

The objectives of this thesis are as follows:

– to provide the working knowledge of quaternions. tensors and graphs in relation to

signal processing;

– to develop new recursive algorithms for quaternions, tensors and graphs for the

application requiring real-time estimation/prediction;

– to give empirical comparison of the proposed algorithms with relevant benchmarks

to testify its practical usefulness.
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1.2.3 Outline

The thesis is divided into eight chapters and organized as follows. In chapter 2, relevant

mathematical principles are briefly reviewed. The WL-QLMS [14] and WL-QRLS [11]

algorithms are then reviewed and compared in chapter 3. Chapter 4 begins with a proof

for the existence of low-rank matrix approximation in the quaternion domain, which is

afterwards used to obtain the solutions of QTLS. The results from chapter 4 are then

used to construct quaternion recursive total least squares (QRTLS) algorithms in chapter

5, where two methods are proposed: the RSVDQ-based method and the QRQI-based

method. In chapter 6, simulations for the derived algorithm are conducted to compare

performance, under input perturbations, with the pre-existing algorithms. Chapter 7

provides conclusions, followed by possible future directions.
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Chapter 2

Quaternions

S
TANDARD complex-valued mathematical models arose in the light of a signal de-

scribed not only by its magnitude, but also its phase [15]. they also find thier use

in data fusion technique where different types of data fused together into the model and

somehow the estimation result improves due to their underlying correlation [13]. One of

the most straightforward approach to data fusion is a multivariate model in which the

target variables are in the form of vectors, which casts the model into a matrix factor-

ization problem [16]. Further, the model becomes tensor factorization problem when the

desired output is in the form of matrices, or even tensors themselves. All these will be

explored from Chapter 4 onwards where tensors and graphs are prime topics. Another way

is to extend the model in its algebraic field i.e. from complex to hyper-complex numbers

(or quaternions) which will be introduced rigorously in this chapter. Concepts relating

to quaternions such as higher-order statistics, widely linear models, quaternion random

processes and etc, are also discussed.

2.1 Basics of Quaternions

Quaternions was first conceived by Sir W.R. Hamilton in 1843 and applied to three-

dimensional classical mechanics [17]. They became really popular again when their advan-

tage was found in computer graphics replacing the method of Euler angles, which creates
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the Gimbal lock problem [18]. From the perspective of abstract algebra, The division

algebra renders 3D/4D models succinct, elegant, and less unwieldy than matrix factor-

ization models [18,19] and found applications in many research fields such as color image

processing [20, 21], robotics [22, 23], Kalman filtering [24–26], information theory [27–29],

pattern recognition [30], machine learning [31,32], wireless communication [33,34], sensing

technology [35,36], and renewable energy [37]. Next, we dive in the concept of quaternions

from the very beginning.

2.1.1 Basic Properties

A quaternion can be thought of as a generlization of complex number with one real part

(denoted by the subscript a) and three imaginary parts (denoted by the subscript b, c and

d). A quaternion q ∈ H can be expressed mathematically as

q = qa + qbı+ qc+ qdκ

where qa, qb, qc, qd ∈ R and ı, , κ are imaginary units such that the they follow sort of

rotating properties e.g.

ı = κ κ = ı κı = 

ı2 = 2 = κ2 = ıκ = −1

However, this imaginary rotation renders quaternion multiplication quaternions non-

commutative (ı = κ 6= ı = −κ). The norm ‖q‖ of a quaternion q is defined as

‖q‖ =
√
qq∗ =

√
qa2 + qb2 + qc2 + qd2

The quaternion q is called a unit quaternion if ‖q‖ = 1 and q∗ := qa − qbı − qc − qdκ is

the conjugate of q. With this, the inverse of the quaternion q is expressed as

q−1 ,
q∗

‖q‖2
.

After all, among all basic properties presented so far, nothing is more germane to our
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algorithm development than the self-inverse mapping property, also known as involutions,

a very important properties unique to quaternions [38], given by

qı = −ıqı = qa + qbı− qc− qdκ

q = −q = qa − qbı+ qc− qdκ

qκ = −κqκ = qa − qbı− qc+ qdκ

Involutions are called self-inverse mappings because the inverse of its inverse results in the

original quaternion i.e. (qı)ı = q. The involutions are also distributive, (q1q2)
ı = q1

ıq2
ı.

By looking closely, it can be seen as a more complete version of quaternionic conjugates.

In a complex number, the components can be expressed by a linear combination of the

complex number and its conjugate. Similarly in a quaternion, the components can be

expressed by a linear combination of the quaternion and its involutions, that is

qa =
1

4
[q + qı + q + qκ]

qb =
1

4
[q + qı − q − qκ]

qc =
1

4
[q − qı + q − qκ]

qd =
1

4
[q − qı − q + qκ]

These relations are important in making an estimation/prediction model in hypercomplex

domains. It was already known that in a complex-valued regression technique, both the

complex numbers and their conjugates have to be taken into account in order to capture

all up-to-second-order statistics of the data for the learning algorithm to be as rigorous

as possible [39]. In quaternions, the quaternion and all its involutions are required to

accomplish such rigor as well [40], and the model is called widely linear model.
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2.1.2 Hilbert Spaces over Quaternions

The concept of Hilbert Spaces does not only form the basis of the linear algebra of a

quaternion, but also its calculus, to be called HR−calculus from this point onwards. Due

to it part of the division ring, the space defined over quaternions will be either left or

right, simply meaning that the multiplicative operators will be applied on the left or right

side of the expression, respectively. This is a non-trivial result as a great deal of research

effort has been put into realizing these simplistic yet elegant conclusion. An all-inclusive

summary of this quaternionic analysis can be found in [41, 42], which will be the main

source from which this section draws.

Since the division ring (the algebraic structure where quaternions live) is not a

field [43], how multiplication is applied to the left or right of a quaternion equation mat-

ters. In our case, deriving an algorithm over a wrong quaternion space would result in

quaternionic equation [44], which creates nested algorithm (algorithm-in-algorithm) prob-

lem. From our own practical perspective, the right quaternion vector space, consequently

producing right quaternion constant rule [42], would ease all our quaternion expressions

involving quaternionic derivatives. This is actually intuitively implied by the fact that

the right vector space defined over division ring is associated with column space [45], a

concept already familiar and common in standard complex-valued equivalents.

The main takeaway point from this section is the fact that all quaternion-related

algorithms in this thesis will be based on the right constant rule [42] so that analytical

closed-form formulae are achieved for the algorithm recursion. For all detailed discussions

on these basics, please see [4].

2.2 HR Calculus

As in the name of a stochastic gradient algorithm, it is necessary to obtain a derivative of

a quaternion function. The main obstacle, however, is our quaternion function of interest

(the MSE objective) is real-valued and is not analytic in H [46]. In complex analysis,

there exists CR calculus invented specifically to calculate the pseudo-derivative of real-
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valued complex function due to a sheer number of this type of expression in real-world

problems [47]. The HR calculus was also devised in the same spirit and this section

provides necessary concepts used in our algorithms. For a full coverage of the material,

please be referred to [42,48].

2.2.1 Analytic Function in H

Like multiplication, the true derivatives of quaternion-valued function have both left and

right forms, respectively given by [49,50]

lim
h→0

[(f(q + h)− f(q))h−1]

lim
h→0

[h−1(f(q + h)− f(q))]

where q, h ∈ H and f : H → H. It is necessary that f(q) must be in the form ωq + λ for

the left derivative to exist where ω, λ ∈ H and in the form qω + λ for the right one [50].

Similarly to the complex analysis, the quaternion derivatives are only defined for analytic

functions and it was shown that both forms of f(q) are analytic by definition [46]. However,

most real-world optimization problems require the objective functions to be real-valued.

A particular example, including ours,is the mean square function given by

J (q) = ‖f(q)‖2

and it was shown to be not analytic because ‖f(q)‖2 = f(q)f(q)∗ and the conjugate of

f(q), f(q)∗, breaks the analyticity [46]. In order to make sense of the derivative of the

quaternion function of real value, A new calculus framework was proposed, known as HR

calculus [42,48].

2.2.2 Isomorphism between H and R4

Driven by the desire to make sense of the derivative of the real-valued complex func-

tion, the CR calculus was invented through the observation of isomorphism between the

fields C and R2 [51], resulting in a framework which expands traditional complex analysis
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(standard Cauchy-Riemann differentials) to include the differentials of real-valued complex

functions [47]. The invention of HR calculus is motivated by exactly the same reason, the

desire to take derivatives of the real-valued function of quaternion variables by establish-

ing the isomorphic relationship (or duality) between the differentials of quaternion-valued

functions in H and those of corresponding quadrivariate real-valued functions in R4. With

this, we arrive at a version of hypercomplex calculus which allows taking a derivative of a

function of quaternion variables, regardless of its analyticity.

2.2.3 Differentials with Respect to q and q∗

Let q and q∗ respectively be an arbitrary quaternion and its corresponding conjugate. The

key novelty of HR calculus (as well as CR calculus) is the definitions are provided for both

the derivatives w.r.t. q and q∗. Unlike the CR calculus, in the H field, there are left and

right derivatives of q and q∗.

Definition 1. ( [48]) If f : H→ H is real-differentiable [50], then the left HR derivatives

of the function f with respect to q and q∗ are defined as

∂lf

∂q
,

1

4

(
∂f

∂qa
− ∂f

∂qb
ı− ∂f

∂qc
− ∂f

∂qd
κ

)
,

∂lf

∂q∗
,

1

4

(
∂f

∂qa
+
∂f

∂qb
ı+

∂f

∂qc
+

∂f

∂qd
κ

)
,

(2.1)

and the right HR derivatives of the function f with respect to q and q∗ are defined as

∂rf

∂q
,

1

4

(
∂f

∂qa
− ı ∂f

∂qb
−  ∂f

∂qc
− κ ∂f

∂qd

)
,

∂rf

∂q∗
,

1

4

(
∂f

∂qa
+ ı

∂f

∂qb
+ 

∂f

∂qc
+ κ

∂f

∂qd

)
,

(2.2)

where q = qa + qbı+ qc+ qdκ and qa, qb, qc, qd ∈ R.

These relationships are not trivial and importantly driven by the involution prop-

erties. For a complete treatment of how involution could further generalize the HR deriva-

tives, please be referred to [42], but eqs. (2.1) and (2.2) suffice for our proposed algorithms.

There is two important simplifications in case of real-valued quaternion func-

tion i.e. f : H → R. If this is the case, observe that all the sub-
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derivatives ∂f/∂qa, ∂f/∂qb, ∂f/∂qv, ∂f/∂qd will be real-valued and consequently, eq. (2.1)

and eq. (2.2) are identical, meaning the left and right derivatives are equal if f is real. The

other simplification is an extension of Brandwood’s results from the CR calculus which

states that, for the real-valued function of complex variables, the conjugate derivative

yields the maximal change in the optimization space [47]. This also turns out to hold up

in H as well [48]. Ultimately, the HR derivative for which can be reduced to

∂f

∂q∗
,

1

4

(
∂f

∂qa
+
∂f

∂qb
ı+

∂f

∂qc
+

∂f

∂qd
κ

)
. (2.3)

Note that the formula resembles the left derivative. This is just for ease of expression and

does not give priority or connection to left derivative and without losing generality, all

expressions from this point onwards are assumed with left HR derivatives.

2.2.4 The Novel Product and Chain Rules

One immediate problem faced by using the HR calculus is the traditional product rule

is no longer valid. With an effort to overcome this, a more generalized product rule was

derived [42]; if the functions f, g : H → H are real-differentiable, then so too is their

product, that is,

∂(fg)

∂q∗
= f

∂g

∂q∗
+

∂f

∂qg∗
g, (2.4)

where qg∗ = gq∗g−1 is a quaternion rotation (the right derivative will have a flip of g or f

but it is out of focus here). If either f or g is H→ R, then eq. (2.4) reduces to traditional

product rule, which is

∂(fg)

∂q∗
= f

∂g

∂q∗
+
∂f

∂q∗
g. (2.5)

So basically, the novel product rule is a generalization of the traditional one. Likewise, the

HR calculus also needs a new, more inclusive chain rule to handle more cases it covers.

If g : S → H and f : T → H are real-differentiable at the respective interior points,

q ∈ S ⊆ H and g(q) ∈ T ⊆ H, then the derivative of the composite function f(g(q)) is
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given by [42]

∂f(g)

∂q∗
=
∂f

∂g

∂g

∂q∗
+
∂f

∂gı
∂gı

∂q∗
+
∂f

∂g
∂g

∂q∗
+

∂f

∂gκ
∂gκ

∂q∗

=
∂f

∂g∗
∂g∗

∂q∗
+

∂f

∂gı∗
∂gı∗

∂q∗
+

∂f

∂g∗
∂g∗

∂q∗
+

∂f

∂gκ∗
∂gκ∗

∂q∗

(2.6)

For the problems we are working in this thesis, the objective is of real value i.e. f : T → R

where this chain rule is still valid.

2.3 Stochastic Processes of Quaternion-valued Signals

Now, the focus is once again shifted onto the quaternionic random variables. For a complex

random vector, both a correlation matrix and a pseudo-correlation matrix are necessary

to fully capture matrix second-order statistics which arises out of a quadratic function

of complex random variables. This notion of pseudo-correlation or pseudo-covariance led

to the idea of widely linear modelling in order to deal with improper processes, that is,

complex-valued random processes whose real and imaginary parts independently follow

different probability density functions (PDFs) [39]. In the case of quaternion random

variables, the classical correlation matrix is not enough to generally explain each real-

valued component [52]

In this thesis, the conditions of Q-properness will be based on [53] for an arbitrary

axis and angle of rotation ϕ, q $ evϕq ∀ϕ for any pure unit quaternion v (the real part

equals zero) and $ denotes equality in terms of PDF. This section provides important

summary of the second-order statistics of quaternion random variables as well as the

conditions for a complete description of the second-order statistics of general Q-improper

signals. For a full coverage of the topic, please refer to [40].

2.3.1 Augmented Second-order Quaternion Statistics

Similar to the case of complex-valued random processes, in order to exploit complete

second-order information, it is necessary to take into account the pseudo-correlation ma-

trices. The standard correlation matrix Rxx of a quaternion random vector x ∈ Hn is
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given by

Rxx = E{xxH} (2.7)

and its elemental structure is detailed in Table 2.1. Note that the real and imaginary

parts of Rxx are linear combinations of the autocorrelation and cross-correlation matrices

of its real-valued component vectors xa, xb, xc and xd ∈ Rn. From Table 2.1, the cross-

correlation matrices have the symmetry property that RT
ab = Rba. To summarize, R{Rxx}

is symmetric, whereas I{Rxx} is skew-symmetric, indicating that Rxx is Hermitian [4].

Since the second-order information of the quaternion random vector x cannot be

characterised completely by the standard correlation matrix Rxx alone [52], it is neces-

sary to define something similar to the pseudo-correlation matrices in a complex domain.

However, unlike complex numbers, the quaternions have involution instead of conjugate

of the complex. Therefore, the complementary correlation matrices [40] were introduced

based on the involutions: ı-correlation Rıx, -correlation Rx, and κ-correlation Rκx

Rıx = E{xıxH} (2.8a)

Rx = E{xxH} (2.8b)

Rκx = E{xκxH} (2.8c)

Also, the structure of these complementary correlation matrices are given in table 2.1.

Observe that all components of Rıx are symmetric, except for the i-component

Iı{Rıx} which is skew-symmetric, resulting in the i-Hermitian property. This is also

similar for Rx and Rκx in tht they are respectively -Hermitian and κ-Hermitian, such

that

Rıx = RıH
ıx (2.9a)

Rx = RH
x (2.9b)

Rκx = RκH
κx (2.9c)
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Rxx Rıx Rx Rκx

R{·} Ra + Rb +
Rc + Rd

Ra + Rb −
Rc −Rd

Ra − Rb +
Rc −Rd

Ra − Rb −
Rc + Rd

Iı{·}
Rba − Rab +
Rdc −Rcd

Rba − Rab −
Rdc + Rcd

−Rba−Rab−
Rdc −Rcd

−Rba−Rab+
Rdc + Rcd

I{·}
Rca − Rac +
Rbd −Rdb

−Rca−Rac+
Rbd + Rdb

Rca − Rac −
Rbd + Rdb

−Rca−Rac−
Rbd −Rdb

Iκ{·}
Rda − Rad +
Rcb −Rbc

−Rda−Rad−
Rcb −Rbc

−Rda−Rad+
Rcb + Rbc

Rda − Rad −
Rcb + Rbc

Table 2.1: Structures of quaternion-valued correlation matrices in terms of real-valued
quadrivariate counterparts.

Now, we arrive at one of the most important formulae in the quaternion-related

algorithms: the augmented correlation matrix, which is actually a correlation matrix of

an augmented quaternion random vector q := [xT xıT xT xκT ]
T

, denoted by

Rqq , E{qqH} =



Rxx Rı
ıx R

x Rκ
κx

Rıx Rı
xx R

κx Rκ
x

Rx Rı
κx R

xx Rκ
ıx

Rκx Rı
x R

ıx Rκ
xx


. (2.10)

As seen from eq. (2.10), the augmented correlation matrix contains the correlation and all

complementary matrices altogether. This implies that it should capture all the second-

order statistics of the quaternion variable x. To verify this, we resort to the same idea

employed when HR derivatives were defined; there must be an isomorphism with the

corresponding real-valued quadrivariate correlation matrix Rr, defined as

Rr = E{qrqrT } =



Ra Rab Rac Rad

Rba Rb Rbc Rbd

Rca Rcb Rc Rcd

Rda Rdb Rdc Rd


. (2.11)

By the concept of linear algebra, this isomorphism between matrices is simply an invertible
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matrix factorization which was shown to be [40]

Rr =
1

16
AHRqqA (2.12a)

A =



I ıI I κI

I ıI −I −κI

I −ıI I −κI

I −ıI −I κI


, (2.12b)

where I ∈ Rn×n is the identity matrix. The augmented second-order statistics introduced

can consequently support general second-order modelling of quaternion random processes1.

2.3.2 Second-order Circularity in H: Q-properness

The second-order circularity (properness) in the complex domain refer to the vanish-

ing pseudocorrelation [54]. Based on [53], a quaternion-valued second-order circular (Q-

proper) variable should have equal powers for each component, such that each component

is pairwise uncorrelated. All these conditions can be wrapped up into 4 properties below,

P1: E{x2δ} = σ2, ∀δ = a, b, c, d

P2: E{xδxε} = 0, ∀δ, ε = a, b, c, d and δ 6= ε

P3: E{xx} = −2E{x2δ} = −2σ2, ∀δ = a, b, c, d

P4: E{xx∗} = 4E{x2δ} = 4σ2, ∀δ = a, b, c, d

The first property, P1, states that all real-valued component signals of a quaternion random

variable have equal variance (power). The property P2 implies that the cross-component

signals of x are uncorrelated. Property P3 indicates that the pseudo-correlation matrix of

a Q-proper variable does not vanish (in stark contrast to the complex case [54]). The last

property states that the total power of a quaternion random variable is the sum of the

power of each component. Note that properties P1 and P2 yield P3 and P4.

From the properties above together with the relations between real-valued compo-

nents of a quaternion and those of involution counterparts in the previous, a Q-proper

1Note that A−1 = 1
4
AH .
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quaternion random vector x ∈ Hn is not correlated with its involutions xı, x, xκ, that is,

Rıx = 0 Rx = 0 Rκx = 0 (2.13)

Thus such a vector has vanishing complementary correlation matrices (specified in ta-

ble 2.1). Therefore, for a Q-proper quaternion random vector, it follows that the standard

correlation matrix eq. (2.5) is real-valued, diagonal, and positive-semidefinite, while the

complementary correlation matrices in eq. (2.6) are zero matrices [40]. This makes the

augmented correlation matrix Rqq to have much simpler form, which is identity, as

Rqq =



Rxx 0 0 0

0 Rı
xx 0 0

0 0 R
xx 0

0 0 0 Rκ
xx


= 4σ2I, (2.14)

where σ is the power of each component of the quaternion. For more detail about the

Q-properness of a quaternion random variable, please see [40].

2.3.3 Quaternion Widely Linear Model

If the augmentation is the basic building block of our quaternion-related algorithms, then

the quaternion widely linear (QWL) model is the prime machinery utilizing the building

block to create our finalized algorithms. The widely linear model is a form of linear re-

gression which takes into account each real-valued component of the complex-/quaternion-

valued random vectors. To illustrate how the QWL model can capture the augmented

second-order information established so far, consider the mean square error (MSE) esti-

mate y of the desired signal d via the observed inputs x. In probability, the estimate y

that minimizes the MSE error is the conditional expectation [55]

y = E{d|x}.
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Note that the noise is absorbed into the desired signal d for ease of presentation, and since

the noise is assumed i.i.d. Gaussian, its expectation w.r.t. the observed inputs, x, is zero.

As the main focus is on a linear model, only the linear MSE estimator was employed in

this thesis, and is given by

y = wTx (2.15)

where here w ∈ Hn is a vector of filter coefficients and x ∈ Hn is an input vector.

The estimator in eq. (2.15) is only valid for a Q-proper variable [40], and needs to be

expanded to cover every component of a quaternion variable for a complete second-order

statistics explained in the previous sections. In terms of probability, the standard estimator

y = E{d|x} shall span the condition into

yδ = E{dδ|xa,xb,xc,xd}, δ ∈ {a, b, c, d}

Hence, the widely MSE estimator of a quaternion random vector becomes

y =E{da|xa,xb,xc,xd}+ E{db|xa,xb,xc,xd}ı

+ E{dc|xa,xb,xc,xd}+ E{dd|xa,xb,xc,xd}κ,
(2.16)

With the isomorphism between real-valued components of a quaternion and their

quaternion-valued involution counterparts, the real components of quaternions in eq. (2.16)

can be replaced by the quaternions themselves and their involutions. The widely MSE

estimator can have an alternative form as

y =E{d|x,xı,x,xκ}+ E{dı|x,xı,x,xκ}ı

+ E{d|x,xı,x,xκ}+ E{dκ|x,xı,x,xκ}κ,
(2.17)

which can be linearized into the corresponding QWL model as follows [40]

y = uTx + vTxı + gTx + hTxκ

= wTq

(2.18)
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where w = [uT vT gT hT ]
T

and q = [xT xıT xT xκT ]
T

. The Wiener solution, wop, which

minimizes the MSE, E{|d− y|2}, based on the QWL model in eq. (2.16) is given by [11,40]

w∗op = R−1qqrqd, (2.19)

where Rqq = E{qqH}, rqd = E{qd∗} and (·)∗ is the (quaternion) conjugate operator. An

interesting point is that eq. (2.19) is also valid for the real and complex domains, but the

augmented correlation matrix Rqq in eq. (2.10) will vary with respect to the specific do-

mains. For Q-proper signals, the augmented correlation matrix becomes identity eq. (2.14),

simplifying eq. (2.19)

w∗op =
1

4σ2
rqd. (2.20)

The QWL Wiener solution in eq. (2.19) is particularly important in deriving the WL-

QRLS algorithm [8, 11]. Nevertheless, the method has been shown multiple times to be

numerically unstable [1,2,8,11]. Fortunately, with the advent of the HR calculus, there is

a leeway to acquire as powerful algorithms without resorting to eq. (2.19), our quaternion

adaptive filters proposed in this thesis.

2.4 Summary

In this chapter, we have outlined all the relevant basics of a quaternion and its analysis

relating to adaptive filtering like HR calculus and QWL models. These tools will allow us

to make sense of the proposed quaternion adaptive filters to be expounded in chapter 3.
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Chapter 3

Quaternion-Valued Adaptive

Filters Based on Extrapolated

Gradient Methods

c© 2017 IEEE. Reprinted & rearranged, with permission, from T.

Variddhisai and D. P. Mandic, “On an RLS-like LMS adaptive fil-

ter,” 2017 22nd International Conference on Digital Signal Processing

(DSP), London, 2017, pp. 1-5. doi: 10.1109/ICDSP.2017.8096130

c© 2019 IEEE. Reprinted & rearranged, with permission, from T.

Variddhisai, M. Xiang, S. C. Douglas and D. P. Mandic, “Quaternion-

Valued Adaptive Filtering via Nesterov’s Extrapolation,” 2019 IEEE

International Conference on Acoustics, Speech and Signal Processing

(ICASSP), Brighton, United Kingdom, 2019, pp. 4868-4872. doi:

10.1109/ICASSP.2019.8682433

T
HE topic of quaternion-valued adaptive signal processing first took shape when the

quaternion LMS (QLMS) adaptive filters were first introduced in [56] for moving

average (MA) and autoregressive (AR) types of linear models. The ARMA model followed

https://ieeexplore.ieee.org/abstract/document/8096130
https://ieeexplore.ieee.org/abstract/document/8096130
https://ieeexplore.ieee.org/abstract/document/8096130
https://ieeexplore.ieee.org/abstract/document/8096130
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quickly [57]. These simplest forms of quaternion-valued adaptive filters were already shown

to exceed both bivariate complex LMS and quadrivariate LMS for multichannel data pro-

cessing in terms of performance. This is because the quaternion algebra naturally accounts

for the coupling between the signal components, resulting in a superior data fusion [58].

These papers neither took into account the widely linear modelling, nor properly captured

second-order statistics until it was formally introduced [14]. Despite many potential re-

search topics available in quaternions like quaternionic frequency domain [59], quaternion

wavelet [60], etc, our effort is to build on the exiting knowledge of the quaternion-valued

adaptive signal processing in pursuit of better and more versatile methods.

3.1 Accelerated Gradient Methods

The QLMS algorithms employ the instantaneous error to calculate the stochastic gradient.

While this makes the QLMS convergent robustly and versatile in tracking a variety of

signals whether it is stationary or not, its limitations comes in when the signals become

complicated like non-linear signals [39], and its rather slow convergence [14]. On the other

hand, we have QRLS-type algorithms inspired from the real-valued RLS methods. This

algorithm, if able to, can cope with a little more complicated signals than the QLMS with

much faster convergence. However, their numerical robustness is a real concern where they

have tendency to diverge more frequent than the LMS [5], and the situation was shown

to go worse in complex RLS [39] and further downhill in QRLS [1, 2]. These observation

has been empirically, but rigorous investigation is still lacking. In this thesis, however, we

took this notion as an underlying caveat and proceeded to avoid matrix inversion at all

cost as it is largely believed to be the source of numerical instability [5]. In this section,

we extend the methods of heavy-ball gradient descents [61] to the quaternion domains by

offering two accelerated gradient descent schemes: the one inspired by Nesterov’s optimal

method [62] and by Chebyshev’s iterative method [63], called n-moment and c-moment

algorithms, respectively. These are key to the derivation of the proposed algorithms.
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3.2 Quaternion-Valued Adaptive Filters with Extrapolated

Gradient

Now, the main algorithms are proposed in 2 alternative schemes: n-moment and c-

moment. First, the algorithm is derived for the exact optimal gradient with some adjust-

ments to suit stochastic cost function instead of classical deterministic function, leading

to the n-moment algorithm. Then, the simplified scheme, the n-moment algorithm, which

interestingly resembles conjugate gradient descent is rendered. The results in this chapter

has been published in IEEE proceedings and the interested readers should refer to [1, 2]

3.2.1 Accelerated Gradient Descents - Generic Statement

In real domains, it was proved that when the objective function to be minimized is a con-

vex quadratic function, Nesterov’s accelerated gradient simplifies to the conjugate gradient

descent [61], an optimal form of Chebyshev’s iterative method. This is however proved on

the basis of deterministic function, but our problem is a stochastic one. Generally, most

optimization techniques would perform not so differently from the deterministic cases in

case of white Gaussian error [5,55] where our problem lies. However, the Nesterov’s algo-

rithm is probably among the exception as its convergence guarantee has only been verified

for deterministic cost function [62]. Also, the analysis to connect these two algorithms in

quaternion and stochastic setting has proven challenging for us so far. Nevertheless, we

managed to provide sketch proof of how the n-moment algorithm converges locally and

how it relates to the c-moment algorithm, which will be provided later in this chapter.

Moreover, extensive empirical simulations seem to validate our hypothesis as both of our

proposed methods perform on par with each other in almost all experiment settings.

Before embarking on the main content, we shall begin with the notion of quaternion

gradient. Consider a function f(q) : HM×1 → H, where q = (q1, q2, ..., qM )T ∈ HM . Then,

the quaternion gradient and conjugate gradient are respectively given by [42]
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∇qf ,
∂f

∂q
=

(
∂f

∂q1
, ...,

∂f

∂qM

)T
∈ HM ,

∇q∗f ,
∂f

∂q∗
=

(
∂f

∂q∗1
, ...,

∂f

∂q∗M

)T
∈ HM .

As clearly explained in the previous chapter, the conjugate derivative will yield the steepest

descent direction of the function f . Moreover, since our cost function of interest is of real

value, the concern for left or right derivative also vanishes. Now, let’s state the generic

problem. Consider the signals yn, xn ∈ H , n = 1, ..., N as the output and input signals,

respectively. Hence, the widely linear estimator of yn, ŷn, can be expressed as [1, 2, 55]

ŷn = 〈ŵ,qn〉 , ŵHqn (3.1)

where ŵ is an estimate of the optimal solution w ∈ H4M , and qn ∈ H4M is the augmented

input signal defined as

qn = [xTn , xıTn , xTn , xκTn ]
T

(3.2)

and xn = [xn, xn−1, ..., xn−M+1]
T is an input vector of filter order M . In case of a strictly

linear model, qn := xn (i.e. data is circular [40] and all complementary parts vanish). By

the probability theory, this linear estimator minimizes the mean square error given by

Jn(ŵ) = E{‖en(ŵ)‖22} (3.3a)

en(ŵ) , yn − ŷn = yn − ŵHqn. (3.3b)

In the adaptive filtering framework, a stochastic optimization is performed on the

MSE eq. (3.3) as the cost function. The utilization of accelerated gradient methods would

result in the generic heavy-ball recursive update below [64]

wn = wn−1 − (∇ŵ∗Jn(ŵ)|ŵ=v)αn + (wn−1 −wn−2)βn (3.4)

where wn is the value of ŵ at the epoch n, v is a point on HM space which lies within
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the closed line segment V, i.e. v ∈ V, parameterized as

V = {(ν + 1)wn−1 + ν(wn−1 −wn−2)βn|ν ∈ [0, 1] ⊂ R},

and αn, βn are quaternion scalars. Here in eq. (3.4), the second term of the RHS is the

gradient trem while the rightmost term is the momentum (extrapolation) term. αn is

called a stepsize and βn is an extrapolation ratio. As considering the quaternion domains,

we maintain the right constant rule. This will be obvious throughout this chapter how

the quaternionic Sylvester’s equation is avoided so that we could obtain the closed-form

recursive formulae as a result.

Now, eq. (3.4) can be re-formulated into 2 distinct notions in terms of how the

extrapolation takes place, at the point of descent, or at the gradient descent. The former

hence has the rightmost term of eq. (3.4) collapses into wn−1, to yield

vn = wn−1 + (wn−1 −wn−2)βn, (3.5a)

wn = vn −
(
∇ŵ∗Jn(ŵ)|ŵ=vn

)
αn. (3.5b)

The expression in eq. (3.5) is the main recursion of the proposed n-moment gradient

method. On the other hand, the c-moment gradient method has the extrapolation imple-

mented at the gradient term of eq. (3.4) by collapsing the rightmost term into

dnαn , wn −wn−1, (3.6)

and we thus arrive at the following expression

dn = −∇ŵ∗Jn(ŵ)|ŵ=wn−1
+ dn−1βn, (3.7a)

wn = wn−1 + dnαn. (3.7b)

where dn is the extrapolated descent direction and βn absorbs extra constants αn, αn−1

for lean formulae. Note that eq. (3.5) differs from eq. (3.7) not only in terms of formulae,

but also in the argument of the gradient ∇ŵ∗Jn(ŵ) where the n-moment method uses
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as ŵ eq. (3.5a), while the c-moment one uses wn−1. This distinction actually transpires

from how the underlying ODE of eq. (3.4) is discretized [63].

As stated above, the right constant rule is maintained for the scalars αn, βn ∈ H

to avoid quaternion Sylvester’s equation which could destroy the analytical form our our

recursion and create nested algorithm problem [44]. In the next section, we will focus on

the main research results of our quaternion-valued adaptive signal processing.

3.2.2 The Conjugate Gradient of WL-QLMS Algorithm with Memory

We named our proposed methods as QLMS due to the cost function to be minimized is

off eq. (3.3), which is by definition a least mean squares [5]. However, not only instan-

taneous input is used to calculate the gradient in the n-moment algorithm; instead, the

RLS-like cost function is utilized as an approximate to the cost in eq. (3.3a), that is

Jn(ŵ) ≈ Φn(ŵ)
n∑
k=1

λn−k
=

n∑
k=1

λn−k‖ek(ŵ)‖2

n∑
k=1

λn−k
(3.8)

where λ ∈ (0, 1) is a real-valued forgetting factor used to suppress the effect of early

data which may no longer contribute to the data of the current epoch. Here, if λ = 0,

then the cost function reduces to a standard instantaneous error, the normal QLMS.

Observe eq. (3.8) that its denominator is constant w.r.t. the gradient operand ŵ, and

thus could be left out in our derivation as it will be absorbed into any constants left in our

final recursion. Consequently, Φn(ŵ) will be used as our cost function in our quaternion

research. Now, we can rewrite Φn(ŵ) as

Φn(ŵ) = ŵHRnŵ − 2R{ŵHrn}+

n∑
k=1

λn−k|yk|2 (3.9)

where R{·} is an operator selecting only real part, and

Rn =
n∑
k=1

λn−kqkq
H
k = λRn−1 + qnq

H
n , (3.10)

rn =

n∑
k=1

λn−kqky
∗
k = λrn−1 + qny

∗
n. (3.11)
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We then arrive at one of our main results of this thesis, the HR gradient of the WL-QLMS

algorithms with extrapolation

Theorem 1. Let ŵ ∈ HM be a quaternion vector and Φn(ŵ) : HM → R, then, the

gradient of Φn(ŵ), denoted by gn(ŵ) ∈ HM , can be recursively given by

gn(ŵ) , 2∇ŵ∗Φn(ŵ) =
n∑
k=1

λn−kqke
∗
k(ŵ) = λgn−1(ŵ) + qne

∗
n(ŵ) (3.12)

Proof. By the above expression of quaternion gradient, we have

∇ŵ∗Φn(ŵ) =
∂Φn(ŵ)

∂q∗

and by the novel product rule given by eq. (2.4), we have

∂Φn(ŵ)

∂q∗
=

n∑
k=1

λn−ke∗k(ŵ)
∂ek(ŵ)

∂ŵ∗
+
∂e∗k(ŵ)

∂ŵek∗
ek(ŵ)

Now, with the derivative rule of HR calculus [42] and eq. (3.3b), the above derivative

terms are calculated as

e∗k(ŵ)
∂ek(ŵ)

∂ŵ∗
= e∗k(ŵ)

∂(yk − ŵHqk)

∂ŵ∗
= −e∗k(ŵ)

∂ŵHqk
∂ŵ∗

= −e∗k(ŵ)R(qk)

and
∂e∗k(ŵ)

∂ŵek∗
ek(ŵ) =

∂(y∗k − qHk ŵ)

∂ŵek∗
ek(ŵ) = −

∂qHk ŵ

∂ŵek∗
ek(ŵ) =

1

2
q∗ke
∗
k(ŵ)

Finally, we arrive at

∂Φn(ŵ)

∂q∗
=

n∑
k=1

λn−k
1

2
q∗ke
∗
k(ŵ)− e∗k(ŵ)R(qk)

=
n∑
k=1

λn−k
(

1

2
q∗k −R(qk)

)
e∗k(ŵ)

=
1

2

n∑
k=1

λn−kqke
∗
k(ŵ)

=
1

2

(
n−1∑
k=1

λn−kqke
∗
k(ŵ) + qne

∗
n(ŵ)

)

=
1

2
(λgn−1(ŵ) + qne

∗
n(ŵ))
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which concludes our result.

3.2.3 The n-Moment WL-QLMS Algorithm

We will now derive the first proposed method which is inspired by the classical Nesterov’s

optimal gradient descent. In classical optimization, the optimal method utilizes the notions

of strong convexity and estimate sequences, given respectively by

Definition 2. A continuously differentiable function f(w) : RM → R is strongly convex

on RM if there exists a constant σ > 0 such that for any w,v ∈ RM , we have

f(v) ≥ f(w) + 〈∇f(w),v −w〉+
σ

2
‖v −w‖2

Definition 3. [62] For any w ∈ RM and all n ≥ 0, a pair of estimate sequences of

f(w) : RM → R, {φn(w) : RM → R}∞n=0 and {ηn ∈ (0, 1)}∞n=0, satisfies, if ηn → 0,

φn(w) ≤ (1− ηn)f(w) + ηnφ0(w)

Due to all these real-valued sequences despite quaternion-valued input vectors, this def-

inition can be used to derive the quaternion version of the traditional Nesterov optimal

method almost trivially the same way as in the original paper [62], except for the right

constant rule which is strictly enforced throughput the derivation. However, in our prob-

lem, the function to be minimized, Φ(w), is stochastic. The analysis to date has been

challenging and found limited success, not only by us but also across topic enthusiasts.

From the perspective of estimate sequences, βn in eq. (3.4) would form a part if an iter-

ative equation involving ηn, which is real-valued. Therefore, βn by definition 3 will be of

real value too. This enables Nesterov’s formulae to be straightforwardly applied to our

n-moment algorithm, yielding

βn =
ηn−1(1− ηn−1)
(ηn−1)

2 + ηn
(3.13)
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with ηn ∈ (0, 1), such that

(ηn)2 = (1− ηn)(ηn−1)
2 +

(
σn
Ln

)
ηn (3.14)

where

σn = ‖λmin(Rn)‖2 (3.15)

and

Ln = ‖λmax(Rn)‖2. (3.16)

The λmin(·) and λmax(·) respectively represent the minimum and maximum eigenvalues of

Rn. Together with the recursions eqs. (3.5), (3.10) and (3.11) and our HR gradient result

in eq. (3.12), the update equation for n-moment algorithm can be expressed by

vn = wn−1 + (wn−1 −wn−2)βn, (3.17a)

ǧn , Rnvn − rn, (3.17b)

wn = vn − ǧnαn. (3.17c)

These equations comprise the n-moment WL-QLMS algorithm. Its complete algorithm is

summarized in the following section.

3.2.4 The Sketched Analysis of Convergence of the n-moment method

The convergence analysis of the n-moment algorithm would be self-proven in its derivation

(similar to the original analysis [62]) if the objective Φn(ŵ) is deterministic, that is, Rn

and rn are constants. Our true struggle during studying this topic is to extend the analysis

to a stochastic case where the sense of optimality is also compromised. The essence of

convergence analysis is to ensure that the objective function decreases with time in a

statistical sense. While certainly Φn(wn) < Φn(vn) due to exact local gradient descent,

it is not guaranteed that Φn(wn) < Φn(wn−1), an important condition to prove the

convergence of the algorithm. While the analysis of the deterministic case is self-validated

via the way the algorithm is derived from estimate sequences, the case of stochastic cost
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function is still limited. To this end, we developed a heuristic method to ensure that

Φn(wn) < Φn(wn−1) by resetting βn whenever this condition is violated. to put it into

algorithmic practice, we utilized 2 checking conditions: gradient check [65]:

〈wn − vn,wn −wn−1〉 > 0, (3.18)

and contraction mapping [66]:

‖wn − vn‖2 < ε0‖wn−1 − vn−1‖2. (3.19)

The first condition eq. (3.18) is necessary to accommodate our convergence proof later

on in this chapter. It basically mandates that the effective gradient of the recursion,

wn −wn−1, is a descent direction i.e. positive inner product with ǧn. Nevertheless, this

poses a challenging interpretation of what is a positive quaternion. In complex cases,

it is suggested that the positive real part of a complex product would yield the same

desired outcome [65]. As there has been no similar recommendation made for quaternions,

it is, at the first glace, better to play safe and resort to eq. (3.19) to guarantee the

convergence of n-moment algorithm. Moreover, we also observed that the convergence

rate of the algorithm was very inconsistent across trials and samples. It is obvious that

as the objective is no longer deterministic, βn is also no longer critically optimal; instead,

it can cause underdamped convergence trajectory by overestimating the extrapolation

step [62], making the algorithm performs inefficiently. To prevent this, we need to ensure

that βn lies within the range that makes Φn(wn−1) < Φn(wn) by significant order of

growth. In the original Nesterov’s method, second-order growth condition,

(ε0/2)‖wn −wn−1‖2 < Φn(wn−1)− Φn(wn), (3.20)

is naturally employed as a result of Φn(ŵ) being assumed as strongly convex function def-

inition 2. With Φn(ŵ) given in eq. (3.9), we can manipulate eqs. (3.19) and (3.20) to yield

the following theorem [1]

Theorem 2. For the stepsize αn < 1/Ln, the conditions in eqs. (3.19) and (3.20) are
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satisfied if

βn <

√
1− αnε0
1− αnσn

‖wn −wn−1‖2
‖wn−1 −wn−2‖2

(3.21)

The expression in theorem 2 is elegant because not only does it succinctly combine

two convergence criteria (eqs. (3.19) and (3.20)) in one compact formula, but we also

arrive at the algorithm guaranteed to converge at the rate of second order. Nevertheless,

to this point, it may beg a question that while these additional expressions may not

worth the convergence speed gained from them and whether we could devise an algorithm

comparable in terms of performance but less algorithmic steps involved. Consequently,

we proposed another method, the c-moment WL-QLMS algorithm, which has even more

succinct formulae while empirically achieving comparable performance.

3.2.5 The c-Moment WL-QLMS Algorithm

The “c” connotes the Chebyshev’s iterative method which underpins eq. (3.7), the main

equations for the c-moment algorithm. This algorithm has more succinct formulae and

more computational friendly than the n-moment one. This results from the use of dual

recursion where all parameters will be calculated from their past values. This is not the

case in the n-moment algorithm because the explicit extrapolation precludes the iterative

computation of the gradient ǧn in eq. (3.17b) and therefore requires full calculation in every

iteration. From this perspective, a huge computational reduction in c-moment algorithm

can be seen and it starts by finding the optimal value of the stepsize αn via the following

equation:

∂Φn(wn)

∂αn
= 0 (3.22)

and substituting eq. (3.7b) into eq. (3.22), we have

αn = −〈dn,gn(wn−1)〉
〈dn,hn|n〉

(3.23)

where

hn|n , Rndn. (3.24)
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Observe that 〈dn,hn|n〉 is real-valued and thus no left or right constant rule applicable.

Now, to reuse past calculations, we need to give distinction between a priori and a poste-

riori gradients, gn|n−1 and gn|n respectively, as

gn|n−1 , gn(wn−1), (3.25)

and

gn|n , gn(wn). (3.26)

Then, with eqs. (3.7b) and (3.12), we obtain first pair of dual recursion, the gradient

recursion, given by

gn|n−1 = λgn−1|n−1 − qne
∗
n, (3.27)

gn|n = gn|n−1 + hn|nαn. (3.28)

It is obvious that by shifting the extrapolation into the gradient rather than the argument

variable, we gain seamless expression which eases the computation greatly. this would con-

clude our algorithm unless the extrapolated descent direction dn is used. We see from the

previous section that although we gain better convergence, the additional computational

complexity outweighs its main utility due to many extra steps to ensure its robustness.

In this algorithm, we would like to give the structure of dn in eq. (3.7a) from the outset.

To this end, we introduced a novel property to force the behavior of dn and it is called

Markov conjugacy [2], that is

Definition 4. A set of descent directions {d1,d2, ...,dn} is Markov conjugate if, at any

iteration i,

dHk Rkdk−1 = 0 for k = 2, 3, ..., n. (3.29)

Note that this definition resembles the conjugate gradient condition on a tradi-

tional optimization framework. Now, we pre-multiply eq. (3.7a) with (dn−1)
HRn and

substitute eq. (3.29) into eq. (3.7a) to give the following formulae,

βn =
〈dn−1,vn〉
〈dn−1,hn|n−1〉

(3.30)
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where

hn|n−1 = Rndn−1 (3.31)

vn , Rngn|n−1. (3.32)

and after some manipulation, we obtain the second dual recursion, the gain vector recur-

sion
hn|n−1 = λhn−1|n−1 + qn(qHn dn−1) (3.33)

hn|n = −vn + hn|n−1βn. (3.34)

It is clear that the computational bottleneck only lies at eq. (3.32), accounting for around

O(M2), while in n-moment algorithm, the cost to find the minimum and maximum eigen-

values would be of order O(M3). This roughly illustrate the reduction of computational

complexity of the c-moment algorithm over the n-moment one. Regarding convergence, it

is actually straightforward that, with eqs. (3.23) and (3.30), the c-moment algorithm also

satisfies the second-order growth condition eq. (3.20), and we decided to forgo detailed

proof for the sake of time limits at the time of writing this thesis. We summerized both

algorithms below:

3.3 Numerical Experiments

To this point, the readers would have noticed that the proofs of convergence of our algo-

rithms are sketched proofs, meaning it provides solid, rough still, mathematical lines of

reasoning to show that it would be highly likely to converge. Candidly, the exact analysis

has been a difficult challenge to us until now. We add up to this lacking by performing

exhaustive numerical experiments to testify the validity of our proposed methods.

For rigor, the experiments were conducted via a widely linear quaternion moving

average model of order 3 (WLQMA(3)), where the data xn was drawn from 1200 samples

of the same distribution N (0, 1) for each component of xn, with a moderate SNR of 20dB.

The coefficients were drawn from a mixture of distribution wm ∼ U(−1,−0.45)+U(0.45, 1)

and zeroed out if below 0.25. Then, all 1200 samples of xn we fed into the WLQMA(3)

to produce 1200 outputs, yn. Note that the first 200 samples of yn were left out so that
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Algorithm 1: the n-Moment WL-QLMS Algorithm

Input : xn, yn, M , λ and δ
Output: w

1 Initialize w0 = p0 = 0 and R0 = 0;
2 n = 0;
3 do
4 n = n+ 1;
5 Update qn according to (3.2);

6 ŷn − (wn−1)
Hqn;

7 en = yn − ŷn;
8 Rn = λRn−1 + qnq

H
n ;

9 rn = λrn−1 + qny
∗
n;

10 σn = λmin(Rn) (smallest eigenvalue);
11 Ln = λmax(Rn) (largest eigenvalue);
12 αn = 1

Ln
;

13 Find µn ∈ (0, 1) such that (µn)2 = (1− µn)(µn−1)
2 +

(
σn
Ln

)
µn;

14 βn = µn−1(1−µn−1)

(µn−1)
2+µn

(= 0 if (µn−1)
2 + µn = 0);

15 vn = wn−1 + βn(wn−1 −wn−2);
16 wn = vn − 1

Ln
(Rnvn − rn);

17 ε0 = σn
10 ;

18 if βn ≥
√

1−αnε0
1−αnσn

‖wn−wn−1‖2
‖wn−1−wn−2‖2

then

19 µn = 1;
20 wn = wn−1 − 1

Ln
(Rnwn−1 − rn);

21 end

22 while ‖en‖ > δ or n ≤ N ;
23 wop = wn.



3.3 Numerical Experiments 57

Algorithm 2: The c-Moment WL-QLMS Algorithm

Input : xn, yn, M , λ, ε, δ and update scheme
Output: ŷn and wop

1 Initialize w0 = d0 = g0|0 = h0|0 = 0 and R0 = 0;

2 n = 0;
3 do
4 n = n+ 1;
5 Update qn according to (3.2);

6 ŷn − (wn−1)
Hqn;

7 en = yn − ŷn;
8 Rn = λRn−1 + qnq

H
n ;

9 gn|n−1 = λgn−1|n−1 − qne
∗
n;

10 vn = Rngn|n−1;

11 if Markov conjugate scheme then
12 hn|n−1 = λhn−1|n−1 + qn(qHn dn−1);

13 βn = 〈dn−1,vn〉
〈dn−1,hn|n−1〉

(β1 = 0);

14 dn = −gn|n−1 + dn−1βn;

15 hn|n = −vn + hn|n−1βn;

16 αn = − 〈dn,gn|n−1〉
〈dn,hn|n〉

;

17 else steepest descent scheme
18 dn = −gn|n−1;

19 αn = 1
πn+εn

where πn =
〈gn|n−1,vn〉
‖gn|n−1‖2

;

20 end
21 wn = wn−1 + dnαn;
22 gn|n = gn|n−1 + hn|nαn;

23 while ‖en‖ > δ or n ≤ N ;
24 wop = wn.
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the rest 1000 were in steady state and hence used in our experiments, every of which was

conducted over 200 independent trails to assure the consistency of the empirical outcome.

Both proposed algorithms were performed against other more basic algorithms of the same

class - the original WL-QLMS [14] and WL-RLS [11]. For a fair comparison, the stepsizes

αn for the original WL-QLMS was calculated the same way as our c-moment algorithm

in eq. (3.22) (this would ultimately render a normalized version of WL-QLMS). The metric

used to benchmark the algorithms was the normalized misalignment, ζn, with wop the true

value of w, defined as

ζn ,
‖wn −wop‖2

‖wop‖2
. (3.35)

Remark 1. All of the experiments and figures in this section have been published in [1,2].

The original .fig files of some images were lost, so the legend of some images shows the

alternative names of the proposed algorithms in this chapter.

In the first experiment, we compared our proposed algorithms with the WL-QRLS routine

because all of them minimize the same cost function eq. (3.9). Two variants of λ, 0.95 and

0.91 were considered. As seen in Fig. 3.1, both proposed momentum-based algorithms,

n- and c-moment, converged as fast and achieved steady-state misalignment as low as

the WL-QRLS. When λ = 0.95, the WL-QRLS started off the convergence rate faster

but then was caught up by the momentum algorithms and eventually reached almost the

same steady-state misalignment. For λ = 0.91, while the WL-QRLS now clearly converges

slightly faster than the remaining two, it somehow abruptly diverges away at the epoch

∼ 360 whereas the momentum routines remained robust. This is due to the absence of

matrix inversion in our algorithms and hence no concern for non-invertible Rn which could

potentially arise. The other lesser-known cause of this divergence is the fact that λ will

be a denominator in a WL-QRLS algorithm and therefore could lead to exponentially

growing sequence. In comparing between the 2 proposed routines, it can be seen that the

c-moment WL-QLMS actually performed better numerically and computationally than

the n-moment one. Consequently, for the sake of space saving, c-moment algorithm will

be mostly considered from this point onwards.

For the next simulation, the effect of λ was illustrated in Fig. 3.2 where the standard
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Figure 3.1: [1] The normalized misalignment of WL-QRLS (green), c-moment WL-QLMS
(red) and n-moment WL-QLMS (blue) algorithms for the values of λ 0.91 (line) and 0.95
(dash), averaged over 200 independent trials, when employed for the identification of a
WLQMA(3) process, at an SNR of 20dB.

WL-QLMS was put as a benchmark. In this experiment, the value of βn was set to zero to

gauge how c-moment WL-QLMS routine would perform at its worst. When the forgetting

factor is close to unity, the convergence rate decreases close to the standard WL-QLMS

but the steady-state misalignment is lower. When the value of λ decreases further from

unity, the algorithms converge faster but misalignment increasingly approaches that of

the standard WL-QLMS. Between the WL-QRLS and the c-moment WL-QLMS, the c-

moment routine clearly achieves lower misalignment, regardless of the value of λ; however,

when λ is low, its convergence get caught up by that of the WL-QRLS by a slight margin.

Now with the same setting from fig. 3.2, we looked into how the presence of βn affects the

c-moment WL-QLMS algorithm as a whole in the third experiment. Now via fig. 3.3, the

momentum from βn pushed the convergence to be even better, but a quite slight increase
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in misalignment was also observed.
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Figure 3.2: [2] The normalized misalignment of standard WL-QLMS (NLMS with ε =
0.01), WL-QRLS (RLS), and c-moment WL-QLMS with βn = 0 (m-NMLS) algorithms
for the values of λ 0.99 (line) and 0.95 (dash), averaged over 200 independent trials, when
employed for the identification of a WLQMA(3) process, at an SNR of 20dB.

The forth experiment exhibited the versatility of our proposed methods by combining vari-

able stepsize techniques into the routine. figs. 3.4 and 3.5 show the results of the forth ex-

periment where three fixed-stepsize routines (WL-QRLS and c-moment WL-QLMS) were

benchmarked against three variable-stepsize ones (normalized WL-QLMS and c-moment

WL-QLMS with GSER [67] and GNGD [68] schemes). By inspection of c-moment WL-

QLMS at λ = 0.99 and 0.95 as well as comparing the results with the second experiment

in fig. 3.2, it is clear that with the right choice of variable step size scheme, both fast

convergence and low misalignment could be attained simultaneously.

For the fifth experiment, we wanted to see how our proposed methods fare against non-

stationary signals where the coefficients could suddenly change at random. Such a candi-
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Figure 3.3: [2] The normalized misalignment of WL-QRLS (RLS), c-moment WL-QLMS
with βn = 0 (SD m-NLMS), and normal c-moment WL-QLMS (MC m-NLMS) algorithms
for the values of λ 0.99 (line) and 0.95 (dash), averaged over 200 independent trials, when
employed for the identification of a WLQMA(3) process, at an SNR of 20dB.

date used in our simulation is Saito’s chaotic signals which will be modelled via a widely lin-

ear quaternion autoregresive models of order 3 and 6 - WLQAR(3) and WLQAR(6), both

of which were set to make 3-step prediction. This experiment were visualized in figs. 3.6

to 3.8 and used NMSE as a measure of performance. It is obvious right away that the WL-

QRLS failed to re-adjust itself after the weight coefficients altered fig. 3.6. This is again

due to its inherent numerical stability from matrix inversion. While not visualized here,

the stadard WL-QLMS were too slow to even converge to steady state before the change

in the coefficients. Our proposed methods surely reigned supreme in this non-stationary

case. Nevertheless, the momentum methods struggled to identify the system during the

transient state fig. 3.7 as the nature of this spike pattern is not Gaussian [55] as assumed

in our model. After all, the ability of our methods to re-adjust in a steady-state condition
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Figure 3.4: [2]The normalized misalignment of WL-QRLS (RLS), standard WL-QLMS
(NLMS), and c-moment WL-QLMS (m-NMLS) algorithms for the fixed stepsize (line)
and GSER stepsize (dash) schemes, averaged over 200 independent trials, when employed
for the identification of a WLQMA(3) process, at an SNR of 20dB.

was validated. The original Saito’s signal and its predictions were in fig. 3.8.

3.4 Summary

This chapter presents our first work out of three: the quaternion-valued adaptive signal

processing based on extrapolated gradient methods. Firstly, the theory of optimal gradient

descent was re-visited and revised for the case of quaternions. The fortunate aspect of

our first topic is the fact that the function to be minimized is a real-valued function of

quaternion-valued arguments and hence the analysis would be theoretically identical to

that of the real-valued arguments, were the function to be deterministic. By assuming that

the second-order statistics of the input data varies slowly (which is actually likely to be true
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Figure 3.5: [2] The normalized misalignment of WL-QRLS (RLS), c-moment WL-QLMS
(m-NMLS) algorithms both fixed (line) stepsize and GNGD stepsize (dash) schemes, av-
eraged over 200 independent trials, when employed for the identification of a WLQMA(3)
process, at an SNR of 20dB.

according to eqs. (3.10) and (3.11)), the local descent of the gradient was validated through

numerical simulations to be sufficient for our methods to be robust. Two approaches were

introduced: the n-moment WL-QLMS and the c-moment algorithms. These two methods

are different in the way their underlying heay-ball update equation is expressed; the former

follows Nesterov’s optimal method while the latter follows Chebyshev’s iterative method.

The n-moment WL-QLMS almost take the same formulae as the classical Nesterov’s except

for the additional step of gradient conditioning to ensure both local descent direction

and second-order reduction of cost function. On the other hand, the c-moment WL-

QLMS can be interpreted as a simplified n-moment routine with less computation but

almost identical numerical performance. While its outward expression resembles conjugate

gradient algorithm, it only captures the immediate momentum of the most recent past
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Figure 3.6: [1] The normalized MSE of WL-QRLS, n-moment WL-QLMS (n-WLQLMS)
and c-moment WL-QLMS (m-WLQLMS) algorithms with λ = 0.95, when employed for
the identification of Saito’s circuit through 3-step predictive WLQAR(3) and WLQAR(6)
models.

descent direction while the traditional conjugate gradient would capture the momentum

of all past directions, but that is due to the deterministic nature of the problem. The

empirical experiments confirm our analysis and potential of the proposed quaternion-

valued adaptive filters with the performance on par with the fast-converging WL-QRLS

but numerically robust like the slow-converging standard WL-QLMS. Finally, we consider

that the idea of momentum-based approaches derived so far is too beneficial to be a one-

trick enabling concept used only in this work. Our second work about dictionary learning

in tensors see this concept as the main scheme for updating the dictionary, which will be

presented in the next two chapters.
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Figure 3.7: [1] The transient normalized MSE of n-moment WL-QLMS (n-WLQLMS)
and c-moment WL-QLMS (m-WLQLMS) algorithms with λ = 0.95, when employed for
the identification of Saito’s circuit through WLQAR models of orders from 3 to 6.
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Figure 3.8: [1] The values of each component of Saito’s signal presented in the original
(green) and its estimates through WLQAR(3) in c-moment WL-QLMS (red dash) and
n-moment WL-QLMS (blue dot) algorithms with λ = 0.95.
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Chapter 4

Tensor Decompositions for Signal

Processing

T
ENSORS are the second unconventional-structure data we study in this thesis. As

a matter of fact, all three types of data - quaternions, tensors and graphs - naturally

occur in the setting of ever growing multisensor/sultinode data acquisition. In fact, all

these three data types have share isomorphism between each other. To put simplest, a

quaternion matrix (HM×N ) is isomorphic with a real-valued tensor (RM×N×4). It is under

this umbrella of data fusion research we have been working on that gives meaning to the

smooth transition from quaternions to tensors. Unlike matrices, it has been shown through

various research article that data analysis techniques for tensor decomposition are more

flexible, the decomposed latent components are usually more insightful in terms of hidden

features, and algebraic properties are usually guaranteed under more natural and milder

conditions. By these interesting attributes of tensor analysis, we are inspired to extend

to tensors the data fusion technique of adaptive filtering. In this chapter, the necessary

concepts of multilinear algebra are explained and discussed in order to form the basic for

our second research work: the multilinear online dictionary learning. This chapter will

provide explanation of important tensor decomposition techniques relevant to our tensor

dictionary learning algorithm to be introduced in the next chapter.
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4.1 Tensor Basics: History, Motivation and Preliminaries

The material in this chapter can be found with much more additional details that are not

relevant for our work in [69–71].

4.1.1 Brief History of Tensors as Signal Processing Tools

Probably, the most widely known use of a tensor is the Einstein notation in his general

theory of relativity. As a multiway data analysis, it can be traced back to the studies

of homogeneous polynomials in the 19th century. The very first tensor representation as

a multidimensional array (or multiway) was the introduction of Tucker decomposition

(TKD) for analyzing psychometrics [72]. Shortly, the canonical polyadic decomposition

(CPD) was independently re-invented as canonical decomposition (CANDECOMP) [73]

and parallel factor model (PARAFAC) [74]. After many adoption in diverse fields of data

analysis [75], it entered the field of signal processing as a potential tool to analyze higher-

order statistics (HOS), which is higher-order tensors. Many novel applications regarding

HOS have been innovated afterwards [76–78].

4.1.2 Why tensors?

Before diving into the material review, we need to highlight the benefits of the tensors

as a data structure. The first obvious benefit of a tensor is that it is a straightforward

representation of multidimensional data. This tensor representation can be unfolded to

a matrix form via its equivalent Kronecker structure [69] which unnecessarily and geo-

metrically increases the size of data. Therefore, direct analysis on a tensor itself would

save any redundant computation. For example, the correlation matrix from unfolding a

correlation tensor will be dependent on only the main correlation sub-matrices along the

diagonal while the remaining off-diagonals will be the product of their respective diagonal

ones [71]. All in all, analyzing tensor data directly helps reduce the redundancy arising

from tensors unfolding to matrices - the blessing of dimensionality. The second benefit is

from the perspective of data fusion technique where more and more data diversity (channel
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× time × frequency × trial × subject × etc) can be aggregated and hence joint analyzed

for more profound insights to better understand the data at hand.

Tensor representation is not without its limits though. While much existing work

considers tensorizing data by concatenating matrix and vector data, we quite disagree

with this practice for three reasons. Firstly, as mentioned above, the natural way to un-

fold a tensor into a matrix is its Kronecker structure equivalent whereby some properties in

auto-/cross-correlation are enforced. Blind transform of matrices into a tensor is therefore

dangerous because it may create false artifacts into the original matrices that may not

have a Kronecker structure. Secondly, thanks to the advance in computing technology,

the maneuvering of large-scale data has no longer been hindered by the sophistication of

a mathematical algorithm. While general tensor decomposition algorithms could achieve

much more massive dimensionality reduction than any matrix/vector counterparts, it may

be no longer necessary in today’s hardware scope. Last but not least, although the analy-

sis of already decomposed tensors is doubtless computational-friendly, the decomposition

algorithms themselves are not, of which many can exceed its target tensor in terms of com-

putational dimension such as exact CPD, which is actually NP-complete [79]. Many active

research in the field endeavors to propose novel algorithms which can achieve both com-

putational affordability and the dimensionality reduction as close as the theoretical bound

simultaneously. The important consideration before employing tensor decomposition is

therefore whether it is still worth it when the cost of decomposition weighs in.

Nevertheless, the research field regarding tensor decomposition has been very ac-

tive and new approaches have been introduced continually. We may eventually arrive

at effective methods whereby the computational complexity is out of concern. Only the

Kronecker structure inherited in a tensor product is the remaining issue.

4.1.3 Notation and Preliminaries

A tensor can be deemed a multi-way array whereby the term ways or modes is the order

of the tensor. A real-valued tensor of order N is symbolized by a boldface calligraphic

uppercase letter as A,B ∈ RI1×I2···×IN with its scalar entries by italic lowercase letters as
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ai1i2...iN . As a side note, a matrix, denoted by a boldface uppercase letter, A ∈ RI1×I2 ,

can be considered a 2nd-order tensor or 2-way array.

A subarray of a tensor is a subset of the tensor where part of the indices is fixed. For

example, a vector is a subarray of a matrix. For tensors, their matrix (2-way) subarrays

are termed slices by fixing all but any two indices. If we now fix all but one index, the

subarrays will be called fibers. The Frobenius norm of a tensor A is the square root of

the sum of the squares of all its entries, that is,

‖A‖F ,

√√√√ I1∑
i1=1

I2∑
i2=1

· · ·
IN∑
iN=1

a2i1i2...iN .

Observe that this is similar to Frobenius norm of a matrix. The Frobenius inner product

of two equal-sized tensors A,B is the sum of the products of their elements, that is,

〈A,B〉F ,
I1∑
i1=1

I2∑
i2=1

· · ·
IN∑
iN=1

ai1i2...iN bi1i2...iN ,

and it is obvious that 〈A,A〉F = ‖A‖2F . Moreover, A can be called a rank-one tensor if

it can be expressed as the outer product of factor vectors, ψn ∈ RIn that is,

A = ψ1 ◦ψ2 ◦ · · · ◦ψN ,

where the operator ◦ represents outer product, signifying that each element of the tensor

is the product of the corresponding elements of the respective factor vectors, i.e.

ai1i2...iN = ψi1ψi2 · · ·ψiN for all 1 ≤ in ≤ In.

A is called a diagonal tensor if its elements ai1i2...iN 6= 0 only if i1 = i2 = · · · = iN . So

far, we have defined many special tensors and two tensor products. Now, we will review

three more tensor products crucial in deriving our tensor dictionary learning algorithm.

Given a matrix Ψn ∈ RJn×In , a mode-n product between A and Ψn yields another tensor
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C ∈ RI1×I2···×Jn···×IN given by

(C)i1...in−1jnin+1...iN
= (A×n Ψn)i1...in−1jnin+1...iN

,
In∑
in=1

ai1i2...iNψjnin ,

where, put simply, each mode-n fiber of A is multiplied by the matrix Ψn. This mode-n

product is the most basic building block of most tensor decomposition techniques. Now,

given D ∈ RJ1×J2···×JM and In = Jm = K, we can define a mode-(n,m) contracted product

or contraction between A and D which yields an (N +M − 2)th-order tensor

(A×nmD)i1...in−1in+1...iN j1...jm−1jm+1...jM
,

K∑
k=1

ai1...in−1kin+1...iNdj1...jm−1kjm+1...jM .

The definition above displays contraction in a single common mode, but in reality, tensors

can be contracted in several modes simultaneously. In fact, the essence of our proposed

online tensor dictionary learning routine relies on the mode-wise operation where two

tensors A,D, now Ik = Jk for k 6= n, is contracted into a matrix X ∈ RIn×Jn via the

mode-‘all-but-n’ contraction, of which the element xinjn is given by

xinjn = (A×/n/nD)
injn

,
I1∑
i1=1

· · ·
In−1∑
in−1=1

In+1∑
in+1=1

· · ·
IN∑
iN=1

ai1i2...iNdi1...in−1jnin+1...iN .

Note that the all-mode contraction is the same as the Frobenius inner product defined

above. This contraction of tensors into a matrix forms part of the main strategies in

our proposed tensor dictionary algorithm for data fusion and dimensionality reduction.

The last product, which is not a tensor product, we would like to cover is the Kronecker

product, the matrix product that underpins tensor operation. Given matrices A ∈ RI×J

and B ∈ RK×L, the Kronecker product between A and B, denoted by A⊗B ∈ RIK×JL,
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given by

A⊗B ,



a11B a12B . . . a1JB

a21B a22B . . . a2JB

...
...

. . .
...

aI1B aI2B
... aIJB


= [a1 ⊗ b1 a1 ⊗ b2 a1 ⊗ b3 · · · aJ ⊗ bL−1 aJ ⊗ bL] .

While the above expression appears large, it is very redundant in its formation and thus

possesses correlation properties explained earlier. with this view, tensor representation

is a more natural and more compact way to store those data with inherent Kronecker

structure. For more detailed reading, please be referred to [69–71].

4.2 Major Decomposition Techniques

All the preliminaries so far have been built up for the most important concept of the

tensor section of this thesis: the tensor decomposition. Here, we give a summary of three

decomposition methods relevant to our tensor dictionary learning: the CPD, the TKD,

and the higher-order compressed sensing.

4.2.1 Canonical Polyadic Decomposition

Although the CPD is not directly related to our tensor algorithm, It provides relational

basics with respect to the other decomposition. The term polyadic decomposition means

an N th-order tensor X ∈ RJ1×J2···×JN can be represented as a linear combination of rank-1

tensors, i.e.

X =
L∑
`=1

λ` (ψ1` ◦ψ2` ◦ · · · ◦ψN`) .

Alternatively, with the notion of mode-n product, X can be expressed as a full multilinear

product, that is

X = D ×1 Ψ1 ×2 Ψ2 · · · ×N ΨN
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where D is a diagonal tensor with d``···` = λ` and Ψn = [ψn1 ψn2 · · · ψnL] ∈ RJn×L.

This polyadic decomposition becomes canonical when the value L is smallest while the

equlity still holds exactly ; this smallest possible L is termed as the CPD rank which appears

to be similar to the SVD rank of a matrix in the way the CPD operates like the SVD. This

is however out of the thesis’ scope and the really important point from this introduction

of the CPD is the expression of a full multilinear product as a compact representation of

tensor decomposition.

4.2.2 Tucker Decomposition

The TKD can be regarded as a more general form of the full multilinear product ex-

pression of the tensor X with a core tensor S ∈ RL1×L2···×LN and factor matrices

Ψn = [ψn1 ψn2 · · · ψnLn ] ∈ RJn×Ln , given by

X =

R1∑
r1=1

R2∑
r2=1

· · ·
RN∑
rN=1

sr1r2...rN
(
ψ1r1 ◦ψ2r2 ◦ · · · ◦ψNrN

)
,

or equivalently

X = S ×1 Ψ1 ×2 Ψ2 · · · ×N ΨN . (4.1)

Moreover, it can be unfolded into a matrix/vector form via the Kronecker product, that

is

vec (X ) = [ΨN ⊗ΨN−1 ⊗ · · · ⊗Ψ1] vec (S) .

There are many ways to condition the TKD. The classical one is the orthogonality. A

much more recent one, for example, is the minimal size of the core tensor S, where Ln

would then represent the mode-n rank of the tensor X (it is actually the rank of the

mode-n fiber of the tensor X ), and the N -tuple (L1, L2, . . . , LN ) is as a result defined as

the multilinear rank, or the higher-order SVD rank of the tensor X .

It is obvious by these examples that the concept of a tensor rank is more sophis-

ticated than a matrix as it can be, but not limited to, the one number which represents

the whole tensor overall, or it can be a collection of numbers which represents their cor-

responding subarrays. Whether to use which is a subject of specific applications [70,71].
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4.2.3 Higher-Order Compressed Sensing

The TKD is the main decomposition which underpins our online tensor dictionary learn-

ing model. Nevertheless, the constraint for our TKD model is neither orthogonaliy nor

multilinear rank. The higher-order compressed sensing (HO-CS) model is a class of TKD

where the core tensor S is overcomplete and sparse. Overcompleteness dictates that

Jn < Ln, ∀n, and sparsity means that S is barely filled with most entries equal 0. The

dimensionlity reduction in the HO-CS model thus happens in the reverse fashion with the

other decomposition techniques in that the result of the decomposition, S, is much larger

in dimensionality than the original tensor X and it is the sparse elements of the core S

that could be projected to another compressed tensor, Y , smaller than X . Given the

similar expression as in eq. (4.1), the HO-CS problem extends the traditional CS task [80]

into a form of the multilinear product, given by

min
S
‖S‖0 s.t.

Y = S ×1 Θ1 ×2 Θ2 · · · ×N ΘN ,

(4.2)

where Y ∈ RI1×I2···×IN , with In < Jn, ∀n, is measurement tensor and ΘN , ΦNΨN ∈

RIn×Ln , ∀n is defined as a mode-n sensing matrix. Note that the matrix Ψn is teh HO-CS

setting is now called a mode-n sparsifying dictionary. With eq. (4.1), Y can be expressed

in terms of X as
Y = X ×1 Φ1 ×2 Φ2 · · · ×N ΦN , (4.3)

where Φn ∈ RIn×Jn is called a mode-n projection matrix with In ≤ Jn, ∀n. From eqs. (4.1)

to (4.3), dimensionality reduction is finally achieved with Y which can recover X by any

generic classes of pursuit algorithms [81]. It is noteworthy that the problem in (4.2) is

equivalent to the conventional CS problem with a Kronecker structure [82]:

vec (Y) = Θ vec (S) , (ΘN ⊗ΘN−1 ⊗ · · · ⊗ Θ1) vec (S) (4.4)

where it is clear that, if we define Φ , ΦN ⊗ΦN−1 ⊗ · · · ⊗ Φ1 and Ψ , ΨN ⊗ΨN−1 ⊗

· · · ⊗ Ψ1 and use the mixed-product property of the Kronecker product, we have

Θ = ΦΨ. (4.5)
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In our tensor dictionary learning algorithm, which we name the online multilinear dic-

tionary learning (OMDL) algorithm, both the mode-n dictionaries, Ψn, and the mode-n

projection matrices, Φn, are learned in a sequential manner with the former is regarded

as the online dictionary update and the latter as the sequential HO-CS step, as it fits in

our whole algorithm.

4.3 Summary

This chapter provided necessary and sufficient knowledge of tensor decomposition tech-

niques important to the to-be-proposed OMDL algorithm, especially the TKD and the

HO-CS. The notation and basic preliminaries are first given. Then building on these,

many types of tensor structures are provided. Then, three major decomposition methods

are reviewed. With the CPD and the TKD, the concept of tensor ranks is shown to be

distinct from those of matrices as tensors have different uniqueness condition and algebraic

properties which ultimately leading to a tensor rank much smaller than its unfolded matrix

form [83]. In our OMDL routine, the main task is cast into the TKD expression eq. (4.1)

and its sub-task, the sequential HO-CS, will take the formulae in eqs. (4.2) and (4.3). With

the analytic tools summarized in this chapter, we could proceed to our second proposed

algorithm of this thesis, the OMDL algorithm which is formulated and derived in the next

chapter.
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Chapter 5

Online Multilinear Dictionary

Learning

Creative Commons Attribution license (CC BY 4.0). Redistributed &

rearranged, with permission, from T. Variddhisai and D. P. Mandic,

“Online Multilinear Dictionary Learning,” 2017 arXiv:1703.02492

[cs.LG]

D
ICTIONARY learning (DL) is a class of representation learning viewed from the

perspective of a matrix factorization problem, and there exists a body of re-

search [84–86], most of which are batch method and not suitable for streaming data

or the data too massive to analyze all at once. To address this, an online dictionary

learning (ODL) has been created via the mechanism of the LMS adaptive algorithm with

rank-1 stochastic gradient [87]. This was followed by the block co-ordinate descent (BCD)

ODL method [88] which is basically a variation of momentum-based adaptive algorithms

discussed and proposed in the previous chapters. As a result of incorporating past informa-

tion into the learning gradient, the performance is improved. Other alternative methods

of ODL include, for example, recursive-least-square (RLS)-DL [89], discriminative learn-

ing [90,91], kernel dictionary [92] and ODL with pruning [93].

Many times, the compressed sensing problem is also considered a part of the DL

https://arxiv.org/abs/1703.02492
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due to the fact that both leverage the sparsity prior [80] as the main constraint. In the CS

task, if the data is sparse or can be sparisified in some arbitrary transformed bases, it can

be compressed to a smaller set of samples than those dictated by the Shannon-Nyquist

criterion [94] and , still, can be exactly reconstructed back to its original information. The

reason why CS and DL tasks usually come together is that the CS task assumes that the

data to be compressed is sparse, but unfortunately most natural data is not; that is where

the DL application comes in. Early CS effort started with random measurements [80] and

later evolved into the problem of finding the optimal sensing matrices. To date, one of the

most robust approaches mostly agreed in the literature is the closest tight-frame Gram

matrix [95–97], a very flexible scheme which can be combined with additional constraints

like robustness to measurement error [98] and joint optimization of projection matrix and

dictionary [99,100].

So far the DL problems in the above mentioned work consider traditional flat-view

matrix/vector data. To cope with higher dimensional information like tensors as discussed

in the previous chapter, many efforts have been made in this direction. Beginning with

the concept of higher-order compressed sensing (HO-CS) [82]. Many tensor-based dictio-

nary learning, or multilinear dictionary learning (MDL), methods have been introduced

including the Kronecker OMP [101], K-CPD [102], K-HOSVD [103], T-MOD [104] and

the joint optimization between MDL and HO-CS [105]. At the time of researching this,

we observed that no online implementation of the MDL had been proposed yet, and hence

comes the online multilinear dictionary learning (OMDL) algorithm, the second class of

the main algorithms in this thesis which has been published in [3].

In the following sections, we quickly go though the traditional DL and CS problems,

then go straight to their multilinear equivalents. Then, we derive the algorithm for the

mode-wise dictionary update recursion as well as showcasing the empirical evidence of

convergence. We afterwards proceed to render the HO-CS task sequential to complete the

whole algorithm. Finally, the convergence analysis is provided before extensive numerical

experiments are illustrated to affirm the whole analysis of the algorithm before the chapter

is concluded.
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5.1 Briefs on the Classical DL/CS Problem

5.1.1 Linear DL

In the classical matrix/vector setting, the goal of DL is to factorize a signal of interest,

x ∈ RJ , into its sparse representation, s ∈ RL, and a (sparsifying) dictionary, Ψ ∈ RJ×L,

which is, as a result, overcomplete (J < L). This factorization is expressed in the form

of linear equation as x ∼= Ψs. The sparse vector, s, which only has S non-zero elements

where ‖s‖0 = S � L.

A classical DL problem considers a finite set of t unlabeled training signals,

X = [x1,x2, . . . ,xt] ∈ RJ×t, with their corresponding sparse representations, S =

[s1, s2, . . . , st] ∈ RL×t with respect to the representation dictionary Ψ, and can be cast

into

min
Ψ,S

t∑
τ=1

wτ `u(xτ ,Ψ, sτ )

s.t. Ψ ∈ C ⊂ RJ×L and ‖sτ‖0 ≤ S, ∀τ ∈ t

(5.1)

where wτ ≥ 0 is a weighting parameter similar to the way a forgetting factor in the

previous chapter works, t , {1, 2, . . . , t}, C is a constraint space of Ψ, and `u(·) is an

objective function where the index u emphasizes the unsupervised characteristics of the

DL problem. Also similar to the quaternion-valued adaptive algorithms, the linear least

squares can be employed as a cost function here, yielding

`u(xτ ,Ψ, sτ ) = ‖xτ −Ψsτ‖22. (5.2)

Unlike the quaternion-valued adaptive algorithms, however, the problem in eq. (5.1) is non-

convex because there are two distinct unknown variables, Ψ and S. The most common

method to deal with this situation is a strategy called alternating minimization where one

variable is optimized while the other is fixed and vice versa in an alternate fashion. In this

particular case, the optimization of Ψ with fixed S is called the dictionary update task,

while finding S with fixed Ψ is known as the sparse coding problem.

In the dictionary update step, let `u(xτ ,Ψ) = `u(xτ ,Ψ, ŝτ ) where ŝτ ,∀τ ∈ t is
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calculated from the sparse coding task in the preceding alternate step. The problem

in eq. (5.1) is then re-formulated to

min
Ψ

t∑
τ=1

wτ `u(xτ ,Ψ) s.t. Ψ ∈ C ⊂ RJ×L. (5.3)

Usually, the dictionary Ψ shall conform to some condition, especially norm condition to

prevent Ψ from becoming arbitrarily large, and thus constraint space C is required. The

dictionary update problem in eq. (5.3) can be solved in either a batch ( [84–86]) or an

online ( [87–89]) manner.

In the sparse coding step, now let `u(xτ , sτ ) = `u(xτ , Ψ̂, sτ ) where Ψ̂ is calculated

from the dictionary update step in the preceding alternate step.. Likewise, eq. (5.1)

becomes

min
S

t∑
τ=1

wτ `u(xτ , sτ ) s.t. ‖sτ‖0 ≤ S, ∀τ ∈ t.

Notice that in the sparse coding setting, the constraint depends on each single sparse

vector sτ ; therefore, the problem above can be independently solved for the most optimal

sτ for every τ , i.e.

min
sτ

`u(xτ , sτ ) s.t. ‖sτ‖0 ≤ S, ∀τ ∈ t. (5.4)

Additionally, it should be noted that sparse coding is an older problem than the learning of

dictionaries, having existed since the dictionaries were still pre-determined (overcomplete

Fourier and wavelets). More importantly, it is the intertwining part of the DL problems

which connect to the compressed sensing paradigm.

5.1.2 Compressed Sensing

The compressed sensing (CS) [80,81,94] can be thought of as a class of sampling strategies

which achieves better compression than the Shannon-Nyquist policy to obtain a measure-

ment signal, y ∈ RI , but still able to recover without loss the sparse signal, s ∈ RL where

I < L, by solving [94]

min
s
‖s‖0 s.t. y = Θs.



5.1 Briefs on the Classical DL/CS Problem 81

where Θ ∈ RI×L is called a sensing matrix. As mentioned before, natural signals are rarely

sparse outright, and that is how a DL task practically comes as a factorization technique

to obtain the sparse representation of the signals. With the DL framework, assuming

that the signal of interest, xτ , is in the form xτ = Ψsτ , ∀τ ∈ t, as described above, the

reconstruction problem [81] is recast into

min
sτ
‖sτ‖0 s.t. yτ = Θsτ , ΦΨsτ , ∀τ ∈ t (5.5)

where Φ ∈ RI×J is termed a projection matrix [80]. The combinatorial nature of `0-norm,

‖ · ‖0 makes eq. (5.5) an NP-hard problem. A common way to cope with this includes

greedy algorithms, `1 norm as an alternative to `0-norm, or Bregman iteration [81]. These

approximate approaches can attain arbitrarily small error if the sensing matrix Θ obeys an

orthonomality-like conditions such as mutual coherence [94] or restricted isometry property

(RIP) [106]1.

The current direction in CS problem, apart from sparse coding, to design the op-

timal projection matrix Φ with respect to the learned dictionary Ψ so that Θ satisfies

those conditions. Of these two, the mutual coherence of Θ, denoted by µ(Θ), is analyti-

cally simpler and leads to the spring of many designs of projection matrix Φ based on the

optimization of the Gram matrix of Θ, defined as ΘTΘ, in order to be as close as possible

to a target equiangular tight-frame (ETF) Gram matrix Γ ∈ Gµ, i.e. [97]

min
Θ
‖Γ−ΘTΘ‖2F , min

Φ
‖Γ−ΨTΦTΦΨ‖2F (5.6)

where Gµ is a set of relaxed ETF Gram matrices defined as

Gµ , {Γ ∈ RL×L : Γ = ΓT , diag(Γ) = 1,

max
i 6=j
|Γ(i, j)| ≤ µ}.

(5.7)

1These conditions are crucial part of the CS problem as it makes possible the full recovery of the signals
of interest, xτ , from the undersampled measurement yτ via Φ with I < J [106].
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The parameter µ is the lower bound of µ(Θ) given by [107]

µ =

√
L− I
I(L− 1)

≤ µ(Θ) ≤ 1. (5.8)

Observe that eq. (5.6) is highly non-convex. Therefore, its solution is likely to be sub-

optimal. Most existing algorithms do not tackle this directly but attempt to reduce the

chance of setting stuck in local minimum by rendering the update equation as gradual as

possible [95–98]. It is also surprisingly interesting that the formulation of eq. (5.6) looks

similar to that of the PCA, even though there is nothing to do with it.

5.2 Online Dictionary Learning for Tensors

In our proposed OMDL routine, we employ the accelerated gradient method used in our

already introduced momentum-based quaternion-valued adaptive algorithms [1,2] and ex-

tend it to the setting of online tensor dictionary. Thanks to the isomorphism discussed in

the previous chapter, the analysis of algorithm can be used almost interchangeably, as will

be manifested here as well. Since the sparse coding is out of scope in our research effort,

the Kronecker othogonal matching pursuit [101] and multipath mathching pursuit [108],

of which both guarantees the local minimum of the solution, are employed for the sparse

coding.

5.2.1 Preliminaries

Let X (τ) ∈ RJ1×J2×···×JN , ∀τ ∈ t be an observed sequence of t N th-order tensors. It

multilinear dictionary factorization can be expressed in the TKD form as [82]

X (τ) = S(τ) ×1 Ψ1 ×2 Ψ2 · · · ×N ΨN + E(τ), ∀τ ∈ t, (5.9)

where Ψn ∈ RJn×Ln is a mode-n overcomplete dictionary (i.e. Jn < Ln), ∀n ∈ N,

S(τ) ∈ RL1×L2×···×LN are the S-sparse core tensors associated with X (τ), and E(τ) are

the representation error. For the DL problem, it usually is desirable that the number
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of non-zero-elements of S(τ) is much fewer than the total dimension of the observation

i.e. S �
∏N
n=1 Jn. Almost analogous to its classical equivalent eq. (5.3), the multilinear

dictionary learning task is given by

min
{Ψ}

t∑
τ=1

w(τ)`u(X (τ), {Ψ}) s.t. Ψn ∈ Cn, ∀n ∈ N. (5.10)

where {Ψ} = {Ψn, ∀n ∈ N} is a set of all mode-wise dictionaries, Cn ⊂ RJn×Ln is a

mode-n constraint space controlling the size of Ψn. Now, the cost function `u(·) in eq. (5.2)

takes a multilinear least-square form [103,104]:

`u(X (τ), {Ψ}) = ‖X (τ) − S(τ) ×1 Ψ1 ×2 Ψ2 · · · ×N ΨN‖
2

F . (5.11)

Unlike the traditional matrix/vector counterpart, fixing just S(τ) is insufficient to

make eqs. (5.10) and (5.11) convex; instead, it is multi-convex due to its multilinear struc-

ture. This can be resolved by resorting to the alternating linear scheme [109], whereby

one mode-n dictionary is optimized at a time while the rest mode-n dictionaries are fixed

and so on2. Hence, let J (t)
n ({Ψ}), or J (t)

n in short, be an effective cost function of (5.10)

and (5.11) overall, contracted into a mode-n expression as

J (t)
n ,

1

2

t∑
τ=1

w(τ)
∥∥∥X (τ) − S̃(τ)

n ×n Ψn

∥∥∥2
F
, (5.12)

where S̃(τ)
n = S(τ)×1 Ψ1×2 Ψ2 · · ·×n−1 Ψn−1×n+1 Ψn+1 · · ·×N ΨN . With the knowledge

of tensor mode-all-but-n contraction detailed in the previous chapter trace-norm relation

of a matrix [16], the right-hand side of eq. (5.12) can be manipulated into a quadratic

2the alternating linear scheme can be applied without the loss of generality on condition that all mode-n
dictionaries are separable (i.e. each multilinear atom is only in the form of a rank-1 tensor) [109].
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equation of a matrix form as

J (t)
n =Tr

(
1

2
Ψn

(
t∑

τ=1

w(τ)
[
S̃(τ)
n ×

/n
/n S̃

(τ)
n

])
ΨT
n

−

(
t∑

τ=1

w(τ)
[
X (τ) ×/n/n S̃

(τ)
n

])
ΨT
n

+
1

2

t∑
τ=1

w(τ)
[
X (τ) ×/n/n X

(τ)
])

(5.13)

where the symbol Tr(·) denotes the trace of a matrix. With eq. (5.13), the all-mode

multilinear problem in eq. (5.10) turns into n mode-wise linear sub-problems, that is

min
Ψn

J (t)
n s.t. Ψn ∈ Cn. (5.14)

Most existing work in the MDL problem utilizes eq. (5.14) for an offline alternating-least-

squares approach whereby all training pairs (X (τ), S̃(τ)
n ), ∀τ ∈ t are considered at once in

a single batch ( [103–105]).

5.2.2 Alternating Linear Scheme for Online MDL

To realize the OMDL algorithm based on eqs. (5.13) and (5.14), we follow the same deriva-

tion of the c-moment WL-QLMS [2] over the n-moment one [1] due to its parsimonious

formulae without loss in performance as illustrated in the Chapter 3. For each mode-n

cost function J (t)
n , let w(τ) = λt−τ and S̃

(τ)
n and Q̃

(τ)
n be

S(t)
n , S̃(t)

n ×
/n
/n S̃

(t)
n , (5.15)

Q(t)
n , X (t) ×/n/n S̃

(t)
n . (5.16)

Since the rightmost term of eq. (5.13) does not depend on Ψn, it is left out for the purpose

of clean display only. (5.14) is therefore equivalent analytically to

min
Ψn

Ĵ (t)
n s.t. Ψn ∈ Cn (5.17)
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where

Ĵ (t)
n = Tr

(
1

2
ΨnR

(t)
n ΨT

n −P(t)
n ΨT

n

)
(5.18)

with the recursion very similar to eqs. (3.10) and (3.11) of the quaternion-valued adaptive

filtering algorithms,

R(t)
n ,

t∑
τ=1

λt−τ
[
S̃(τ)
n ×

/n
/n S̃

(τ)
n

]
= λR(t−1)

n + S(t)
n , (5.19)

P(t)
n ,

t∑
τ=1

λt−τ
[
X (τ) ×/n/n S̃

(τ)
n

]
= λP(t−1)

n + Q(t)
n , (5.20)

and λ ∈ (0, 1] is a forgetting parameter similar to that of the proposed momentum WL-

QLMS algorithms. To solve for the descent direction, we take the stochastic conjugate

form as in eq. (3.7), yielding

D(t)
n = −G(t)

n + β(t)n D(t−1)
n (5.21)

and the mode-n gradient of J (t)
n is given by

G(t)
n ,

∂J (t)
n

∂Ψn

∣∣∣∣∣
Ψn=Ψ

(t−1)
n

= Ψ(t−1)
n R(t)

n −P(t)
n . (5.22)

Analogous to eq. (3.29), we arrive at the following theorem [2](without proof as it is similar

to that of the Chapter 3),

Theorem 3. A set of matrices {D(1)
n ,D

(2)
n , ...,D

(t)
n } of the form (5.21) and satisfying

Tr
(
D(t−1)
n R(t)

n D(t)T

n

)
= 0, ∀t, (5.23)

is a descent direction of the objective function (5.18),

With eqs. (5.21) and (5.23), we obtain the value of a extrapolation parameter β
(t)
n as

β(t)n =

〈
H

(t)
n ,G

(t)
n

〉
F〈

H
(t)
n ,D

(t−1)
n

〉
F

(5.24)
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where 〈·, ·〉F is a Frobenius inner product and

H(t)
n = D(t−1)

n R(t)
n . (5.25)

Finally, now not exactly similar to the original c-moment WL-QLMS, the mode-n dictio-

nary Ψ
(t)
n is iteratively calculated as

Ψ(t)
n = ΠCn

[
Υ(t)
n

]
= ΠCn

[
Ψ(t−1)
n + D(t)

n A(t)
n

]
(5.26)

where A
(t)
n is a diagonal matrix, of which the diagonals are α

(t)
n (l) = R

(t)
n [l, l], and ΠCn [·]

is a projection operator onto the constraint space Cn. Since the solution to Ψ
(t)
n is subject

to affine transformation due to the multi-convexity of the problem, it is desirable that the

overall size of Ψ
(t)
n is confined by its atoms. In other words, the convex set Cn is a linear

map which conserves a space spanned by the dictionary atoms (the column space), which

turns (5.26) into

Ψ(t)
n = Υ(t)

n Π(t)
n (5.27)

and Π
(t)
n is a diagonal matrix the diagonals of which, π

(t)
n (l), are given by

π(t)n (l) =
1

max
(
‖u(t)

n (l)‖2, 1
) , ∀l = 1, 2, . . . , Ln (5.28)

where u
(t)
n (l) is the lth column vector of Υ

(t)
n . At last, The proposed OMDL algorithm is

summarized in Algorithm 1 below, where δ > 0 is used as a stopping criterion.

5.2.3 Insights into Convergence

If S(t) is known, then the OMDL problem reduces to a class of adaptive filtering algorithm

where the convergence behavior is analytically interchangeable across the class [110]. As

a matter of fact, it is the sparse coding stage that dictates the convergence characteris-

tics [111, 112]. There exist the case where then the DL algorithm attains global optimal

solution when sparse coding can give one too [113]. To further verify this claim, an extra

experiment is provided on the synthetic scenario where the sparse core is assumed known.
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Algorithm 3: The OMDL Algorithm

Input : X (t) ∈ RJ1×J2×··×JN (inputs), T (number of inputs), Ψ
(0)
n ∈ RJn×Ln

(initial dictionaries), N (number of modes), λ (forgetting factor)

Output: Ψ
(t)
n (modewise dictionaries)

1 Initialize R
(0)
n = 0, P

(0)
n = 0 and D

(0)
n = 0 ∀n;

2 for t = 1 to T do

3 Obtain sparse core tensor S(t) via appropriate sparse coding scheme e.g. [101];
4 for n = 1 to N do

5 Update S
(t)
n and Q

(t)
n by eqs. (5.15) and (5.16);

6 R
(t)
n = λR

(t−1)
n + S

(t)
n ;

7 P
(t)
n = λP

(t−1)
n + Q

(t)
n ;

8 G
(t)
n = Ψ

(t−1)
n R

(t)
n −P

(t)
n ;

9 H
(t)
n = D

(t−1)
n R

(t)
n ;

10 β
(t)
n =

〈
H

(t)
n ,G

(t)
n

〉
F〈

H
(t)
n ,D

(t−1)
n

〉
F

, (β
(1)
n = 0);

11 D
(t)
n = −G

(t)
n + β

(t)
n D

(t−1)
n ;

12 Update A
(t)
n where its diagonals α

(t)
n (l) = R

(t)
n [l, l];

13 Υ
(t)
n = Ψ

(t−1)
n + D

(t)
n A

(t)
n ;

14 Update Π
(t)
n by eq. (5.28);

15 Ψ
(t)
n = Υ

(t)
n Π

(t)
n ;

16 end

17 end



88 Chapter 5

The core tensor S(t) ∈ R20×20×20 with equal mode-wise sparsity, Sn = 8(n = 1, 2, 3), has

non-zero elements randomly selected from a Gaussian distribution and each mode-n dic-

tionary, Ψn ∈ R10×20(n = 1, 2, 3), was generated by Gaussian random variable with mean

and variance equal 0 and 1 respectively. With SNR set to 0 dB, the 3rd-order tensor data,

X (t) ∈ R10×10×10, was generated via eq. (5.9). The metric for successful recovery of the

the mode-wise dictionary Ψn ∈ R10×20(n = 1, 2, 3) is given by θ which can be thought of

as an angular distance between the real dictionary atoms, ψreal, and the recovered ones,

ψlearned. If this distance is below some predefined threshold, then that particular atom is

considered successfully recovered, that is,

ψreal ·ψlearned
|ψreal||ψlearned|

> cos(θ).

The result was averaged over 100 independent trails for comparing three tensor dictionary

learning routines: the proposed MODL, TMOD [104] and the TKSVD [105] as shown in

Fig. 5.1. Three lines of the same color represent 3 mode-wise dictionaries.
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Figure 5.1: [3] Successful recovery of atoms with respect to different ’threshold’ angle
for all 3 modes grouped in the same color, with red (MODL), blue (TMOD) and green
(TKSVD) (Ln = 20, Jn = 10, Sn = 8, n = 1, 2, 3)

From Fig. 5.1, only the MODL routine, if the metric threshold is above 5, could

achieve 100 percent recovery rate while the other two were unable to do so regardless of

how large the threshold is. To treat the test fairly, the poor performance of the TKSVD

is likely due to the fact that the TKSVD method keeps changing the sparse core tensors

iteratively with the dictionaries and thus loses the advantage gained from the experiment

setting of known core tensors. Overall, this little simulation illustrates that, when the

sparse coding can effectively give optimal sparse core tensors, not only could the OMDL

algorithm lead to global optimality, but the alternating optimization is not shown to

impede its global convergence per se as typically feared. For a little more rigorous proof

of convergence, we can cast the problem in eqs. (5.10) and (5.11) into a flat matrix model

via the Kronecker structure in eq. (4.4), and as a result follow the same mechanism in [88]
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as a special case. Note that the proof of convergence in [88] only guarantees convergence

to a stationary point, not necessarily global.

5.3 Joint Design for Sequential HO-CS

Many HO-CS methods have been invented mostly for an offline setting. They either

implement a basic identity matrix as a target Gram matrix [105], or include the error of

projection as a criterion for optimality [98, 100]. In this thesis, we follow the simplified

robust design with the use of relaxed ETF scheme [99]. By simplification, we leave out

the effect of projected error by realizing its upper-bound, which is the scaled norm of the

projection matrix instead. This notion can be straightforwardly applied in the case of

MODL paradigm.

5.3.1 Preliminaries

Building on the base of HO-CS problem in eqs. (4.2) and (4.3) together with the coupled

dictionary representation eq. (5.9), the sequential HO-CS task can be initially written as

min
S(τ)

∥∥∥S(τ)
∥∥∥
0

s.t.

Y(τ) = S(τ) ×1 Θ1 ×2 Θ2 · · · ×N ΘN , ∀τ ∈ t,

(5.29)

where Y(τ) ∈ RI1×I2···×IN is measurement tensor signal and ΘN , ΦNΨN ∈ RIn×Ln ,

∀n ∈ N is a mode-n sensing matrix. With (5.9), Y(τ) can be expressed in terms of X (τ)

as

Y(τ) = X (τ) ×1 Φ1 ×2 Φ2 · · · ×N ΦN , ∀τ ∈ t (5.30)

where Φn ∈ RIn×Jn is called a mode-n projection matrix with In ≤ Jn, ∀n ∈ N. With

the Kronecker representation of (5.29) is eqs. (4.4) and (4.5) in the previous chapter, ex-

tended from the conventional Gram matrix problem in (5.6)-(5.8), the Kronecker-structure

equivalent is

min
Θ
‖Γ−ΘTΘ‖2F = min

Φ
‖Γ−ΨTΦTΦΨ‖2F (5.31)
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with Γ ∈ Gµ given by

Gµ , {Γ ∈ RL1L2...LN×L1L2...LN : Γ = ΓT ,

diag(Γ) = 1, max
i 6=j
|Γ(i, j)| ≤ µ}.

(5.32)

and

µ =

√√√√( N∏
n=1

Ln −
N∏
n=1

In

)/(
N∏
n=1

In(

N∏
n=1

Ln − 1)

)
. (5.33)

Eq. (5.31) can be solved via traditional CS paradigm; however, the massive dimensionality

of Θ due to the Kronecker structure [82] is the prime bottleneck of direct manipulation.

Moreover, there is no explicit constraint to enforce the Kronecker structure of the resulting

Θ. Also by the separable structure of (5.29), we will solve for each mode-n projection

matrix in an alternating fashion [101, 114] like the OMDL above, as long as each mode-

n projection matrix conforms to standard RIP or mutual coherence conditions (more

rigorous theories can be found in [82]). All these efforts utilized an identity matrix as a

target Gram matrix because it is the simplest matrix with Kronecker structure; however,

we believe that is quite too simple and more sophisticated Gram structure could lead to

better performance. Hence, the relaxed ETF scheme is employed for Γ in our thesis.

In order to implement an alternating and online minimization of (5.31), we instead

solve an alternative problem

min
Θ
‖Γ−ΘTΘ‖2F = min

Φ
‖Γ−ΨTΦTΦΨ‖2F (5.34)

where Γ , ΓN ⊗ ΓN−1 ⊗ · · · ⊗ Γ1 with Γn ∈ Gµ
n

given by

Gµ
n
, {Γn ∈ RLn×Ln : Γn = ΓTn ,

diag(Γn) = 1, max
i 6=j
|Γn(i, j)| ≤ µ

n
}.

(5.35)

and

µ
n

= min

(√
Ln − In
In(Ln − 1)

, µ

)
. (5.36)

Here through (5.35) and (5.36), Γ is guaranteed to satisfy (5.32), i.e. Γ ∈ Gµ. As a result,
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the Kronecker Gram matrices satisfy the global constraint in eq. (5.32) while some room

is left for a tighter solution for each mode-wise Gram matrix via eq. (5.35).

5.3.2 Alternating Scheme for Mode-Wise Projection Matrix Design

In order to design robust projection matrices, the projected error should be as small as

possible for the corresponding CS system to perform well in practice [96, 98]. This is

equal to adding the projected error as a regularizer into (5.34), thus yielding the following

optimization problem:

min
Φ,Γ
‖Γ−ΨTΦTΦΨ‖2F + σ‖Φe‖2F (5.37)

where e is the vectorized SRE, vec(E), defined in (5.9) and σ is a weighting parameter.

Without any assumptions, it is obvious that

‖Φe‖F ≤ ‖Φ‖F ‖e‖2 =

(
N∏
n=1

‖Φn‖F

)
‖E‖F . (5.38)

In other words, the size of the projected error is bounded above by the sizes of the SRE and

the projection matrices in all modes. Since ‖E‖F is minimized at the dictionary learning

stage, then
∏N
n=1‖Φn‖F can be considered a surrogate of ‖Φe‖F and minimized instead.

Furthermore, if E can be modelled as Gaussian noise and the number of training data,

t, is large enough, then the equality holds in (5.37) [115]. These assumptions therefore

simplify (5.37) to

min
Φ,Γ
V(t)(Φ,Γ)

with

V(t)(Φ,Γ) = ‖Γ−Ψ(t)TΦTΦΨ(t)‖
2

F + σ
N∏
n=1

‖Φn‖2F (5.39)

where the optimal Φ is independent of E. This significantly facilitates online computation.

To address this non-convex problem, an alternating minimization algorithm is used.

It is worth noting that this expression is the same as eq. (23) in [105] where alternating

gradient descent is used for the non-separable approach employed in our paper as it was

shown to outperform and more computationally efficient than the separable one. Firstly, a
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shrinking operation is applied to (5.39) to obtain Γn mode by mode [96,116]. By defining

Θ
(t)
n , Φ

(t)
n Ψ

(t)
n and Θ

(t∗)
n , Φ

(t−1)
n Ψ

(t)
n , we now obtain

Γ(t)
n [i, j] =


γn(i, j), |γn(i, j)| ≤ µ

n

sgn[γn(i, j)]µ
n
, |γn(i, j)| > µ

n

1, i = j

(5.40)

Γ(t∗)
n [i, j] =


γ∗n(i, j), |γ∗n(i, j)| ≤ µ

n

sgn[γ∗n(i, j)]µ
n
, |γ∗n(i, j)| > µ

n

1, i = j

(5.41)

where γn and γ∗n are the (i, j)-elements of the corresponding normalized Gram matrices

Θ
(t)T

n Θ
(t)
n and Θ

(t∗)T
n Θ

(t∗)
n respectively. Then, Φ̄ is iteratively calculated per mode. By

defining the three following parameters:

ρ(t)n =
n−1∏
k=1

‖Θ(t)T

k Θ
(t)
k ‖

2

F

N∏
k=n+1

‖Θ(t∗)T

k Θ
(t∗)
k ‖

2

F
(5.42)

ω(t)
n =

n−1∏
k=1

Tr
(
Θ

(t)
k Γ

(t)
k Θ

(t)T

k

)
×

N∏
k=n+1

Tr
(
Θ

(t∗)
k Γ

(t∗)
k Θ

(t∗)T

k

) (5.43)

ζ(t)n =

n−1∏
k=1

‖Φ(t)
k ‖

2

F

N∏
k=n+1

‖Φ(t−1)
k ‖

2

F
(5.44)

the update equation for projection matrix becomes

Φ(t)
n = Φ(t−1)

n − ηnV(t)
n (5.45)

where ηn is a stepsize parameter and the mode-wise gradient V
(t)
n is given by

V(t)
n ,

∂V(Φ̄, Γ̄)

∂Φn

∣∣∣∣
Φn=Φ

(t−1)
n

= ρ(t)n

[
Θ(t∗)
n Θ(t∗)T

n Θ(t∗)
n Ψ(t)T

n

]
− ω(t)

n

[
Θ(t∗)
n Γ(t∗)

n Ψ(t)T

n

]
+ σζ(t)n

[
Φ(t−1)
n

]
.

(5.46)
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Note that all constants are absorbed into the regularizer σ. The joint optimization algo-

rithm is summarized in Algorithm 2.

Algorithm 4: Joint Optimization Algorithm

Input : X (t) ∈ RJ1×J2×··×JN (inputs), T (number of inputs), Ψ
(0)
n ∈ RJn×Ln

(initial dictionaries), Φ
(0)
n ∈ RIn×Jn (initial sensing matrices), N

(number of modes), λ (forgetting factor)

Output: Φ
(t)
n (modewise sensing matrices), Ψ

(t)
n (modewise dictionaries)

1 Initialize R
(0)
n = 0, P

(0)
n = 0 and D

(0)
n = 0 ∀n;

2 for t = 1 to T do

3 Obtain Ψ
(t)
n ∀n via the OMDL in Algorithm 1;

4 for n = 1 to N do
5 for k = 1 to n-1 do

6 Θ
(t)
k = Φ

(t)
k Ψ

(t)
k ;

7 end
8 for k = n to N do

9 Θ
(t∗)
k = Φ

(t−1)
k Ψ

(t)
k ;

10 end

11 γn(i, j) = Θ
(t)T

n Θ
(t)
n [i, j];

12 γ∗n(i, j) = Θ
(t∗)T
n Θ

(t∗)
n [i, j];

13 Update Γ
(t)
n and Γ

(t∗)
n via eqs. (5.40) and (5.41);

14 Calculate ρ
(t)
n , ω

(t)
n , ζ

(t)
n via eqs. (5.42) to (5.44);

15 Obtain V
(t)
n via eq. (5.46);

16 Φ
(t)
n = Φ

(t−1)
n − ηnV(t)

n ;

17 end

18 end

5.4 Experimental Validation

A series of experiments were conducted to explore the performance of the proposed algo-

rithms. The performance was evaluated against two criteria, the Normalized Root Mean

Squared Error (NRMSE) and the Average Representation Error (ARE) [99], respectively

given by

σnrmse =
‖X − S ×1 Ψ1 ×2 Ψ2 · · · ×N ΨN‖F

‖X‖F
(5.47)

σare =
‖(X − E)− S ×1 Ψ1 ×2 Ψ2 · · · ×N ΨN‖F

lens(X − E)
(5.48)
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where lens(·) denotes the total number of elements of the operand.

A. Online Multilinear Dictionary Learning

In the first experiment, we compared the dictionary learning stage of the OMDL

with those of other similar algorithms, namely TMOD and TKSVD. A set of observed

data contained 1000 3-mode tensors X ∈ R8×8×8 generated by a full multilinear product

between 1000 sparse core tensors S ∈ R16×16×16 and mode-n dictionary Ψn ∈ R8×16, n =

1, 2, 3 with an average SNR of 20 dB and a forgetting factor λ = 0.95. For the TMOD and

TKSVD, we adjusted the hyperparameters according to [104,105] so that they yielded the

best respective performance for fair comparison; all simulations were averaged over 100

realizations.

In Fig. 5.2, the two measures (NRMSE and ARE) were computed against different

levels of sparsity of the core tensors for the three considered algorithms. For simplicity,

the sparsity levels were equal mode-wise sparsity i.e. block sparsity [101]. As defined,

the proposed online algorithm consistently outperformed the batch methods. Fig. 5.3

compares the measure difference between the OMDL and TMOD with respect to different

block sparsity and SNR. The surface has values below 0 dB, thus verifying the OMDL

consistently yielded better performance than the TMOD.

B. Online Joint Learning of Multilinear Dictionary-Projection Matrices

In the second experiment, we compared the performance of the whole joint opti-

mization of the online method was assessed with different rules for Γ for the proposed

OMDL used. We generated 1000 3-mode tensor data X ∈ R16×16×16 by a full multi-

linear product between 1000 sparse core tensors S ∈ R40×40×40, and mode-n dictionary,

Ψn ∈ R16×40, n = 1, 2, 3. With an average SNR of 20 dB and a forgetting factor λ = 0.95

for all simulations, we tested for different values of block sparsity (Sn) and projection size

(In), strictly Sn ≤ In. The measure used in this experiment was the NRMSE of the re-

constructed tensor data X . We employed the multipath matching pursuit [108] to recover

the sparse core tensor S.
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With Γ set as the proposed ETF scheme, identity and ΨTΨ, respectively, Fig. 5.4a

shows that when the data is extremely sparse (Sn is small), there is no much difference

in the way how Γ is set. However, as the sparsity level increases, Γ begins to affect

the performance of the algorithm, with the ETF scheme starting to beat the others. In

Fig. 5.4b where sparsity level was fixed (Sn = 6, n = 1, 2, 3), the ETF scheme clearly

yielded better results. Observe that as the projection size grows, the more accurate the

reconstruction becomes.

C. Learning Performance on Hyperspectral Images

Finally, we verify the performance of the proposed OMDL algorithm against real-

world hyperspectral images sourced from the Indian Pins data of 145× 145 pixels and 224

spectral bands, i.e. a tensor of size 145× 145× 224, collected by 1992 AVIRIS sensor. We

randomly selected 600 patches each of size 24 × 24 × 24 from the Indian Pines data for

learning. First, the dictionary learning step was tested alone with the overcomplete sparse

core tensor set at 40 × 40 × 40 (overcompleteness level per mode ≈ 1.6). The NRMSE

measure was used to compare the performance of MODL vs. TMOD algorithms with

varying levels of mode-wise sparsity, ranging from 1 to 20. The second experiment tested

joint optimization with MODL fixed as dictionary learning, but comparing the ETF and

Identity scheme for the compressed sensing step. Here, the sparse core tensor is the same

as previously and the mode-wise sparsity was set at 15. The NRMSE was measured from

the reconstructed results from different mode-wise projection size. The depth-first variant

of multipath matching pursuit [108] was applied on the vectorized data to recover the

original hyperspectral images.

It can be seen from Fig. 5.5a that the MODL performed on par with its offline ver-

sion. With an addition of peripheral variables like forgetting factor, stepsize etc, we could

fine-tune the OMDL to yield marginally better results, but at no significant additional

cost in terms of implementation. Fig. 5.5b confirms that the ETF scheme could, albeit

slightly, reduce the reconstruction error compared to other compressed sensing strategies.
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Figure 5.2: [3] Performance measures, (a) NRMSE and (b) ARE, of three considered al-
gorithms with respect to different sparsity levels, for 1000 3-mode tensor data X ∈ R8×8×8

generated by full multilinear product between 1000 sparse core tensors S ∈ R16×16×16 and
mode-n dictionary Ψn ∈ R8×16, n = 1, 2, 3, with an average SNR of 20 dB and a forgetting
factor λ = 0.95, averaged over 100 realizations
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5.5 Summary

This chapter introduces the extension of the classical dictionary learning methods com-

bined with compressed sensing paradigm to propose the jointly optimized dictionary-

projection matrix learning for tensor data to the online learning paradigm. In this way,

the batch TMOD method has been modified to operate in a sequential fashion, to ob-

tain the online multilinear dictionary learning (OMDL) algorithm. In addition, we have

also proposed modified compressed sensing for a Tucker model (HO-CS), where the tar-

get Gram matrix is relaxed from identity to equiangular tight frame (ETF). Although

the overall performance improvement is not massive, it has been shown to enable a more

computational-friendly method in cases where all the data may not be available altogether

or computing all data at once is prohibitive. The advantages have been demonstrated by

experiments on both synthetic and real-world data.
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(a)

(b)

Figure 5.3: [3] Performance difference, (a) NRMSE and (b) ARE, between OMDL and
TMOD with respect to different sparsity and SNR, for 1000 3-mode tensor data X ∈
R8×8×8 generated by a full multilinear product between 1000 sparse core tensors S ∈
R16×16×16 and mode-n dictionary Ψn ∈ R8×16, n = 1, 2, 3, with the forgetting factor
λ = 0.95, averaged over 100 realizations
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Figure 5.4: NRMSE Performance measures of different Γ̄ with respect to (a) different
sparsity for In = 10,∀n, and (b) different projection size for Sn = 6, ∀n, for 1000 3-mode
tensor data X ∈ R16×16×16 generated by a full multilinear product between 1000 sparse
core tensors S ∈ R40×40×40 and mode-n dictionary Ψn ∈ R16×40, n = 1, 2, 3, with an
average SNR of 20 dB and a forgetting factor λ = 0.95, averaged over 100 realizations
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Figure 5.5: [3] NRMSE Performance for (a) different dictionary learning schemes with
varying sparsity and fixed Ln = 40,∀n, and (b) different compressed sensing schemes with
varying projection size but fixed Jn = 15 and Sn = 40, ∀n, for 600 3-mode HSI patches of
size 24× 24× 24 extracted from the Indian Pines dataset of size 145× 145× 224



102 Chapter 5



103

Chapter 6

Graphs and Signal Processing

Submitted to arXiv under Creative Commons Attribution license (CC

BY 4.0). Redistributed, with permission, from T. Variddhisai and D.

P. Mandic, “Online Multilinear Dictionary Learning,” 2017

G
RAPHS are the last unconventional-structure data considered in this thesis. Orig-

inally established outside signal processing paradigm, a graph has recently gained

in rapid popularity among signal processing community as the same result as quaternions

and tensors - the fast growing availability of multisensor and multinode data acquisition

devices. Typically, the measurement is obtained from a large-scale sensor array, with

possibly sparse and arbitrarily distributed sensors which provide streaming data. These

challenges require us to move further the traditional methods to introduce more domain-

specific solutions, including graphs. As all three data types are isomorphic as discussed

earlier, each type is still unique on its own in its domain-specific representation: 4D data

for quaternions, multiway data for tensors, and network data for graphs. This network

data is by nature massive, sparse, distributed and ad hoc, and graphs as a data structure

directly represent this perfectly. It would be very beneficial to analyze these graph signals

and take advantage from the space-time structure of graphs to give physical meaning to

sensing locations, sensor importance, and local/global sensor association. One may beg a

question of how graphs are relevant to the other two structures apart from isomorphism.
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In fact, it is the data sparsity that steers our interest from tensor dictionary from the

previous chapter to another problem where, like tensors, data is multidimensional and

likely to be sparse [117]; graphs fit these characteristics exactly. Also, we are working on

adaptive signal processing. Hence, this smooth combination of graph and signal processing

is a budding fruit of our continuing research endeavor.

This chapter aims to provide basics of graphs in relation to the adaptive graph

signal processing to be introduced in the next chapter which include graph signals, graph

random processes and graph stationarity.

6.1 Graph Signals

Consider a weighted random graph, G = (V, E ,W), where the vertex set V =

{v1, v2, ..., vN}, E is the edge set, and the matrix W ∈ RN×N is the associated shift

operator whose entries wij 6= 0 only if (i, j) ∈ E . The matrix W captures the local,

usually sparse, patterns of G, the examples of which include (weighted) adjacency matrix,

graph Laplacian, and their respective generalized forms [117,118].

A graph signal is then a function which maps the vertex set, V, onto the set of

real or complex numbers, e.g. f : V → R, and is conveniently represented by a vector

x = [x1, ..., xN ]T ∈ RN where xn denotes the signal value at vertex n. At a particular time

instance, the interaction of all elements of a graph signal are modelled according to the

graph shift operator (GSO), W, which represents a linear transformation which describes

how the graph signals localize across the network.

Similar to the standard shift in time, we can introduce a graph filter which shifts

in vertices, HL : RN → RN , defined as a polynomial of graph shift operators in the form

HL(W,hk) ,
L∑
l=0

hklW
l (6.1)

where hk = [hk0, hk1, ..., hkL]T is a vector of coefficients; the definition of hk is given in

this way to ease the problem formulation later in the paper. It is noteworthy that the
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filter HL(W,hk) is commutative with respect to the shift operator W, that is

HK(W,a)HL(W,b) = HL(W,b)HK(W,a). (6.2)

This property, called the shift invariance [117], will be necessary in the estimation of W

as it implies that the structures of graph processes are not entirely arbitrary.

If W is an adjacency matrix, then its entries wij ≥ 0 for i 6= j and wij = 0 for i = j.

When used as a GSO, a graph Laplacian L (of W) will have a zero row sum with entries

lij = −wij for i 6= j and lij =
∑

iwij for i = j. Other alternative GSOs have also been

recently proposed [119], the most suitable choice of which depends on the application

at hand. For example, electric circuits are mainly modelled using adjacency matrices

while diffusion-on-graph problems naturally employ the Laplacian. Here, to maintain the

generality of this study, the only two assumptions made on W are the shift invariance and

sparsity, common features shared by most GSOs in practice [117,118].

6.2 Vertex-Time ARMA Processes

It is important to note that the shift across vertices does not account for the shift in

time which reflects the dynamics of real-world signals. Consider a general time-varying

N -dimensional signal, xt, generated from another time-varying N -dimensional signal, vt,

through a multivariate autoregressive moving average (ARMA) graph process, to give

xt =

P∑
p=1

Ψpxt−p +

Q∑
q=0

Φqvt−q (6.3)

where Ψp and Φq are coefficient matrices of xt, so that these matrices are not fixed; please

note that the symbols Ψ and Φ here have nothing to do with those in the preceding OMDL

chapters. For a graph signal, the coefficients (matrix elements) explain how each dimension

interacts with all others, and will naturally assume a form of graph shift operators. An

intuitive approach would be for the coefficients to assume a form of a graph filter, although

there are other interesting basis functions to consider as an alternative, e.g. radial basis
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functions. Much existing literature [120–125] employs polynomial graph filter, also adopted

here, whereby Ψp and Φq in (6.3) can be expressed as

Ψp , HLp(W,hp) (6.4)

Φq , HKq(W,hq) (6.5)

where Lp and Kq are positive integers denoting the maximal shifts of the specific graph

filters. With eqs. (6.4) and (6.5), xt and vt become graph signals, of which the elements

relate to their respective vertex. The values of Lp and Kq are arbitrary and have to be

determined for every problem at hand [124]. In this work, we narrow down the scope

of the problem by restricting the random graph process to be purely autoregressive and

causal [125], thus reducing (6.3) to

xt =
P∑
p=1

Ψpxt−p + vt (6.6)

where vt ∼ N (0, I) and
Ψp , Hp(W,hp). (6.7)

Remark 2. The causality assumption in (6.6) implies that Lp = p and this interpretation

is interesting in that the the maximum vertex shifts at a particular time lag cannot exceed

the time lag itself. This signifies that a shift in vertices occurs in tandem with a shift in

time i.e. no more than one shift operator is allowed per time instance. This assumption

is rather reasonable as we are analyzing discrete-time models where the sampling policy

can be adjusted accordingly.

In practice, there may exist a more complicated system where shifts in vertices happen

asynchronously with time shift, however small the sampling rate; this is beyond the scope

of our work as we believe this scenario is rare. We therefore focus on the vertex-time AR

model given in (6.6) and (6.7).

6.3 Weak Stationarity

We shall now briefly explain how the shift invariance of the graph filter can be interpreted

as a form of ‘stationarity’. Analogous to the autocorrelation in time series, the autocorre-
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lation of a graph signal should depend on the ‘distance’ of vertex shifts regardless of the

position in vertex domain where the signal initially resides, i.e. however many times the

signal has been shifted. Therefore, as long as the total number of shifts is the same, then

so should be the correlation. This property is called ‘weak stationarity’ as in Defnition

1 in [118]. While the concept of stationarity in graphs is still an open research topic, we

employ the notion in [118] as it suits our problem setting since the AR model in (6.6) is

inherently weakly stationary, as it is made up of a sum of shift-invariant graph filters.

6.4 Summary

This chapter provided necessary basic concepts of signal processing on graphs. Firstly,

the notion of random graph signals based on polynomial graph filters is given. Then,

the vertex-time (space-time) autoregressive processes are defined with the assumption of

causality and polynomial graph filtering. Lastly, graph sttionarity is briefly mentioned to

provide relationship between graph shift invariance and weak stationarity of graphs. In

the next chapter, the last piece of our work will be derived and properly proposed - the

first true adaptive graph signal processing.



108 Chapter 6



109

Chapter 7

Adaptive Graph Signal Processing

Submitted to arXiv under Creative Commons Attribution license (CC

BY 4.0). Redistributed, with permission, from T. Variddhisai and D.

P. Mandic, “Online Multilinear Dictionary Learning,” 2017

T
HE proposed adaptive graph signal processing considers the phenomena which can

be described by multivariate statistical models parameterized by the irregular-

structure data represented as a graph, whereby the underlying statistical model follows

graph-topological structure. The existing work in signal processing on graphs includes

the tracking the time-varying graph signals [120, 121] and the use of space transforms

and dimensionality reduction to reduce the problem complexity [122, 123]. These results

assume an autoregressive model for graph data, and have recently been generalized to

autoregressive moving average models [124].

It is important to note that the common assumption made in much of the existing

work is that the graph topology is known a priori. However, in many network-related

problems, like social media, financial assets, or neuron connectivity, the topology (rela-

tionship between nodes, assets or neurons) needs to be learned, not to mention that the

topology is also often time-varying. To discover the topology of the GSO which generated

the observed graph data, the work in [125] assumes a vertex-time autoregressive casual

process; however, like all above mentioned articles, this offers a batch method where all
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the data are considered at once. To the best of our knowledge, a truly adaptive approach

to this problem is still lacking.

To this end, we propose an online adaptive filtering algorithm for streaming graph

data. Similarly to [125], we design the algorithm in a system identification setting, whereby

the task boils down to recovering the structure of the underlying GSO. The proposed

approach employs modified stochastic gradient descent methods [1,2], in addition to graph-

specific structures such as sparsity or commutativity, which are enforced naturally by graph

topology. As the existing work has already shown the potentials and limits of the graph

topology identification problem, this chapter aims to further explore the possibility of

applying the techniques of adaptive signal processing to random graph processes.

7.1 Regularized Least Squares Estimation

The problem in eqs. (6.6) and (6.7) pertains to the class of multivariate linear regression

problems, for which the optimal linear estimator is the MSE estimator [126]. Here, we

adopt the least squares method - a deterministic counterpart of the MSE estimator [1,2,5].

The least squares problem of eqs. (6.6) and (6.7) is then given by

min
W,h

1

2

t∑
τ=1

λt−τ

∥∥∥∥∥∥xτ −
P∑
p=1

Hp(W,hp)xτ−p

∥∥∥∥∥∥
2

2

(7.1)

where h = [hT1 , ...,h
T
P ]T ∈ CM with M = P (P + 3)/2 (See eq. (7.7)) and P is the order

of this AR random graph process, xi = 0 for i ≤ 0 and λ ∈ (0, 1]. Observe that (7.1)

represents a non-convex polynomial problem with many minima, for which many solutions

have been proposed [117,120–123], none of which guarantees a global optimum, even under

some quite restrictive assumptions [125]. A more plausible metric would be therefore to

identify whether an edge between any pair of vertices exist with the least chance of misses

and false alarms [122], and the order P should be as small as possible. The above setting

with term Hp(W,hp), ∀p defined in (6.1) implies that W and h should be sparse, so that

rather than solving the polynomial problem, we can cast (7.1) into alternating steps of

regularized least squares sub-problems, outlined in the following sections.
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7.1.1 Solving for Ψp = Hp(W,hp)

The minimization problem in eq. (7.1) is now solved with respect to Ψp = Hp(W,hp),

instead of W and h; this makes the problem quadratic in Ψp and hence standard stochastic

gradient descent is applicable. Denote by Ψ̂p an estimate of Ψp. With the assumption of

sparsity, we now arrive at the optimization problem,

min
Ψ

1

2

t∑
τ=1

λt−τ

∥∥∥∥∥∥xτ −
P∑
p=1

Ψpxτ−p

∥∥∥∥∥∥
2

2

+

P∑
p=1

µp‖vec(Ψp)‖1 (7.2)

where Ψ = [Ψ1, ...,ΨP ] ∈ RN×NP , vec(·) is a vectorization operator and ‖ · ‖1 is an `1

norm, while µp is a constant which adjusts the degree of sparsity of the corresponding

Ψp. From (6.7), it is obvious that Ψp grows less sparse with an increase in p, and thus µp

should be set in a decreasing fashion.

The above equation does not account for the shift invariance property of Ψp. How-

ever, from (6.2), we can add another regularizing term to enforce this constraint, using

the following commutator [125]

[Ψi,Ψj ] , ΨiΨj −Ψj ,Ψi. (7.3)

Inserting (7.3) into (7.2) yields

min
Ψ

1

2

t∑
τ=1

λt−τ

∥∥∥∥∥∥xτ −
P∑
p=1

Ψpxτ−p

∥∥∥∥∥∥
2

2

+

P∑
p=1

µp‖vec(Ψp)‖1 + γ
∑
i 6=j
‖ [Ψi,Ψj ] ‖2F . (7.4)

The final term makes the above problem of a quartic programming type, rendering the

convergence analysis more difficult. This becomes evident in the simulations where the

addition of this regularizer did not improve the algorithm performance significantly, in-

steadeven slightly deteriorate it in some cases.

7.1.2 Estimating W from Ψ̂1

From (6.1) and (6.7), observe that Ψ1 is a linear function of W and thus its estimate, Ψ̂1,

could represent a good estimate of W, that is, Ŵ. To find a true W after obtaining Ψ̂
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from (7.2), another regularized least squares sub-problem is needed, and given by

min
W

1

2
‖Ψ1 −W‖22 + µ1‖vec(W)‖1 + γ

P∑
p=2

‖ [W,Ψp] ‖2F . (7.5)

The rightmost term ensures that Ŵ is as commutative as possible with all Ψ̂p to ensure

the shift invariance property. Note that when (7.4) is employed to calculate Ψ̂1, the shift

invariance property has already been enforced so that this optimization sub-problem might

be bypassed by setting Ŵ = Ψ̂1. The implementation strategy is further elucidated in

the simulation section.

7.1.3 Estimating h

After obtaining Ŵ, the original problem (7.1) turns into a quadratic programming one

with respect to h. Also, by assuming that h is sparse, we can rearrange (6.7) and (7.1)

into

min
h

1

2

t∑
τ=1

λt−τ‖xτ −Yτh‖22 + ζ‖h‖1 (7.6)

with

Yt =
[
xt−1,Ŵxt−1, ...,xt−P , ...,Ŵ

Pxt−P

]
(7.7)

Note that Yt ∈ RN×M contains all possible combination of past P vertex-time instances

of the graph signal, xt. While M = P (P + 3)/2 appears rather large, in practice, the

actual order is quite low, with even M < N a likely case. In addition, this step is optional

as our main goal is to recover W.

7.2 Adaptive Graph Signal Processing

We now proceed to build upon the alternating optimization problem detailed in the previ-

ous section, to introduce a class of adaptive algorithms based on the optimization criterion

in (7.1), with a sparse solution, called sparsity-aware adaptive algorithm [127]. Although

many methods, such as `1-regularized least mean square [128] or oracle algorithm [127],

lead to convergence with competitively small MSE, these solutions are rarely sparse, if not
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at all [129], as they do not explicitly zero out the elements of the GSO matrix like their

offline counterparts such as basis pursuit. On the other hand, methods like ADMM or

ALM have proved valuable in solving offline `1-regularized problems, and in our endeavor,

as the topic is still in its infancy, we adopt the standard stochastic gradient descent but

rewrite our main cost function to naturally enforce the solution to ‘project’ on acceptable

values [130] (the prospect of online ADMM and ALM is promising if the underlying al-

gorithm - as in this thesis - is designed to work well). To this end, we re-formulate (7.2)

and (7.4) to (7.6) by splitting the desired variables (Ψ̂, Ŵ and ĥ) into their positive and

negative parts, that is

Ψ̂ , Ψ̂+ − Ψ̂−, Ŵ , Ŵ+ − Ŵ−, ĥ , ĥ+ − ĥ− (7.8)

where (·)+ ≥ 0 and (·)− ≥ 0 contain respectively only the positive and negative parts of

(·). Note that if W is an adjacency matrix, then Ψ̂− = Ŵ− = 0 which makes the problem

easier. For the Laplacian, this is much more difficult because while clearly it can be split

into the positive on- and negative off-diagonals, the real bottleneck is the zero row sum,

an equality constraint which is awkward to solve iteratively as it could involve Lagrangian

methods. Since the stucture of GSO vary with applications, we here study the general

unconstrained W for generality and analytic insights.

7.2.1 Form of the Algorithm

Based on (7.8), the ‖ · ‖1 operator can be expressed through a product-weighted sum i.e.

Ψ̂ = Tr
(
1N×NΨ̂+

)
+ Tr

(
1N×NΨ̂−

)
,

Ŵ = Tr
(
1N×NŴ+

)
+ Tr

(
1N×NŴ−

)
,

ĥ = 1TN ĥ+ − 1TN ĥ−

(7.9)

where Tr(·) is a trace operator, and 1N×N ∈ RN×N and 1N ∈ RN both have all their

elements equal to 1. These formulae enable us to separate the derivatives with respect

to the positive and negative parts, where gradient projection can be used to force invalid
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values to zero, leading to sparsity as a by-product. We now proceed to minimize (6.4) by

calculating the gradient with respect to (Ψ̂p)+, denoted by ∇(t)

(Ψ̂p)+
, and given by

∇(t)

(Ψ̂p)+
=

t∑
τ=1

λt−τ

(
P∑
k=1

Ψ̂k,t−1xτ−kx
T
τ−p − xτx

T
τ−p

)
+ µp,t1N×N + γQp,t (7.10)

where

Qp,t+1 =

P∑
k=2

([
Ψ̂p,t, Ψ̂k,t

]
Ψ̂
T
k,t − Ψ̂

T
k,t

[
Ψ̂p,t, Ψ̂k,t

])
. (7.11)

Note that Ψ̂p,t denotes Ψ̂p at the time instant t in the algorithm. Now, let Ψ̂t, Mt,

Qt ∈ RN×NP be respectively defined as

Ψ̂t ,
[
Ψ̂1,t, Ψ̂2,t, ..., Ψ̂P,t

]
:= Ψ̂+t − Ψ̂−t , (7.12)

Mt , [µ1,t1N×N , µ2,t1N×N , ..., µP,t1N×N ] , (7.13)

Qt , [Q1,t,Q2,t, ...,QP,t] , (7.14)

and with the following variables,

Gt , Ψ̂t−1Rt − (Pt − γQt), (7.15)

Rt ,
t∑

τ=1

λt−τxP,τx
T
P,τ = λRt−1 + xP,tx

T
P,t, (7.16)

Pt ,
t∑

τ=1

λt−τxτx
T
P,τ = λPt−1 + xtx

T
P,t, (7.17)

where xP,t ∈ RNP is given by

xP,t ,
[
xTt−1,x

T
t−2, ...,x

T
t−P
]T
. (7.18)

We can now express the update for Ψ̂+t as a gradient projection, that is

Ψ̂+t =
(
Ψ̂+t−1 − (Mt + Gt)(At ⊗ IN×N )

)
+

(7.19)
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where At = diag(α1, α2, ..., αP ) ∈ RP×P is a diagonal matrix of stepsizes. Similarly, we

can obtain the update equation for Ψ̂−t as

Ψ̂−t =
(
Ψ̂−t−1 − (Mt −Gt)(At ⊗ IN×N )

)
+
. (7.20)

The next step involves finding the shift operator Ŵ. For example, we can easily let

Ŵt = Ψ̂1,t, with the derivation so far based on (7.4) where the commutative property

of Ψ̂ is already taken into account. Another approach may employ a simplified version

of (7.2) with Qt = 0 for all t. Since the commutativity is not enforced in eq. (7.2), but

is needed when estimating Ŵt, we repeat the same procedure as in (7.5), resulting in the

following,

Ŵt = Ŵ+t − Ŵ−t , (7.21)

Ŵ+t =
(
Ŵ+t−1 − βt(µ1,t1N×N + Vt)

)
+

(7.22)

Ŵ−t =
(
Ŵ−t−1 − βt(µ1,t1N×N −Vt)

)
+

(7.23)

with

Vt = Ŵt−1 − (Ψ̂1,t − γSt) (7.24)

and

St =
P∑
k=2

([
Ŵt−1, Ψ̂k,t

]
Ψ̂
T
k,t − Ψ̂

T
k,t

[
Ŵt−1, Ψ̂k,t

])
. (7.25)

Where Ŵ is an adjacency matrix, Ψ̂−t and Ŵ−t are both set to zero for all t.

Since the objective functions in (7.2) and (7.4) are not pure MSE with regularizing

terms, this makes them multi-convex and the solution will thus be biased [125] and not

optimal in terms of MSE. The whole procedure to this point has been to identify the

causative elements of an GSO without necessarily their correct values. To this end, we

employ an approach known as debiasing, where in order to eliminate the regularization

biases, we fix the zero entries of the obtained GSO Ŵt, and only optimize the non-zero

entries via a least squares cost. It comes with a caveat that, by reducing data sample size,

the noise could be distorted from normality, thus affecting the minimal MSE criterion

from the outset [131] if the original data is rather noisy, or of insufficiently large size.
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The final step, the calculation of ĥ, is discretionary as our prime purpose is to iden-

tify Ŵ and as stated above, the components of Ŵ may not be accurately computed due to

the biased objectives, leading to even erroneous ĥ. On the other hand, if desiring to fully

identify the temporal structure of the vertex-time AR process, we can solve for ĥ via (7.6)

and (7.7), but Ŵ needs to be debiased in order for ĥ to be mathematically meaningful.

Unlike the two earlier optimization sub-problems, ĥ is not strictly conditioned, and its

sparsity constraint aims mainly to render the model succinct. Hence, GAR-LMS [129] is

employed to arrive at the update equation of ĥ, given by

ĥt = ĥt−1 + ρt

(
Ctĥt−1 − ut + ηtbt

)
(7.26)

where

Ct = λCt−1 + YT
t Yt (7.27)

ut = λut−1 + YT
t xt (7.28)

bt : bi,t =
sign(ĥi,t−1)

ε+ ĥi,t−1
(7.29)

and

Yt =
[
xt−1,Ŵtxt−1, ...,xt−P , ...,Ŵ

P
t xt−P

]
, (7.30)

with ε a small positive number. This step could be further simplified by only taking the

instantaneous samples into (7.26), that is, λ = 0, to yield

ĥt = ĥt−1 + ρt
(
YT
t et + ηtbt

)
(7.31)

where

et = xt −Ytĥt−1 (7.32)

The so derived algorithms are summarized in Algorithms 1 & 2.

As mentioned earlier, two paths are possible for Algorithm 1; either to ignore Step

9, i.e. Qt = 0, and consider only Step 18 (we will call this Path 1), or vice versa - to

consider Step 9 and ignore Step 18 by letting Ŵt = Ψ̂1,t (Path 2).
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Algorithm 5: Identifying the topology of Ŵ (Ŵ∗)

Input : x, P
Output: Ψ̂, Ŵ∗

1 Initialize Ψ̂0 = Ψ̂+0 = Ψ̂−0 = P0 = Q1 = 0, Ŵ0 = Ŵ+0 = Ŵ−0 = S1 = 0 and
R0 = 0;

2 t = 0;
3 do
4 t = t+ 1;

5 Solving for Ψ̂t;

6 xP,t =
[
xTt−1,x

T
t−2, ...,x

T
t−P
]T

;
7 Rt = λRt−1 + xP,tx

T
P,t;

8 Pt = λPt−1 + xtx
T
P,t;

9 Qt = [Q1,t,Q2,t, ...,QP,t] with Qp,t according to eq. (7.11);
10 calculate µt;
11 Mt = [µ1,t1N×N , µ2,t1N×N , ..., µP,t1N×N ];

12 Gt = Ψ̂t−1Rt − (Pt − γQt);
13 calculate At;

14 Ψ̂+t =
(
Ψ̂+t−1 − (Mt + Gt)(At ⊗ IN×N )

)
+

;

15 Ψ̂−t =
(
Ψ̂−t−1 − (Mt −Gt)(At ⊗ IN×N )

)
+

;

16 Ψ̂t = Ψ̂+t − Ψ̂−t ;

17 Estimating Ŵt;
18 St according to eq. (7.25);

19 Vt = Ŵt−1 − (Ψ̂1,t − γSt);

20 Ŵ+t =
(
Ŵ+t−1 − βt(µ1,t1N×N + Vt)

)
+

;

21 Ŵ−t =
(
Ŵ−t−1 − βt(µ1,t1N×N −Vt)

)
+

;

22 Ŵt = Ŵ+t − Ŵ−t ;

23 while t < T ∗ (an epoch with steady state reached);

24 Ŵ∗ = ŴT ∗ .
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7.2.2 Fine-tuning Peripheral Parameters

For desirable accuracy and fidelity of the outcome, there are still some minor param-

eters which need to be fine tuned. These include the regularization constants µt :=

[µ1,t, µ2,t, ..., µP,t]
T , ηt, γ and ε; stepsizes At, βt and ρt; and the forgetting factor λ.

For the `1-norm related constants, these can be initially expressed via [132]

µp,t = µp‖Pp,t − γQp,t‖∞ (7.33)

ηt = η
∥∥YT

t xt
∥∥
∞ (7.34)

where µ := [µ1, ..., µP ]T is a constant vector with entry values decreasing with p, and Pp,t ∈

RN×N is a pth block of Pt := [P1,t,P2,t, ...,PP,t]. For the stepsizes, Armijo backtracking

is employed to yield suitable values of At, βt and ρt, while the parameters µ, η, γ and λ

have to be determined manually. Notice that while some prior knowledge is available for

µ (decreasing-valued entries) and λ (closed to unity), η and γ are rather unconstrained.

7.2.3 Discussion on Convergence

A rigorous convergence analysis of the graph random processes can be found in [125].

However, the assumptions for successful convergence are quite restrictive because the

graph signal has not only to obey specific sparsity structure (Assumption A5 in [125]),

but also to exhibit a very strong stability condition (Assumptions A4 and A6 in [125]),

to which only a few classes of topologies conform, like K-regular graphs. While the proof

in [125] is without doubt rigorous, it is largely theoretical and limited to real-world cases.

Attempts to relax the assumptions underpinning the proof have had limited success; this

is partly due to that fact that the base problem (7.2) is inherently biased; for example, the

`1-norm regularizing terms usually exhibit a side effect of underestimating the non-zero

elements [132], not to mention a more complex commutator term. Therefore, it may be

more favorable to take a different convergence measure. In other words, rather than the

mean squared error, we could use the percentage of correctly recovered elements of W,

regardless of their correct values, a topic of future work.
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Algorithm 6: Determining the unbiased Ŵ and ĥ

Input : x, P , δ
Output: Ŵ, ĥ

1 All recursive variables resume from Algorithm 1;
2 t = T ∗;
3 do
4 t = t+ 1;

5 Recovering Ŵt;
6 Rt = λRt−1 + xP,tx

T
P,t;

7 Pt = λPt−1 + xtx
T
P,t;

8 Gt =
(
Ψ̂t−1Rt −Pt

)
Ŵ

where (·)Ŵ is the projection to non-zero elements of

Ψ̂ considering Ŵ;
9 calculate At;

10 Ψ̂t = Ψ̂t−1 −Gt(At ⊗ IN×N );

11 Setting Ŵt = Ψ̂1,t;

12 Estimating ĥ;

13 Yt =
[
xt−1,Ŵtxt−1, ...,xt−P , ...,Ŵ

P
t xt−P

]
;

14 et = xt −Ytĥt−1;

15 bt : bi,t =
sign(ĥi,t)

σ+ĥi,t
;

16 ĥt = ĥt−1 + ρt
(
YT
t et + ηtbt

)
;

17 while t < T (an epoch with ‖eT ‖ < δ);

18 Ŵ = ŴT , ĥ = ĥT .
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7.3 Simulation Results

Since the suitable choice of the GSOs varies with applications, in our simulation, we tested

our algorithm with synthetic graph processes which are consistent with the underlying

assumptions of sparsity and shift invariance. Three different topologies of graphs were

considered: arbitrarily random graph (R), random graph with power-law degree distribu-

tion (PL) [133], and Stochastic Block-Model (SBM) [134]. For each topology, the synthetic

graph signal xt ∈ R12×12 was generated by feeding an i.i.d. input signal wt ∈ R12×12 into

the stochastic processes in (6.6) and (6.7), with the number of vertices N = 12 and time

lag order P = 3 throughout all simulations.

7.3.1 Convergence Performance against NMSE

In the first experiment, we examined how the overall algorithm performs in terms of the

normalized mean squared error (NMSE) of x and W, respectively denoted by

σt ,
‖et‖22
‖xt‖22

, (7.35)

ζt ,
‖W − Ŵt‖

2

F

‖W‖2F
(7.36)

where ‖ · ‖F indicates the Frobenius norm. The GSO, W, was generated following the

R/PL/SBM topologies chosen at random with 20 realizations in total. For an arbitrarily

random topology, the weighted edges were drawn from N (0, 1) and then thresholded to

between 0.3 and 0.7 times the maximum absolute value of the components. Finally, the

GSO matrix was normalized by 1.5 times its largest eigenvalue (to ensure stable processes).

The PL topology started from three random initial nodes connecting one another

with probability 0.8; then new nodes were connected with the probability following the

preferential attachment process [133] which is proportional to the total weight of the

existing nodes. If connected, the weighted edges were drawn from N (0, 1) and thresholded

to between 0.05 and 0.95 times the maximum absolute value of the components, together

with normalizing the GSO matrix by 1.5 times its largest eigenvalue. In the SBM case, the
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network was clustered into 3 groups of 3, 4 and 5 vertices each. The inter-/intra-cluster

probability of connection was allocated by 3×3 matrix in the form of 0.25I+U(0.05, 0.2).

Then, all the assigned edges were weighted by an exponential distribution with the rate

λ = 2 and the matrix was finally normalized by 1.5 times its largest eigenvalue. All these

specifications yielded the sparsity in W of approximately 0.2.

After W was created, xt was obtained with the coefficients hij for 1 ≤ i ≤ P and

0 ≤ j ≤ i, generated sparsely from a mixture of distribution hij ∼ 1
2i+j

(U(−1,−0.45) +

U(0.45, 1)). The data was created for over 1100 samples, with first 500 samples left out

due to their transient behavior, and the latter 600 samples kept for the simulation. We

employed Algorithm 1 (Path 1) for the first 400 samples and Algorithm 2 for the remaining

200 samples, to recover x and W, with the hyper-parameters µ1, µ2, µ3, η chosen from the

interval (0, 5] with the step 0.1, γ from (0, 2] with the step 0.1 and λ from (0.8, 0.99] with

the step 0.01. For this specific experiment, the selected hyperparameters would minimize

the steady-state σt i.e. the averaged σt for t such that σt is in steady state. This step

was repeated 20 times to obtain 20 realizations which were then averaged to display the

outcome.

In terms of NMSE, the regularized algorithm (Algorithm 1) failed to minimize the

‘normed’ error of both x and W, diverging away and levelling at a certain level; a jittery

pattern was observed in the NMSE of W. Afterwards, the debiasing process (Algorithm

2) managed to significantly reduce the error to a very low level, as expected from a generic

adaptive algorithm. At the first glance, one may question the utility of the first step

(Algorithm 1) as the standard stochastic algorithm (Algorithm 2) can accomplish the

whole task. The answer is that Algorithm 2 (debiasing) only manipulates the explanatory

part of the W, determined by Algorithm 1. Therefore, it would be a disadvantage to

neglect the capability of identifying the correct topology of W, which is considered in the

next experiment.
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7.3.2 Identifiability of the GSO Topologies

The same data formulation as in the previous section was used Here, we focus on the

likelihood that Algorithm 1 would successfully identify the right topology i.e. the non-

zero elements of W, regardless of their correct values. To this end, we compared the rate

of false alarm (taking zero element as non-zero) and miss (failing to identify non-zero

element) for every specific topology. Each case was calculated based on the average of 10

repeated random trials.
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Figure 7.1: NMSE performance of the proposed algorithm with measures ζt (red) and σt
(blue) which represent respectively the NMSE of W and x. Algorithm 1 was implemented
for the first 400 epochs of data samples and Algorithm 2 for the last 200 epochs.

As a consistent benchmark of the outcome, we tuned the hyperparameters such

that, in each simulation, the sum of total false alarms (PFA) and total misses (PM ) was

minimal with respect to the hyperparameter grids described in the previous experiment.

We tested our data twice with the Path 1 and the Path 2 of Algorithm 1, to establish
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if this shifting order of the commutator term affects the learning performance. Table

I shows the probabilities of false alarm (PFA) and miss (PM ) via Path 1 of Algorithm

1 while Table II shows those of Path 2. Observe that Path 1 (using commutator term

when estimating Ŵt rather than at solving for Ψ̂t) yielded more accurate recovery than

W PFA PM

random 0.1033 0.1967
SBM 0.02 0.353
PL 0.067 0.42

Table 7.1: Results for Path 1

W PFA PM

random 0.22 0.2167
SBM 0.0633 0.4567
PL 0.15 0.6

Table 7.2: Results for Path 2

the Path 2 (using the commutator term together with solving for Ψ̂t and letting Ŵt =

Ψ̂1,t). Regarding topology-wise comparison, the results expectedly show that specific

topologies affect algorithm performance. When testing the arbitrarily random topology,

we noticed the resulting recovery was not consistent, as indicated by the sum of PFA and

PM varying considerably from experiment to experiment. Fig 2 (a) shows one of random-

topology trials which are close to the average. When considering W with a clearly specified

topology (SBM and PL), the recovery rate was more consistent with most SBM and PL

trials, giving the recovery outcome close to the average. Fig 2 (b) and (c) visualize trial

cases for both topologies. It should be noted that the recovery results of SBM and PL

(a) (b) (c)

Figure 7.2: Examples of visual representation of (a) arbitrarily random, (b) SBM and
(c) power-law topologies of the graph shift operator, W, from one simulation trial where
blank spaces designate the non-zero entries, grey spaces the zero entries, and crosses the
recovered entries.

topologies were not outstanding as some trails of the arbitrarily random topology gave
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more precise identification; an example is shown in Fig. 2. While the structure of SBM

and PL graphs ensured that the algorithm was less susceptible to identifying wrong edges,

they disproportionately lacked in the ability to detect all the right ones (their PM ’s were

quite high compared to the random benchmark). When attempting to reduce high PM ’s,

their PFA outgrew the intended reduction; in other words, after reaching some point, the

algorithm began to wrongly identify edges at a rapid rate. Visually, we still could not

distinguish what characteristics of W would render the algorithm more effective.

Finally, we would like to mention that these simulations were run on a small-scale

problem due to computational limits, and hence the 12 × 12 size of W and 10 trails

per topology could give biased and more varying results compared with the experiments

involving thousands of nodes and hundreds of trials [125]. Nevertheless, the findings in

this work indicate that there is much more room to discover in this research topic, since

topology constraints play a crucial role in selecting appropriate optimization techniques

to devise learning algorithms. This already suggests that other topological statistics like

graph diameter, node degrees and many others could help with the design of the optimal

algorithms.

7.4 Summary

This chapter presents a first design of adaptive graph signal processing implemented jointly

by formulating a problem and devising a novel online algorithm accordingly. The model

is based on vector autoregression (VAR) where the coefficient matrices are constrained

by graph topology via a graph shift operator (GSO). The vertex-time relationship has

been explained through a graph filter (vertex part) embedded into a VAR time series

(time part), where causality has been imposed on the model to determine lag charac-

teristics of the vertex-time models. To alleviate the non-convex nature arising from the

polynomial structure of the graph filters, the problem has been divided into three sub-

problems which themselves are re-expressed as convex problems. The algorithm has then

been derived based on the split gradient projection method [130] which groups the first

two sub-problems into Algorithm 1 and the last into Algorithm 2. The reason is that the
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method is expected to produce biased results due to heavy-handed regularization of the

problem. Therefore, after Algorithm 1, only the non-zero entries of the resulting GSO

are computed in Algorithm 2 to debias the solution. Finally, the experiments have been

carried out to illustrate the potentials and limits of the proposed method. The fine-tuning

of hyperparameters poses another challenge as the empirical results from the algorithm is

shown to be highly susceptible to how these hyperparameters are collectively set.
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Chapter 8

Conclusions and Future Work

I
N this final chapter we provide the recapitulation on what this thesis has accomplished

and contributed, together with the indication of what could be further enhanced. The

chapter first concludes the main discoveries and improvements of the thesis. Afterwards,

it suggests interesting, yet unused, findings as well as pointing out some important as-

sumptions and hypotheses assumed in the procedure of proof and derivation.

8.1 Conclusions

The thesis primarily cope with the extension of adaptive signal processing paradigm to

more unconventional data types, particularly those arising out of the increasing availability

of multisensor/multinode measurements, popularly known as Big Data; the main theme of

this thesis is to employ Big Data techniques onto regular-size data to enable the impact of

data diversity and fusion on normal data. The first data type considered is a quaternion,

which is a continuing interest from the author’s Master’s research. The adaptive algorithms

based on accelerated gradient have been proposed for a quaternion random processes - the

widely linear quaternion least mean squares (WL-QLMS). Two approaches are offered, the

n-moment WL-QLMS inspired by exact application of Nesterov’s optimal algorithm and

the c-moment WL-QLMS taken from Chebyshev’s iterative method as an approximation

of the former. The exact derivation poses a challenge as the stochastic nature increases the
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chance of being underdamped (chance of diverging away), so the algorithmic step to reset

the momentum is required. Empirically, the approximate c-moment shows no inferior

performance to the more computationally complex n-moment, and thus the c-moment

WL-QLMS comes out as the better all round. overall, these two proposed algorithms

achieve fast convergence as the widely linear quaternion recursive least squares (WL-

QRLS) but with much more numerical robustness (less likely to diverge away) and with

quite similar computational complexity.

As we have been working on data fusion topic, it is a natural sague from quaternions

to tensors thanks to their invertible isomorphism. Tensors address the direct shortfall of

quaternions - 4-way analysis at maximum. As tensors can scale to as many dimensionality

as one may like, this is actually a blessing to capture the data with such massive diver-

sity, and then break down that data into a series of factors with massively less size. In

our second effort is dictionary learning of tensor data via Tucker decomposition because

dictionary learning is actually adaptive filtering algorithms with sparse coding scheme.

Without hesitation, the mechanism obtained from the c-moment WL-QLMS is re-applied

to derive the proposed online multilinear dictionary learning (OMDL) routine. Given the

sparse coding is perfect (its solution is always optimal), it is shown via simulation that

the OMDL could recover all the dictionaries perfectly despite its alternating minimiza-

tion scheme. Furthermore, the joint higher-order compressed sensing (HO-CS) is also

proposed to complement the OMDL in order to achieve best dimensionality reduction as

in traditional CS paradigm. The relaxed ETF scheme is serialized to obtain the sensing

matrix sequentially along with the sparsifying dictionaries from OMDL. The experiments

compared the novel OMDL against similar tensor routines and clearly demonstrate better

performance, sometimes slightly and sometimes by a large margin.

The sparsity is a typical constraint in today’s modelling of large-scale data because

in natural phenomena, information comes as ad hoc, random, and sparse in many real

applications. This has made the transition from tensors to graphs very smooth for us as

the signals on defined on both graphs and tensors usually share sparsity as a common

feature. In our final research effort, adaptive filtering algorithm is extended to graph
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signals in which we to the best of knowledge believe this is the first adaptive graph sig-

nal processing routine. Basically, graph signals are under the field of multivariate signal

processing whereby the vector time series follows graph topology, mathematically repre-

sented by graph shift operator (GSO). Unlike traditional multivariate signal processing,

the sparsity as a result of topology is challenging to be enforced in a real-time setting.

To this end, we proposed a novel algorithm based on split gradient projection method

to update positive and negative parts of the model parameters separately. This enables

the adaptive algorithm to achieve truly sparse model for graph random processes. The

experiments demonstrate the potentials and limits of the algorithm, the way to fix bias

as a result of regularization parameters, the effect of fine-tuning minor parameters and

varying performance against different GSO topologies.

In the final paragraph of this section, we would like to address some shortfalls of all

the work in this thesis. In the quaternion part, we obtain the criterion to guarantee local

convergence. We have found very challenging a proof of global convergence of a quaternion-

valued function as many mathematical analysis utilized in classical setting is no longer

applicable in quaternions such as the concept of strong convexity. We complement this

shortfall by supplying extensive numerical simulation to show the proven robustness of the

proposed algorithm. For the tensor dictionary, since our OMDL routine can be recast into

a traditional DL problem with Kronecker structure, there exists a rigorous proof that the

traditional DL algorithm converge to stationary point [88]. So far, the global convergence

analysis is still an open topic, even with the traditional problem. Lastly for the graphs,

owing to its heavy-handed regularization in the model, the algorithm is shown empirically

to always diverge unless a debiasing algorithm is used to post-process the result. There

also exists a proof which, however, relies on very restrictive assumptions to which very few

natural signals would conform. Consequently, we decided to forgo the convergence analysis

of the adaptive graph filtering algorithm and instead demonstrates empirical insights as

we believe it would be more useful at the embryonic stage of the topic.
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