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ABSTRACT

Structured Tensor Recovery and Decomposition

Cun Mu

Tensors, a.k.a. multi-dimensional arrays, arise naturally when modeling higher-order objects and relations.

Among ubiquitous applications including image processing, collaborative filtering, demand forecasting and

higher-order statistics, there are two recurring themes in general: tensor recovery and tensor decomposition.

The first one aims to recover the underlying tensor from incomplete information; the second one is to study a

variety of tensor decompositions to represent the array more concisely and moreover to capture the salient

characteristics of the underlying data. Both topics are respectively addressed in this thesis.

Chapter 2 and Chapter 3 focus on low-rank tensor recovery (LRTR) from both theoretical and algorithmic

perspectives. In Chapter 2, we first provide a negative result to the sum of nuclear norms (SNN) model—

an existing convex model widely used for LRTR; then we propose a novel convex model and prove this

new model is better than the SNN model in terms of the number of measurements required to recover the

underlying low-rank tensor. In Chapter 3, we first build up the connection between robust low-rank tensor

recovery and the compressive principle component pursuit (CPCP), a convex model for robust low-rank

matrix recovery. Then we focus on developing convergent and scalable optimization methods to solve the

CPCP problem. In specific, our convergent method, proposed by combining classical ideas from Frank-Wolfe

and proximal methods, achieves scalability with linear per-iteration cost.

Chapter 4 generalizes the successive rank-one approximation (SROA) scheme formatrix eigen-decomposition

to a special class of tensors called symmetric and orthogonally decomposable (SOD) tensor. We prove that

the SROA scheme can robustly recover the symmetric canonical decomposition of the underlying SOD tensor

even in the presence of noise. Perturbation bounds, which can be regarded as a higher-order generalization

of the Davis-Kahan theorem, are provided in terms of the noise magnitude.
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Notation

Rn n-dimensional real space

x bold small letters as vectors

xi the i-th entry of vector x

ei the i-th standard basis

‖x‖p p-norm of the vector x

‖x‖ `2-norm of the vector x

X bold capital letters as matrices

Xi: i-th row ofX as column vector

X:j j-th column ofX as column vector

Xij the (i, j)-entry of the matrixX

‖X‖ matrix operator norm

‖X‖F matrix Frobenius norm

‖X‖∗ matrix nuclear norm

rank(X) rank of a matrix

null (X) nullspace of a matrix

⊗ outer product⊗K
j=1 Rij Ri1×i2×···×iK

⊗K Rn R

K times︷ ︸︸ ︷
n× n× · · · × n

X bold Euler script capital letters as tensors

Xi1,i2,...,iK the (i1, i2, . . . , iK)-entry of the tensor X

X (k) mode-k matricization

X (R,C) mode-(R, C) matricization

‖X‖F tensor Frobenius norm

‖X‖ tensor operator norm
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rankcp (X ) tensor CP rank

ranktc (X ) tensor Tucker rank

δ(C) statistical dimension of convex cone C

projS [x] projection of x onto the set S

(·)> transposition without conjugation

(·)∗ conjugate transposition, equivalent to (·)> for real vectors/matrices

[k] the integer set {1, . . . , k}

X ∼ L random variable X distributed by the law L

N (0, In) standard Gaussian distribution in Rn

Ber(θ) standard Bernoulli distribution with parameter θ

X ∼i.i.d. L elements in (vector- or matrix-valued)X independent, identically distributed by the

law L

w.h.p. short for “with high probability”

i.i.d. short for “independent, identically distributed”

w.l.o.g. short for “without loss of generality”

w.r.t. short for “with respect to”
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CHAPTER 1. INTRODUCTION 1

Chapter 1

Introduction

Multidimensional arrays, a.k.a. tensors, generalize vectors (i.e. one-dimensional arrays) and matrices (i.e.

two-dimensional arrays). They arise naturally as a flexible and integral approach to data representation

and modelling, especially in problems where the underlying objects are multi-dimensional with entries

indexed by several continuous and discrete variables. For instance, in collaborative filtering [KABO10] and

demand forecasting [LX10, HQB15], historical ratings and sales data are often organized with indices in user

ID, product ID and contextual variables including time, location and so on; in computer vision and graphics

[LMWY09], visual data are naturally indexed by the specifications in space, frequency channel, time point,

etc.; in statistics, higher order moments and cumulants for multivariate distributions are tensors with equal

length indexed by the variables along each dimension [McC87]. Across ubiquitous tensor applications over

different areas, there are two recurring challenges in general. The first one, known as tensor recovery, is to

recover the underlying tensor from incomplete information. For example, the ultimate goal of collaborative

filtering is to figure out the missing ratings from the sparsely observed ones and thus make more precise and

personalized recommendations to customers. The second challenge is on how to extract useful information

from these multidimensional data, which normally relies on various tensor decompositions to provide a concise

representation of the original tensor and moreover to capture the salient features of the underlying data.

Both challenges, tensor recovery and tensor decomposition, are respectively addressed in this thesis. In

specific, Chapter 2 and Chapter 3, based on our previous works [MHWG14] and [MZWG16], focus on tensor

recovery from both theoretical and algorithmic aspects, and Chapter 4, based on our previous work [MHG15],

discusses topics in tensor decomposition. In the remaining part of this chapter, the nomenclature used in the

thesis will be established following an overview of each chapter.
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1.1 Overview

In Chapter 2, we focus on recovering low-rank tensors from incomplete information, which is a recurring

problem in signal processing and machine learning. The most popular convex relaxation of this problem

minimizes the sum of the nuclear norms (SNN) of the unfolding matrices of the tensor. We show that this

approach can be substantially suboptimal: reliably recovering a K-way n×n×· · ·×n tensor of Tucker rank

(r, r, . . . , r) from Gaussian measurements requires Ω(rnK−1) observations. In contrast, a certain (intractable)

nonconvex formulation needs onlyO(rK+nrK) observations. We introduce a simple and new convex relaxation,

which partially bridges this gap. Our new formulation succeeds with O(rbK/2cndK/2e) observations. The

lower bound for the SNN model follows from our new result on recovering signals with multiple structures (e.g.

sparse, low rank), which indicates the significant suboptimality of the common approach of minimizing the

sum of individual sparsity inducing norms (e.g. `1, nuclear norm). Our new tractable formulation for low-rank

tensor recovery shows how the sample complexity can be reduced by designing convex regularizers that

exploit several structures jointly.

Chapter 3 is more about an algorithmic exploration. We first build up the connection between the robust

low-rank tensor recovery problem and the robust low-rank matrix recovery problem, and then focus on

developing scalable optimization methods to solve the latter problem. Recovering matrices from compressive

and grossly corrupted observations is a fundamental problem in robust statistics, with rich applications in

computer vision and machine learning. In theory, under certain conditions, this problem can be solved in

polynomial time via a natural convex relaxation, known as Compressive Principal Component Pursuit (CPCP).

However, many existing provably convergent algorithms for CPCP suffer from superlinear per-iteration cost,

which severely limits their applicability to large-scale problems. In this chapter, we propose provably

convergent, scalable and practical methods to solve CPCP with linear per-iteration cost. Our method combines

classical ideas from Frank-Wolfe and proximal methods. In each iteration, we exploit Frank-Wolfe to update

the low-rank component with rank-one SVD and exploit a proximal gradient step for the sparse term. Convergence

results and implementation details are discussed. We also demonstrate the practicability and scalability of

our approach with numerical experiments on visual data.

In Chapter 4, we study a particular tensor decomposition with a wide range of applications in signal

processing, machine learning and statistics. In specific, many idealized problems in higher-order statistical

estimation [McC87], independent component analysis [Com94, CJ10] and parameter estimation for latent

variable models [AGH+14] can be reduced to the problem of finding the symmetric canonical decomposition
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of an underlying symmetric and orthogonally decomposable (SOD) tensor. Drawing inspiration from the matrix

case, the successive rank-one approximations (SROA) scheme has been proposed and shown to yield this tensor

decomposition exactly, and a plethora of numerical methods have thus been developed for the tensor rank-one

approximation problem. In practice, however, the inevitable errors—e.g., from estimation, computation, and

modeling, necessitate that the input tensor can only be assumed to be a nearly SOD tensor—i.e., a symmetric

tensor slightly perturbed from the underlying SOD tensor. Chapter 4 proves that even in the presence of

perturbation, SROA can still robustly recover the symmetric canonical decomposition of the underlying tensor.

It is shown that when the perturbation error is small enough, the approximation errors do not accumulate

with the iteration number. Numerical results are presented to support the theoretical findings.

1.2 Notations and Preliminaries

The notations, used throughout the thesis, are largely borrowed from [Kie00, Lim05, KB09].

The order of a tensor is referred to as the number of dimensions, also known as modes or ways. Some

trivial examples of tensors are scalars, vectors and matrices. Scalars (tensors of order zero) are denoted by

lowercase letters, e.g., x. Vectors (tensors of order one) are denoted by boldface lowercase letters, e.g., x.

Matrices (tensor of order two) are denoted by boldface capital letters, e.g.,X . High-order tensors (order three

or higher) are denoted by boldface Euler script letters, e.g., X .

For a tensor X of orderK, its (i1, i2, . . . , iK)-th entry is denoted as Xi1,i2,...,iK . The i-th entry of a vector

x is denoted as xi, the (i, j)-th entry of a matrixX is denoted as Xij .

A fiber of a tensor X is a column vector defined by fixing each index of X except one. The i-th column of

a matrixX , denoted byX:i, is a mode-1 fiber, and the i-th row ofX , denoted byXi:, is a mode-2 fiber, where

a colon adapted from many numerical computing languages, e.g. Matlab, is commonly used to indicate all

elements of one particular mode. Third-order tensors have column, row and tube fibers, respectively, denoted

as X:jk, Xi:k and Xij:, which by convention are all considered as column vectors when extracted from X .

A slice of a tensor X is a two-dimensional section defined by fixing all indices except two ones. A

third-order tensor has horizontal, lateral and frontal slices, respectively, denoted as Xi::, X:j: and X::k.

The set ofK-way I1×I2×· · ·×IK tensor, RI1×I2×···×IK , in short, is denoted by
⊗K

j=1 RIj . For any tensors

X , Y ∈
⊗K

j=1 RIj , their inner product is defined as the sum of all the element-wise products, i.e.

〈X ,Y〉 :=
I1∑
i1=1

I2∑
i2=1
· · ·

IK∑
iK=1

Xi1i2···iKYi1i2···iK . (1.2.1)
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Tensor as multilinear map. In addition to being considered as a multi-way array, a tensor X ∈
⊗K

j=1 RIj

can also be interpreted as a multilinear map in the following sense: for any matrices Vi ∈ RIi×mi for i ∈ [K],

we interpret X (V1,V2, . . . ,VK) as a tensor in Rm1×m2×···×mp whose (i1, i2, . . . , iK)-th entry is(
X (V1,V2, . . . ,Vp)

)
i1,i2,...,iK

:=
∑
ji∈[I1]

∑
j2∈[I2]

· · ·
∑

jK∈[IK ]

Xj1,j2,...,jp(V1)j1i1(V2)j2i2 · · · (VK)jKiK . (1.2.2)

This multilinear interpretation is a powerful tool to conceptually simplify and visualize the notion of tensor,

and will be frequently exploited throughout the thesis.

Example 1.1 To better understand this interpretation, we provide several examples below.

. K = 2 (namely, X is a matrix of size n1 by n2):

X (V1,V2) = V >1 XV2 ∈ Rm1×m2 . (1.2.3)

. Each entry of the tensor can also be expressed as the scalar returned by applying the multilinear map

defined by the tensor on standard basis vectors correspondingly. In specific, for any i1 ∈ [I1], i2 ∈

[I2], . . . , and iK ∈ [IK ],

X (ei1 , ei2 , . . . , eiK ) = Xi1,i2,...,iK , (1.2.4)

where ei denotes the i-th standard basis.

. i1 = i2 = · · · = iK = n and Vi = x ∈ Rn for all i ∈ [K]:

Xx⊗K := X (x,x, . . . ,x︸ ︷︷ ︸
K times

) =
∑

i1,i2,...,iK∈[n]

Xi1,i2,...,iK xi1xi2 · · ·xiK , (1.2.5)

which defines a homogeneous polynomial of degreeK.

Tensor norms. Two tensor norms will be frequently visited in this thesis. For a tensor X ∈
⊗K

j=1 RIj , its

Frobenius norm is defined as

‖X‖F :=
√
〈X ,X 〉 =

√√√√ I1∑
i1=1

I2∑
i2=1
· · ·

IK∑
iK=1

X 2
i1i2···iK ; (1.2.6)

and its operator norm is defined as

‖X‖ := max
‖xi‖=1

X (x1,x2, . . . ,xK). (1.2.7)
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Matricization. Matricization, also known as unfolding or flattening, is the procedure of rearranging the

elements from a tensor into a matrix. This can be a useful trick to simplify the problem from the tensor

domain to the matrix one, which might be well studied in the literature. Admittedly, there are tons of ways

to put the elements of a multi-way array into a matrix. We are particularly interested in matricizations that

can preserve certain algebraic structures of the original tensor. Several ones most relevant to the thesis are

described below.

The mode-k matricization of a tensor X ∈
⊗

i∈[K] RIi yields a matrix denoted by X (k) ∈ RIk×Πi6=kIi , whose

columns are the mode-k fibers arranged via certain lexicographical order of the indices except for the k-th

index. More rigorously, the (i1, i2, . . . , iK)-th element of X is mapped to the (in, j)-th element in X (k), where

j = 1 +
∑

k 6=l∈[K]

(il − 1
)
·

∏
n 6=l′∈[l−1]

Il′

 . (1.2.8)

There are also multiple ways we can stack the tensor into a vector. In this thesis, we specifically define

vec (X ) := vec
(
X (1)

)
. (1.2.9)

Example 1.2 Consider a 3-way tensor X ∈ R3×4×2, whose frontal slices are

X ::1 =


1 4 7 10

2 5 8 11

3 6 9 12

 and X ::2 =


13 16 19 22

14 17 20 23

15 18 21 24

 . (1.2.10)

Then we can matricize X along the first, the second and the third modes respectively, which yields

X (1) =


1 4 7 10 13 16 19 22

2 5 8 11 14 17 20 23

3 6 9 12 15 18 21 24

 , (1.2.11)

X (2) =



1 2 3 13 14 15

4 5 6 16 17 18

7 8 9 19 20 21

10 11 12 22 23 24


, (1.2.12)
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X (3) =

 1 2 3 4 · · · 10 11 12

13 14 15 16 · · · 22 23 24

 . (1.2.13)

Vectorization will yield a column vector in R24:

vec(X ) = vec(X (1)) =
[
1 2 3 4 · · · 21 22 23 24

]>
. (1.2.14)

The mode-k matricization can be considered as we partition the set of modes [K] = {1, 2, · · · ,K} into

{k} and [K]/ {k}. Once thinking about mode-k matricization in this direction, it is natural to enrich the class

of matricization by considering more general partitions over the set [K].

Let the ordered setsR = {r1, r2, . . . , rL} and C = {c1, c2, . . . , cM} be a partitioning of [K] = {1, 2, . . . ,K}.

The matricized tensor induced by this partition {R, C} is a matrix denoted by X (R×C) ∈ RJ×K where

J =
∏
k∈R

Ik, K =
∏
k∈C

Ik, and

the (i1, i2, . . . , iK)-th element of X is mapped to the (i, j)-th entry in this mode-(R, C) matricization XR×C

with

i = 1 +
∑
l∈[L]

(irL − 1
)
·
∏

l′∈[l−1]

Irl′

 , (1.2.15)

j = 1 +
∑

m∈[M ]

(irm − 1
)
·

∏
m′∈[m−1]

Irm′

 . (1.2.16)

Remark 1.3 For the mode-k matricizationX(k), we can regard it as the matricized tensor induced byR = {k}

and C = {1, 2, . . . , k − 1, k + 1, . . . ,K}, i.e.

X (k) = X ({k}×{1,2,...,k−1,k+1,...,K}). (1.2.17)

For the vectorization vec(X ), conventionally, we can define it as the matricized tensor induced byR = [K] and

C = ∅, i.e. vec(X ) = X ([K]×∅).

This more general treatment of matricization is first formally introduced by Kolda [Kol06]. The concept

might not be much useful and appreciated for tensors of order three. In contrast, it will provide substantially

more freedom in the choice of tensor flattening once the fourth dimension and beyond come on the stage,

and is frequently revisited recently in different contexts including the low-rank tensor recovery [MHWG14,
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JMZ15], and the semidefinite programming approach to relax the best tensor rank-one approximation

[JMZ14, NW14, HJLW16].

Example 1.4 Consider a four-way tensor X ∈ R2×2×2×2 with elements specified as

X ::11 =

1 3

2 4

 , X ::21 =

5 7

6 8

 , X ::12 =

 9 11

10 12

 , X ::22 =

13 15

14 16

 . (1.2.18)

All the mode-k unfoldings will yield a matrix in R2×8, e.g.,

X (1) =

1 3 5 7 9 11 13 15

2 4 6 8 10 12 14 16

 . (1.2.19)

However, the matricized tensor induced byR = {1, 2} and C = {3, 4} yields more balanced square matrix:

X ({1,2}×{3,4}) =



1 5 9 13

2 6 10 14

3 7 11 15

4 8 12 16


∈ R4×4. (1.2.20)

A sharp observation may lead to the following property that

X ({1,2}×{3,4}) = reshape(X (1), 4, 4).

It turns out the above equality holds more universally in tensor unfolding.

Matlab implementations for matricization. The folding and unfolding procedures discussed above can

be implemented in surprisingly simple Matlab instructions. The code below is adapted from Kolda [Kol06].

1 size = [2,2,2,2];

2 X = reshape(1:16, size); % the four−way tensor in Example 1.4

3

4 % mode−1 matricization

5 R = [1]; C = [2,3,4];

6 J = prod(size(R)); K = prod(size(C));

7 Y = reshape(permute(X,[R,C]), J,K); % mode−1 unfolding

8 Z = ipermute(reshape(Y,[size(R), size(C)]), [R C]); % convert back to the original tensor
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10 % mode−{R,C} matricization

11 R = [1,2]; C = [3,4];

12 J = prod(size(R)); K = prod(size(C));

13 Y = reshape(permute(X,[R,C]), J,K); % matricized tensor induced by R and C

14 Z = ipermute(reshape(Y,[size(R), size(C)]), [R C]); % convert back to the original tensor

Tensor-Matrix Multiplication. Themode-k matrix product between a tensor X ∈ RI1×I2×···×IK and a matrix

U ∈ RJ×Ik , denoted by X ×kU , returns a new tensor of size I1× I2×· · ·× Ik−1×J × Ik+1× Ik+2×· · ·× IN ,

with elements specified as

(X ×k U)i1···ik−1jik+1···iK :=
∑
in∈Ik

Xi1i2···iKUjin . (1.2.21)

Two equivalent definitions, using mulilinear map and mode-k matricization, are also available and may

provide more insights into this tensor-matrix multiplication.

First, it can be verified by checking definition that

X ×k U = X
(
I, · · · , I︸ ︷︷ ︸
k−1 times

, U>, I, · · · , I︸ ︷︷ ︸
n−k times

)
. (1.2.22)

Moreover, the k-mode matrix product can be considered as each mode-k fiber is multiplied by the matrix

U , which can be precisely expressed as

Y = X ×k U ⇐⇒ Y(k) = UX (k). (1.2.23)

Example 1.5 Consider the product along the first mode between the tensor X in Example (1.2) and

U =

1 3 5

2 4 6

 . (1.2.24)

Then the frontal slices of Y = X ×1 U ∈ R2×4×2 are

Y ::1 = UX ::1 =

22 49 76 103

28 64 100 136

 and Y ::2 = UX ::2 =

130 157 184 211

172 208 244 280

 . (1.2.25)

For a series of tensor-matrix multiplication, the following property is most useful and relevant with our
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discussions in later chapters:

X ×m A×n B =


X ×n B ×m A if m 6= n

X ×n (BA) if m = n.

(1.2.26)

Literally, ×k is commutative when they are applied on different modes. But when they are applied on the

same mode, ×k is no longer commutative as matrix multiplication is not commutative.

Rank-one tensors. The vector outer product is denoted by the symbol ⊗. The outer product of K vectors,

{vi}i∈[K] ∈×K

k=1 R
Ik is defined as

(v1 ⊗ v2 ⊗ · · · ⊗ vK)i1i2···iK := (v1)i1(v2)i2 · · · (vK)iK ∀ ik ∈ [Ik] and k ∈ [K]. (1.2.27)

This means that each element of the tensor is the product of vector elements at the corresponding entries. The

definition (1.2.27) also extrapolates the concept of rank-one matrix to rank-one tensor. AK-way tensor X ∈

RI1×I2×···×IN is rank one if there exists {vi}i∈[K] ∈×K

k=1 R
Ik such thatX can be expressed as v1⊗v2⊗· · ·⊗vK .

Rank-one tensors play fundamental roles in tensor decomposition where different ways to express the tensor

into the sum of rank-one tensors are pursued.

Symmetric tensors. A tensor is called cubical if it has the same size along eachmode. The set of real order-K

cubical tensors with dimension n along each mode is denoted by
⊗K Rn. A cubical tensor X ∈

⊗K Rn is

called symmetric if its entries are invariant under any permutation of their indices: for any i1, i2, . . . , iK ∈ [n] :

Xi1i2...iK = Xiπ(1)iπ(2)...iπ(K) (1.2.28)

for any permutation mapping π on [K]. This definition naturally extends the concept of symmetry from

matrices to tensors of higher order, and will be the mathematical object of our main focus in Chapter 4.

A three-way tensor X ∈ Rn×n×n, for example, is symmetric if

X ijk = X ikj = X jik = X jki = X kij = X kji, ∀ i, j, k ∈ [n]. (1.2.29)

A tensor X ∈
⊗K Rn is diagonal if X i1i2···iK is zero unless i1 = i2 = · · · = iK . Literally speaking, this

describes a tensor with nonzero elements possible only on the superdiagonal entries, which is a higher order

analogue of diagonal matrices. Clearly, a diagonal tensor is symmetric.
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Then rank-one tensor

v⊗K := v ⊗ v ⊗ · · · ⊗ v︸ ︷︷ ︸
K times

∈
K⊗

Rn

is another commonly encountered example of symmetric tensors. The converse is also true that a symmetric

tensor X of rank-one can always be written as X = v⊗K .

When the tensor X ∈
⊗K Rn is symmetric, its operator norm originally defined as

‖X‖ = max
‖xi‖=1

X (x1,x2, . . . ,xK) (1.2.30)

can be simplified by restricting x1 = x2 = · · · = xK without loss of generality (see, e.g., [CHLZ12, ZLQ12]),

namely

‖X‖ = max
‖x‖=1

∣∣Xx⊗K∣∣ = max
x2

1+x2
2+···+x2

n=1

∣∣∣∣∣∣
∑
i1∈[n]

∑
i2∈[n]

· · ·
∑
iK∈[n]

Xi1i2···iKxi1xi2 · · ·xiK

∣∣∣∣∣∣ . (1.2.31)

The definition of symmetric tensors also immediately yield the following property:

vec
(

X
(
I,x,x, · · · ,x,x︸ ︷︷ ︸

K−1 times

))
= vec

(
X
(
x, I,x, · · · ,x,x

))
= · · · = vec

(
X
(
x,x,x, · · · ,x, I

))
.

In order to refer to the above quantity more conveniently, we define

Xx⊗K−1 := X (x, . . . ,x, I) ∈ Rn, (1.2.32)(
Xx⊗K−1)

i
=

∑
i1i2...iK−1∈[n]

Xi1i2...iK−1i xi1xi2 · · ·xiK−1 . (1.2.33)

It can be also verified that the vector Xx⊗K−1 is aligned with the gradient ∇x
(

Xx⊗K
)
as

∇x
(

Xx⊗K
)

= K ·Xx⊗K−1. (1.2.34)

Tensor decompositions and ranks. The CANDECOMP/PARAFAC (CP) decomposition [CC70, Har70] fac-

torizes a tensor into a sum of rank-one tensor components. Mathematically, the CP decomposition of

X ∈ RI1×I2×···×IK is given by

X = Jλ;A(1),A(2), . . . ,A(K)K :=
∑
r∈[R]

λr · a(1)
r ⊗ a(2)

r ⊗ · · · ⊗ a(K)
r . (1.2.35)
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Here λ = [λ1, λ2, . . . , λR]> ∈ RR+,
∥∥∥a(k)

r

∥∥∥ = 1 for all (r, k) ∈ [R] × [K] and A(k) = [a(k)
1 ,a

(k)
2 , · · · ,a(k)

R ] ∈

RIk×R for all k ∈ [K]. With the CP decomposition provided in (1.2.35), the tensor element Xi1,i2,...,iK can be

concisely expressed as

Xi1,i2,...,iK =
∑
r∈[R]

λr
∏
k∈[K]

a
(k)
r,ik

. (1.2.36)

The CP-rank of the tensor X is aligned with concept of matrix ranks. Recall that the rank of a matrix X ∈m×n

is defined as smallest number such thatX can be written as the sum of rank-one matrices. Similarly, the

CP-rank of the tensor X is the smallest number R such that (1.2.35) holds.

The Tucker decomposition [Tuc66] searches for the following pattern:

X = JG;A(1),A(2), . . . ,A(K)K (1.2.37)

= G ×1 A
(1) ×2 A

(1) ×3 · · · ×K A(K) (1.2.38)

=
∑

r1∈[R1]

· · ·
∑

rK∈[RK ]

Gr1r2···rKa
(1)
r1 ⊗ a

(2)
r2 ⊗ · · · ⊗ a

(K)
rK (1.2.39)

Here, G ∈ Rr1×r2×···×rK is called core tensor and the orthogonal matrixA(k) = [a(k)
1 ,a

(k)
2 , · · · ,a(k)

r ] ∈ RIk×r

is called factor matrix. The Tucker-rank of X , denoted by ranktc (X ), is aK-tuple, describing the rank of each

mode-k unfolding matrix, i.e.

ranktc (X ) :=
(
rank(X (1)), rank(X (2)), . . . , rank(X (K))

)
. (1.2.40)

There are also a number of other tensor decompositions [CC70, Har72, CPK80, HL96] as variants of the

above CP and Tucker ones by imposing more constraints over the factors. These decompositions are not that

relevant with the thesis and thus will not be discussed in details.
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Chapter 2

Low-Rank Tensor Recovery

2.1 Introduction

Tensors arise naturally in problems where the goal is to estimate a multi-dimensional object whose entries

are indexed by several continuous or discrete variables. For example, a video is indexed by two spatial

variables and one temporal variable; a hyperspectral datacube is indexed by two spatial variables and a

frequency/wavelength variable. While tensors often reside in extremely high-dimensional data spaces,

in many applications, the tensor of interest is low-rank, or approximately so [KB09], and hence has much

lower-dimensional structure. The general problem of estimating a low-rank tensor has applications in many

different areas, both theoretical and applied: e.g., estimating latent variable graphical models [AGH+14],

classifying audio [MSS06], mining text [CC12], processing radar signals [NS10], multilinearmultitask learning

[RPABBP13] , to name a few.

In this chapter, we consider the problem of recovering aK-way tensor X ∈ Rn1×n2×···×nK from linear

measurements z = G[X ] ∈ Rm. Typically, m � N =
∏K
i=1 ni, and so the problem of recovering X from

z is ill-posed. In the past few years, tremendous progress has been made in understanding how to exploit

structural assumptions such as sparsity for vectors [CRT06] or low-rankness for matrices [RFP10] to develop

computationally tractable methods for tackling ill-posed inverse problems. In many situations, convex

optimization can estimate a structured object from near-minimal sets of observations [NRWY12, CRPW12,

ALMT14]. For example, an n× nmatrix of rank r can, with high probability, be exactly recovered from Cnr

generic linear measurements, by minimizing the nuclear norm ‖X‖∗ =
∑
i σi(X). Since a rank r matrix has

r(2n− r) degrees of freedom, this is nearly optimal.
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In contrast, the correct generalization of these results to low-rank tensors is not obvious. The numerical

algebra of tensors is fraught with hardness results [HL13]. For example, even computing a tensor’s (CP) rank

[CC70, Har70],

rankcp(X ) = min
{
r | X =

∑r

i=1
a

(i)
1 ⊗ · · · ⊗ a

(i)
K

}
, (2.1.1)

is NP-hard in general. The nuclear norm of a tensor is also intractable, and so we cannot simply follow the

formula that has worked for vectors and matrices.

With an eye towards numerical computation, many researchers have studied how to recover tensors of

small Tucker rank [Tuc66]. The Tucker rank, also known as n-rank, of aK-way tensor X is aK-dimensional

vector whose i-th entry is the (matrix) rank of the mode-i unfolding X (i) of X :

ranktc(X ) =
(

rank(X (1)), · · · , rank(X (K))
)
. (2.1.2)

Here, the matrix X (i) ∈ Rni×
∏

j 6=i
nj is obtained by concatenating all the mode-i fibers of X as column

vectors. Each mode-i fiber is an ni-dimensional vector obtained by fixing every index of X but the i-th one.

The Tucker rank of X can be computed efficiently using the (matrix) singular value decomposition. For

this reason, we focus on tensors of low Tucker rank. However, we will see that our proposed regularization

strategy also automatically adapts to recover tensors of low CP rank, with reduction in the required number

of measurements.

The definition (2.1.2) suggests a natural, tractable convex approach to recovering low-rank tensors: seek

theX thatminimizes
∑
i λi
∥∥X (i)

∥∥
∗ out of allX satisfying G[X ] = z. Wewill refer to this as the sum-of-nuclear-

norms (SNN) model. Originally proposed in [LMWY09], this approach has been widely studied [GRY11,

SDS10, STDLS13, TSHK11] and applied to various datasets in imaging [SHKM14, KS13, LL10, LYZY10].

Perhaps surprisingly, we show that this natural approach can be substantially suboptimal. Moreover, we

will suggest a simple new convex regularizer with provably better performance. Suppose n1 = · · · = nK = n,

and ranktc(X ) � (r, r, . . . , r). Let Tr denote the set of all such tensors,1 namely

Tr :=
{

X ∈ Rn×n×···×n | ranktc(X ) � (r, r, . . . , r)
}
. (2.1.3)

We will consider the problem of estimating an element X of Tr from Gaussian measurements G (i.e., zi =

〈Gi,X 〉, where Gi has i.i.d. standard normal entries). To describe a generic tensor in Tr, we need at most

rK + rnK parameters. In Section 2.2, we show that a certain nonconvex strategy can recover all X ∈ Tr

1To keep the presentation in this chapter compact, we state most of our results regarding tensors in Tr , although it is not difficult to
modify them for general tensors.
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exactly whenm > (2r)K + 2nrK. In contrast, the best known theoretical guarantee for SNN minimization,

due to Tomioka et al. [TSHK11], shows that X ∈ Tr can be recovered (or accurately estimated) fromGaussian

measurements G, providedm = Ω(rnK−1). In Section 2.3, we prove that this number of measurements is

also necessary: accurate recovery is unlikely unlessm = Ω(rnK−1). Thus, there is a substantial gap between

an ideal nonconvex approach and the best known tractable surrogate. In Section 2.4, we introduce a simple

alternative, which we call the square reshaping model, which reduces the required number of measurements

to O(rbK/2cndK/2e). ForK > 3, we obtain an improvement of a multiplicative factor polynomial in n.

Our theoretical results pertain to Gaussian operators G. The motivation for studying Gaussian mea-

surements is threefold. First, Gaussian measurements may be of interest for compressed sensing recovery

[Don06], either directly as a measurement strategy, or indirectly due to universality phenomena [BLM12].

Moreover, the available theoretical tools for Gaussian measurements are very sharp, allowing us to rigorously

investigate the efficacy of various regularization schemes, and prove both upper and lower bounds on the

number of observations required. Furthermore, the results with respect to Gaussian measurements have

direct implications to the minimax risk for denoising [OH16, ALMT14]. In Section 2.4, we demonstrate that

our qualitative conclusions carry over to more realistic measurement models, such as random subsampling

[LMWY09]. We expect our results to be of great interest for a wide range of problems in tensor completion

[LMWY09], robust tensor recovery/decomposition [LYZY10, GQ14] and sensing.

Our technical approach draws on, and enriches, the literature on general structured model recovery. The

surprisingly poor behavior of the SNNmodel is an example of a phenomenon first discovered by Oymak et al.

[OJF+12]: for recovering objects with multiple structures, a combination of structure-inducing norms is often

not significantly more powerful than the best individual structure-inducing norm. Our lower bound for the

SNNmodel follows from a general result of this nature, which we prove using the novel geometric framework

of [ALMT14]. Compared to [OJF+12], our result pertains to a more general family of regularizers, and gives

sharper constants. In addition, for low-rank tensor recovery problem, we demonstrate the possibility to

reduce the number of generic measurements through a new convex regularizer that exploits several sparse

structures jointly.

2.2 Bounds for Non-Convex Recovery

In this section, we introduce a non-convex model for tensor recovery, and show that it recovers low-rank

tensors from near-minimal numbers of measurements. While our nonconvex formulation is computationally
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intractable, it gives a baseline for evaluating tractable (convex) approaches.

For a tensor of low Tucker rank, the matrix unfolding along each mode is low-rank. Suppose we observe

G[X 0] ∈ Rm. We would like to attempt to recover X 0 by minimizing some combination of the ranks of the

unfoldings, over all tensors X that are consistent with our observations. This suggests a vector optimization

problem [BV04, Chap. 4.7]:

minimize(w.r.t. RK+ ) ranktc(X ) subject to G[X ] = G[X 0]. (2.2.1)

In vector optimization, a feasible point is called Pareto optimal if no other feasible point dominates it in every

criterion. In a similar vein, we say that (2.2.1) recovers X 0 if there does not exist any other tensor X that is

consistent with the observations and has no larger rank along each mode:

Definition 2.1 We call X 0 recoverable by (2.2.1) if the set

{X ′ 6= X 0 | G[X ′] = G[X 0], ranktc(X ′) �RK+ ranktc(X 0)} = ∅.

This is equivalent to saying that X 0 is the unique optimal solution to the scalar optimization:

minimizeX max
i

{ rank(X (i))
rank(X 0(i))

}
subject to G[X ] = G[X 0]. (2.2.2)

The problems (2.2.1)-(2.2.2) are not tractable. However, they do serve as a baseline for understanding how

many generic measurements are required to recover X 0 from an information theoretic perspective.

The recovery performance of program (2.2.1) depends heavily on the properties of G. Suppose (2.2.1) fails

to recover X 0 ∈ Tr. Then there exists another X ′ ∈ Tr such that G[X ′] = G[X 0]. So, to guarantee that (2.2.1)

recovers any X 0 ∈ Tr, a necessary and sufficient condition is that G is injective on Tr, which can be implied

by the condition null(G) ∩ T2r = {0}. Consequently, if null(G) ∩ T2r = {0}, (2.2.1) will recover any X 0 ∈ Tr.

We expect this to occur when the number of measurements significantly exceeds the number of intrinsic

degrees of freedom of a generic element of Tr, which is O(rK + nrK). The following theorem shows that

whenm is approximately twice this number, with probability one, G is injective on Tr:

Theorem 2.2 Wheneverm ≥ (2r)K + 2nrK + 1, with probability one, null(G)∩T2r = {0}, and hence (2.2.1)

recovers every X 0 ∈ Tr.

The proof of Theorem 2.2 follows from a covering argument, which we establish in several steps. Let

S2r = {D | D ∈ T2r, ‖D‖F = 1} . (2.2.3)
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The following lemma shows that the required number of measurements can be bounded in terms of the

exponent of the covering number for S2r, which can be considered as a proxy for dimensionality:

Lemma 2.3 Suppose that the covering number for S2r with respect to Frobenius norm, satisfies

N(S2r, ‖·‖F , ε) ≤ (β/ε)d , (2.2.4)

for some integer d and scalarβ that does not depend on ε. Then ifm ≥ d+1, with probability one null (G)∩S2r = ∅,

which implies that null (G) ∩ T2r = {0}.

It just remains to find the covering number of S2r. We use the following lemma, which uses the triangle

inequality to control the effect of perturbations in the factors of the Tucker decomposition

[[C;U1,U2, · · · ,UK ]] := C ×1 U1 ×2 U2 ×3 · · · ×K UK , (2.2.5)

where the mode-i (matrix) product of tensor A with matrixB of compatible size, denoted as A×i B, outputs

a tensor C such that C(i) = BA(i).

Lemma 2.4 Let C,C′ ∈ Rr1,...,rK , andU1,U
′
1 ∈ Rn1×r1 , . . . ,UK ,U

′
K ∈ RnK×rK withU∗i Ui = U ′i

∗
U ′i = I ,

and ‖C‖F =
∥∥C′
∥∥
F

= 1. Then

∥∥[[C;U1, . . . ,UK ]]− [[C′;U ′1, . . . ,U ′K ]]
∥∥
F
≤
∥∥C − C′

∥∥
F

+
K∑
i=1
‖Ui −U ′i‖. (2.2.6)

Using this result, we construct an ε-net for S2r by building ε/(K + 1)-nets for each of theK + 1 factors C

and {Ui}. The total size of the resulting ε net is thus bounded by the following lemma:

Lemma 2.5 N(S2r, ‖·‖F , ε) ≤ (3(K + 1)/ε)(2r)K+2nrK

With these observations in hand, Theorem 2.2 follows immediately.

2.3 Convexification: Sum of Nuclear Norms?

Since the nonconvex problem (2.2.1) is NP-hard for general G, it is tempting to seek a convex surrogate. In

matrix recovery problems, the nuclear norm is often an excellent convex surrogate for the rank [Faz02, RFP10,

Gro11]. It seems natural, then, to replace the ranks in (2.2.1) with nuclear norms. Due to convexity, the
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resulting vector optimization problem can be solved by the following scalar optimization:

min
X

K∑
i=1

λi‖X (i)‖∗ s.t. G[X ] = G[X 0], (2.3.1)

where λ ≥ 0. The optimization (2.3.1) was first introduced by [LMWY09] and has been used successfully

in applications in imaging [SHKM14, KS13, LL10, EAHK13, LYZY10]. Similar convex relaxations have been

considered in a number of theoretical and algorithmic works [GRY11, SDS10, TSHK11, STDLS13]. It is not too

surprising, then, that (2.3.1) provably recovers the underlying tensor X 0, when the number of measurements

m is sufficiently large. The following is a (simplified) corollary of results of Tomioka et. al. [TSHK11] 2:

Corollary 2.6 (of [TSHK11], Theorem 3) Suppose that X 0 has Tucker rank (r, . . . , r), and m ≥ CrnK−1,

where C is a constant. Then with high probability, X 0 is the optimal solution to (2.3.1), with each λi = 1.

This result shows that there is a range in which (2.3.1) succeeds: loosely, when we undersample by at

most a factor ofm/N ∼ r/n. However, the number of observationsm ∼ rnK−1 is significantly larger than

the number of degrees of freedom in X 0, which is on the order of rK + nrK. Is it possible to prove a better

bound for this model? Unfortunately, we show that in general O(rnK−1) measurements are also necessary for

reliable recovery using (2.3.1):

Theorem 2.7 Let X 0 ∈ Tr be nonzero. Set κ = mini
{∥∥(X 0)(i)

∥∥2
∗ / ‖X 0‖2F

}
× nK−1. Then if the number of

measurementsm ≤ κ−2, X 0 is not the unique solution to (2.3.1), with probability at least 1−4 exp(− (κ−m−2)2

16(κ−2) ).

Moreover, there exists X 0 ∈ Tr for which κ = rnK−1.

This implies that Corollary 2.6 (as well as some other results of [TSHK11]) is essentially tight. Unfortunately,

it has negative implications for the efficacy of the SNN model in (2.3.1): although a generic element X 0 of Tr

can be described using at most rK +nrK real numbers, we require Ω(rnK−1) observations to recover it using

(2.3.1). Theorem 2.7 is a direct consequence of a much more general principle underlying multi-structured

recovery, which is elaborated next. After that, in Section 2.4, we show that for low-rank tensor recovery,

better convexifying schemes are available.

2.3.1 General lower bound for multiple structures

The poor behavior of (2.3.1) is an instance of a much more general phenomenon, first discovered by Oymak

et. al. [OJF+12]. Our target tensor X 0 has multiple low-dimensional structures simultaneously: it is low-rank

2Tomioka et. al. also show noise stability whenm = Ω(rnK−1) and give extensions to the case where the ranktc (X 0) = (r1, . . . , rK)
differs from mode to mode.
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along each of the K modes. In practical applications, many other such simultaneously structured objects

could also be of interest. For sparse phase retrieval problems in signal processing [OJF+12], the task can

be rephrased to infer a block sparse matrix, which implies both sparse and low-rank structures. In robust

metric learning [LML13], the goal is to estimate a matrix that is column sparse and low rank concurrently. In

computer vision, many signals of interest are both low-rank and sparse in an appropriate basis [LRZM12]. To

recover such simultaneously structured objects, it is tempting to build a convex relaxation by combining the

convex relaxations for each of the individual structures. In the tensor case, this yields (2.3.1). Surprisingly,

this combination is often not significantly more powerful than the best single regularizer [OJF+12]. We obtain

Theorem 2.7 as a consquence of a new, general result of this nature, using a geometric framework introduced

in [ALMT14]. Compared to [OJF+12], this approach has a clearer geometric intuition, covers a more general

class of regularizers3 and yields sharper bounds.

Setup. In general, we are interested in recovering a signal x0 with several low-dimensional structures

simultaneously, based on generic measurements with respect to x0. Here the target signal x0 could lie in

any finite dimensional Hilbert space (e.g. a vector in Rn, a matrix in Rn1×n2 , a tensor in Rn1×n2×···×nK ), but

without loss of generality, we will consider x0 ∈ Rn. Let ‖·‖(i) be the penalty norm corresponding to the i-th

structure (e.g. `1, nuclear norm). Consider the following sum-of-norms (SoN)model,

min
x∈Rn

f(x) := λ1 ‖x‖(1) + λ2 ‖x‖(2) + · · ·+ λK ‖x‖(K) subject to G[x] = G[x0], (2.3.2)

where G[·] is a Gaussian measurement operator, and λ > 0. In the subsequent analysis, we will evaluate the

performance of (2.3.2) in terms of recovering x0, where the only assumption we require is:

Assumption 2.8 The target signal x0 is nonzero.

Optimality condition. Isx0 the unique optimal solution to (2.3.2)? Recall that the descent cone of a function

f at a point x0 is defined as

C(f,x0) := cone {v | f(x0 + v) ≤ f(x0)} , (2.3.3)

which, in short, will be denoted as C. Then x0 is the unique optimal solution if and only if

null(G) ∩ C = {0} . (2.3.4)

Conversely, recovery fails if null(G) has nontrivial intersection with C.

3[OJF+12] studies decomposable norms, with some additional assumptions. Our result holds for arbitrary norms.
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Since G is a Gaussian operator, null(G) is a uniformly oriented random subspace of dimension (n−m).

This random subspace is more likely to have nontrivial intersection with C if C is large, in a sense we will

make precise.

Denote the polar cone of C as C◦, i.e.

C◦ :=
{
u ∈ Rn | sup

x∈C
〈u,x〉 ≤ 0

}
. (2.3.5)

Because polarity reverses inclusion, we expect that C will be large whenever C◦ is small, which leads us to

control the size of C◦.

cone(∂ ‖x0‖(1))

x0

θ1

C(‖·‖(1) ,x0)

cone(∂ ‖x0‖(2))

x0

θ2

C(‖·‖(2) ,x0)

Figure 2.1: Cones and their polars for convex regularizers ‖·‖(1) and ‖·‖(2) respectively. Suppose our x0 has two
sparse structures simultaneously. Regularizer ‖·‖(1) has a larger conic hull of subdifferential at x0, i.e. cone(∂ ‖x0‖(1)),
which results in a smaller descent cone. Thus minimizing ‖·‖(1) is more likely to recover x0 than minimizing ‖·‖(2).
Consider convex regularizer f(x) = ‖x0‖(1) + ‖x0‖(2). Suppose as depicted, θ1 ≥ θ2. Then both cone(∂ ‖x0‖(1)) and
cone(∂ ‖x0‖(2)) are in the circular cone circ(x0, θ1). Thus we have: cone

(
∂f(x0)

)
= cone(∂ ‖x0‖(1) + ∂ ‖x0‖(2)) ⊆

conv
{
circ(x0, θ1), circ(x0, θ2)

}
= circ(x0, θ1).

As f(x0) 6= 0 = minx∈Rn f(x), it can be verified that [Roc97, Thm. 23.7]

C◦ = cone (∂f (x0)) = cone

∑
i∈[K]

λi∂fi(x0)

 , (2.3.6)

where the sum is made in Minkowski sense.

In order to control the size of Co based on (2.3.6), we will next establish some basic geometric properties

for each single norm.
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Properties for each single norm. Consider a general single norm ‖·‖� and denote its dual norm (a.k.a.

polar function) as ‖·‖◦�, i.e. for any u ∈ Rn,

‖u‖◦� := sup
‖x‖�≤1

〈x,u〉 . (2.3.7)

Define L := supx6=0 ‖x‖� / ‖x‖, which implies that ‖·‖� is L-Lipschitz: ‖x‖� ≤ L ‖x‖ for all x. Then we also

have ‖u‖ ≤ L ‖u‖◦� for all u as

‖u‖◦� = sup
‖x‖�≤1

〈x,u〉 ≥ sup
L‖x‖≤1

〈x,u〉 = sup
‖x‖≤1/L

〈x,u〉 = 1
L
‖u‖ . (2.3.8)

In addition, noting that

∂ ‖·‖� (x) =
{
u | 〈u,x〉 = ‖x‖� , ‖u‖

◦
� ≤ 1

}
, (2.3.9)

for any u ∈ ∂ ‖·‖� (x0), we have

cos (∠(u,x0)) := 〈u,x0〉
‖u‖ ‖x0‖

≥
‖x0‖�

L ‖u‖◦� ‖x0‖
≥
‖x0‖�
L ‖x0‖

. (2.3.10)

A more geometric way of summarizing this fact is as follows: for x 6= 0, let

circ(x, θ) = {z | ∠(z,x) ≤ θ} , (2.3.11)

denote the circular cone with axis x and angle θ. Then with θ := cos−1(‖x0‖� /L ‖x0‖),

∂ ‖·‖� (x0) ⊆ circ (x0, θ) . (2.3.12)

Table 2.1 describes the angle parameters θ for various structure inducing norms. Notice that in general, more

complicated x0 leads to smaller angles θ. For example, if x0 is a k-sparse vectors with entries all of the same

magnitude, and ‖·‖� the `1 norm, cos2 θ = k/n. As x0 becomes more dense, ∂ ‖·‖� is contained in smaller

and smaller circular cones.

Polar cone⊆ circular cone. For f =
∑
i λi ‖·‖(i), notice that every element of ∂f(x0) is a conic combination

of elements of the ∂ ‖·‖(i) (x0). Since each of the ∂ ‖·‖(i) (x0) is contained in a circular cone with axis x0,

∂f(x0) itself is also contained in a circular cone, and thus based on (2.3.6), we have
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Lemma 2.9 For x0 6= 0, set θi = cos−1
(
‖x0‖(i) /Li ‖x0‖

)
, where Li = supx6=0 ‖x‖(i) / ‖x‖. Then

C◦ = cone (∂f (x0)) ⊆ circ
(
x0,max

i∈[K]
θi

)
. (2.3.13)

So, the subdifferential of our combined regularizer f is contained in a circular cone whose angle is given by

the largest of the θi. Figure 2.1 visualizes this geometry.

Statistical Dimension. How does this behavior affect the recoverability of x0 via (2.3.2)? The informal

reasoning above suggests that as θ becomes smaller, the descent cone C becomes larger, and we require

more measurements to recover x0. This can be made precise using the elegant framework introduced by

Amelunxen et al. [ALMT14]. They define the statistical dimension of the convex cone C to be the expected

norm square of the projection of a standard Gaussian vector onto C:

δ(C) := Eg∼i.i.d.N (0,1)

[
‖PC(g)‖2

]
(2.3.14)

Using tools from spherical integral geometry, Amelunxen et al. [ALMT14] show that for linear inverse

problems with Gaussian measurements, a sharp phase transition in recoverability occurs aroundm = δ(C).

Since we attempt to derive a necessary condition for the success of (2.3.2), we need only one side of their

result with slight modifications:

Corollary 2.10 Let G : Rn → Rm be a Gaussian operator, and C a convex cone. Then ifm ≤ δ(C),

P [C ∩ null(G) = {0}] ≤ 4 exp
(
− (δ(C)−m)2

16δ(C)

)
. (2.3.15)

Table 2.1: Concise models and their surrogates. For each norm ‖·‖�, the third column describes the range of achievable angles
θ. Larger cos θ corresponds to a smaller Co, a larger C, and hence a larger number of measurements required for reliable recovery.

Object Complexity Measure Relaxation cos2 θ κ = n cos2 θ

Sparse x ∈ Rn k = ‖x‖0 ‖x‖1 [ 1
n ,

k
n ] [1, k]

Column-sparse x ∈ Rn1×n2 c = # {j | xej 6= 0}
∑
j ‖xej‖ [ 1

n2
, c
n2

] [n1, cn1]
Low-rank x ∈ Rn1×n2 (n1 ≥ n2) r = rank(x) ‖x‖∗ [ 1

n2
, rn2

] [n1, rn1]
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To apply this result to our problem, we need to have a lower bound on the statistical dimension δ(C), of the

descent cone C of f at x0. Using the Pythagorean theorem, monotonicity of δ(·), and Lemma 2.9, we calculate

δ(C) = n− δ(C◦) = n− δ (cone(∂f(x0))) ≥ n− δ(circ(x0,max
i
θi)). (2.3.16)

Moreover, using the properties of statistical dimension, we are able to prove an upper bound for the statistical

dimension of circular cone, which improves the constant in existing results [ALMT14, McC13].

Lemma 2.11 δ(circ(x0, θ)) ≤ n sin2 θ + 2.

Finally, by combining (2.3.16) and Lemma 2.11, we have δ(C) ≥ nmini cos2 θi − 2. Using Corollary 2.10, we

obtain:

Theorem 2.12 (SoN model.) Suppose the target signal x0 6= 0. For each i-th norm (i ∈ [K]), define Li :=

supx 6=0 ‖x‖(i) / ‖x‖. Set

κi =
n ‖x0‖2(i)
L2
i ‖x0‖2

= n cos2(θi), and κ = min
i
κi.

Then the statistical dimension of the descent cone of f at the point x0: δ (C (f,x0)) ≥ κ − 2, and thus if the

number of generic measurementsm ≤ κ− 2,

P [x0 is the unique optimal solution to (2.3.2)] ≤ 4 exp
(
− (κ−m− 2)2

16 (κ− 2)

)
. (2.3.17)

Consequently, for reliable recovery, the number of measurements needs to be at least proportional to κ.4

Notice that κ = mini κi is determined by only the best of the structures. Per Table 2.1, κi is often on the order

of the number of degrees of freedom in a generic object of the i-th structure. For example, for a k-sparse

vector whose nonzeros are all of the same magnitude, κ = k.

Theorem 2.12 together with Table 2.1 leads us to the phenomenon that recently discovered by Oymak et al.

[OJF+12]: for recovering objects with multiple structures, a combination of structure-inducing norms tends

to be not significantly more powerful than the best individual structure-inducing norm. As we demonstrate,

this general behavior follows a clear geometric interpretation that the subdifferential of a norm at x0 is

contained in a relatively small circular cone with central axis x0.

Extension. Herewe consider a slightlymore general setup: a signalx0 ∈ Rn, after appropriate linear transforms,

hasK low-dimensional structures simultaneously. These linear transforms can be quite general, and could

4E.g., ifm = (κ− 2)/2, the probability of success is at most 4 exp(−(κ− 2)/64).
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be either prescribed by experts or adaptively learned from training data.

In specific, for any i in [K], there exists an appropriate linear transform Ai : Rn → Rmi such that Ai[x0]

follows a parsimonious model in Rmi (e.g. sparsity, low-rank). Let ‖·‖(i) be the penalty norms corresponding

to the i-th structure (e.g. `1, nuclear norm). Based on generic measurements collected, it is natural to recover

x0 using the following sum-of-composite-norms (SoCN) formulation

min
x∈Rn

f(x) := λ1 ‖A1[x]‖(1) + λ2 ‖A2[x]‖(2) + · · ·+ λK ‖AK [x]‖(K) s.t. G[x] = G[x0], (2.3.18)

where G[·] is a Gaussian measurement operator, and λ > 0. Essentially following the same reasoning as

above, a result similar to Theorem 2.12, stating a lower bound on the number of generic measurements

required, can be achieved:

Theorem 2.13 (SoCN model) Suppose the target signal x0 /∈ ∩i∈[K]null(Ai). For each i ∈ [K], define

Li = supx ∈ Rmi\{0} ‖x‖(i) / ‖x‖. Set

κi =
n ‖Aix0‖2(i)

L2
i ‖Ai‖

2 ‖x0‖2
, and κ = min

i
κi.

Then ifm ≤ κ− 2,

P [x0 is the unique optimal solution to (2.3.18)] ≤ 4 exp
(
− (κ−m− 2)2

16 (κ− 2)

)
. (2.3.19)

Remark 2.14 Clearly, Theorem 2.12 can be regarded as a special case of Theorem 2.13, where A′is are all identity

operators.

2.3.2 Low-rank tensors

We can specialize Theorem 2.12 to low-rank tensors as follows: if the target signal X 0 ∈ Tr, i.e. aK-mode

n×n×· · ·×n tensor of Tucker rank (r, r, . . . , r), then for each i ∈ [K], ‖·‖(i) :=
∥∥(·)(i)

∥∥
∗ is Li =

√
n-Lipschitz.

Hence

κ = min
i

{∥∥(X 0)(i)
∥∥2
∗ / ‖X 0‖2F

}
nK−1. (2.3.20)

The term mini
{∥∥(X 0)(i)

∥∥2
∗ / ‖X 0‖2F

}
lies between 1 and r, inclusively. For example, if X 0 ∈ T1, then that

term is equal to 1; if X 0 = [[C,U1, . . . ,UK ]] with U∗i Ui = I and C (super)diagonal (Ci1...ir = 1{i1=i2=···=ir}),

then that term is equal to r. That exactly yields Theorem 2.7.
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Empirical estimates of the statistical dimension. As noted in Theorem 2.12, the statistical dimension of the

descent cone δ(C) plays a crucial role in deriving our lower bound for the number of generic measurements.

In the following, we will numerically justify our theoretical result for δ(C) under the setting of our interest,

low-rank tensors.

Consider X 0 as aK-mode n× n× · · · × n (super)diagonal tensor with only the first r diagonal entries as

1 and 0 elsewhere. Clearly, X 0 ∈ Tr, and Corollary 2.6, Theorem 2.12 and expression (2.3.20) yield

δ(C) := δ

(
C

(
K∑
i=1

∥∥X (i)
∥∥
∗ , X 0

))
≥ rnK−1 − 2, and δ(C) = Θ(rnK−1). (2.3.21)

In the following, we will numerically corroborate (2.3.21) based on recent results developed in statistical

decision theory.

In order to estimate δ(C), we construct a perturbed observation Z0 = X 0 +σG, where vec(G) is a standard

normal vector and σ is the standard deviation parameter. Then

X̂ := arg min
X
‖Z0 −X‖F s.t.

K∑
i=1

∥∥X (i)
∥∥
∗ ≤ Kr =

K∑
i=1

∥∥(X 0)(i)
∥∥
∗ , (2.3.22)

can be computed as an estimate of X 0. Due to the recent results from Oymak and Hassibi [OH16], the

normalized mean-squared error (NMSE), defined as

NMSE(σ) :=
E
[∥∥∥X̂ −X 0

∥∥∥2

F

]
σ2 , (2.3.23)

is a decreasing function over σ > 0 and

δ(C) := lim
σ→0+

NMSE(σ). (2.3.24)

Therefore, for small σ, NMSE serves a good estimator for δ(C). For more discussions on related tensor

denoising problems, see Section 2.5.

In our experiment, we set σ = 10−8 and for different triples of (K, r, n), we measure the empirical NMSE

averaged over 10 repeats. Dykstra’s Algorithm (see Section 2.8.1) is exploited to solve the convex problem

(2.3.22). Numerical outputs are presented in Figure 2.2, which firmly conforms to our theoretical results

displayed in (2.3.21).
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Figure 2.2: Lower bound for statistical dimension. Each red cross represents the empirical estimate of δ(C) for one
particular triple (K, r, n). The blue curves fit the red dots based on the relationship δ(C) = Θ(rnK−1). In specific, in the
left top (resp. left bottom) figure, we fit the red crosses with a quadratic (resp. cubic) curve; and in the right figures, we
fit the red crosses with linear curves. Note that the red crosses fit pretty well with the blue curves, which is consistent
with our result that δ(C) = Θ(rnK−1). The blue curves correspond to our lower bound rnK−1 − 2, which tightly lie
below the red crosses. This empirically corroborates the lower bound result δ(C) ≥ rnK−1 − 2.

2.4 A Better Convexification: Square Deal

The number of measurements promised by Corollary 2.6 and Theorem 2.7 is actually the same (up to

constants) as the number of measurements required to recover a tensor X 0 which is low-rank along just

one mode. Since matrix nuclear norm minimization correctly recovers a n1 × n2 matrix of rank r when

m ≥ Cr(n1 + n2) [CRPW12], solving

minimize ‖X (1)‖∗ subject to G[X ] = G[X 0] (2.4.1)
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also recovers X 0 w.h.p. whenm ≥ CrnK−1.

This suggests a more mundane explanation for the difficulty with (2.3.1): the term rnK−1 comes from the

need to reconstruct the right singular vectors of the n×nK−1 matrix X (1). If we had some way of matricizing

a tensor that produced a more balanced (square) matrix and also preserved the low-rank property, we could remedy

this effect, and reduce the overall sampling requirement. In fact, this is possible when the orderK of X 0 is

four or larger.

Square reshaping. ForA∈Rm1×n1 , and integersm2 and n2 satisfyingm1n1=m2n2, the reshaping operator

reshape(A,m2, n2) returns anm2 × n2 matrix whose elements are taken columnwise fromA. This operator

rearranges elements inA and leads to a matrix of different shape. In the following, we reshape matrix X (1) to

a more square matrix while preserving the low-rank property. Let X ∈ Rn1×n2×···×nK . Select some j ∈ [K].

Then we define matrix X [j] as5

X [j] = reshape
(

X (1),

j∏
i=1

ni,

K∏
i=j+1

ni

)
. (2.4.2)

We can view X [j] as a natural generalization of the standard tensor matricization. When j = 1, X [j] is

nothing but X (1). However, when some j > 1 is selected, X [j] could become a more balanced matrix. This

reshaping also preserves some of the algebraic structures of X . In particular, the following lemma can be

easily obtained based on Prop. 3.7 of [Kol06]:

Lemma 2.15 Let ranktc (X ) = (r1, r2, · · · , rK), and rankcp (X ) = rcp. Then rank(X [j]) ≤ rcp, and

rank(X [j]) ≤ min
{ ∏j

i=1 ri,
∏K
i=j+1 ri

}
.

Thus, X [j] is not only more balanced but also maintains the low-rank property of the tensor X , which

motivates us to recover X 0 by solving

minimize
∥∥X [j]

∥∥
∗ subject to G[X ] = G[X 0]. (2.4.3)

5One can also think of (2.4.2) as embedding the tensor X into the matrix X [j] as follows: X i1,i2,··· ,iK =
(

X [j]
)
a,b

, where

a = 1 +
j∑

m=1

(
(im − 1)

m−1∏
l=1

nl

)

b = 1 +
K∑

m=j+1

(
(im − 1)

m−1∏
l=j+1

nl

)
.
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Using Lemma 2.15 and [CRPW12], we can prove that this relaxation exactly recovers X 0, when the number

of measurements is sufficiently large:

Theorem 2.16 Consider aK-way tensor with the same length (say n) along each mode. (1) If X 0 has CP rank r,

using

minimize ‖X�‖∗ subject to G[X ] = G[X 0], (2.4.4)

with X� = X [dK2 e]
,m ≥ CrndK2 e is sufficient to recover X 0 with high probability. (2) If X 0 has Tucker rank

(r, r, · · · , r), using (2.4.4),m ≥ CrbK2 cndK2 e is sufficient to recover X 0 with high probability.

The number of measurementsO(rbK2 cndK2 e) required to recover X with square reshaping (2.4.4), is always

within a constant of the numberO(rnK−1) with the sum-of-nuclear-norms model, and is significantly smaller

when r is small andK ≥ 4. E.g., we obtain an improvement of a multiplicative factor of nbK/2c−1 when r is a

constant. This is a significant improvement.

Remark 2.17 Recall the generalized tensor matricization discussed in Chapter 1. X [j] is a special case of X (R×C)

withR = [j] and C = [K]\[j]. In general, we can pick up the partition {R, C} of [K] flexibly based on the prior

information and physical meaning of the underlying tensor to achieve the best recovery performance.

Low-rank tensor completion. We corroborate the improvement of square reshaping with numerical exper-

iments on low-rank tensor completion (LRTC). LRTC attempts to reconstruct the low-rank tensor X 0 from a

subset Ω of its entries. By imposing appropriate incoherence conditions, it is possible to prove exact recovery

guarantees for both our square model [Gro11] and the SNNmodel [HMGW14] for LRTC. However, unlike the

recovery problem under Gaussian randommeasurements, due to the lack of sharp bounds, it is more difficult

to establish a negative result for the SNN model (like Theorem 2.7). Nonetheless, numerical results below

clearly indicate the advantage of our square approach, complementing our theoretical results established in

previous sections.

We generate our four-way tensors X 0 ∈ Rn×n×n×n as X 0 = C0 ×1 U1 ×2 U2 ×3 U3 ×4 U4, where

C0 ∈ Rr1×r2×r3×r4 and Ui ∈ Rni×ri for each i ∈ [4] are constructed under the random Gaussian models (by

Matlab command): each entry of C0, U1, U2, U3 and U4 is generated using randn(). The observed entries

are chosen uniformly with ratio ρ. We compare the recovery performances between

minimizeX

K∑
i=1
‖X (i)‖∗ subject to PΩ[X ] = PΩ[X 0], and (2.4.5)



CHAPTER 2. LOW-RANK TENSOR RECOVERY 28

minimizeX ‖X�‖∗ subject to PΩ[X ] = PΩ[X 0]. (2.4.6)

We fix (r1, r2, r3, r4) as (1, 1, 1, 1) and (1, 1, 2, 2) respectively. For each choice of (r1, r2, r3, r4), we increase the

problem size n from 10 to 30 with increment 1, and the observation ratio ρ from 0.01 to 0.2 with increment

0.01. For each (ρ, n)-pair, we simulate 10 test instances and declare a trial to be successful if the recovered X ?

satisfies ‖X ? −X 0‖F /‖X 0‖F ≤ 10−2.

The optimization problems are solved using efficient first-order methods. Since (2.4.6) is equivalent

to standard matrix completion, we use the existing solver ALM [LCM10]. For the sum of nuclear norms

minimization (2.4.5), we implement the Douglas-Rachford algorithm (see Appendix 2.8.2 for details).

Figure 2.3 plots the fraction of correct recovery for each pair. Clearly, the square approach succeeds in a

much larger region.

2.5 Tensor denoising

Aclassical problem in statistical inference is to estimate the target signalwithGaussian perturbed observations.

Here, we briefly discuss this denoising problem under the context of low-rank tensors.

In specific, the target signal is a low-rank tensor (in terms of Tucker rank), say X 0 ∈ Tr, and we observe

Z0 = X 0 + σG, where vec(G) is a standard norm vector and σ is an unknown standard deviation parameter.

To estimate X 0, a natural way is to solve the following convex optimization problem6

X̂ τ := arg min
X
‖Z0 −X‖F s.t. f(X 0) ≤ τ, (2.5.2)

where f is a convex function promoting the low-rank tensor structure, and τ > 0 balances the structural

penalty and the date fidelity term.

One way to evaluate the denoising performance of this convex regularizer f is to measure the minimax

normalized mean-squared-error (NMSE) risks, defined as

Rmm (f, f(X 0)) := sup
X 0∈Tr,σ>0

1
σ2E

[∥∥∥X̂ f(X 0) −X 0

∥∥∥2

F

]
, (2.5.3)

Rmm (f) := sup
X 0∈Tr,σ>0

inf
τ>0

1
σ2E

[∥∥∥X̂ τ −X 0

∥∥∥2

F

]
, (2.5.4)

6Problem (2.5.2) is equivalent to its Lagrangian formulation

min
X

1
2
‖Z0 −X‖2

F + λf(X 0) (2.5.1)

with a proper choice of λ ≥ 0.
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Figure 2.3: Tensor completion with Gaussian random data. The colormap indicates the fraction of instances that are
correctly recovered for each (ρ, n)-pair, which increases with brightness from 100% failure (black) to 100% success
(white).

i.e. the risk corresponds to the normalized mean-squared error (NMSE) for either the fixed oracle value

τ = f(X 0) or the best tuned τ , at worst choices of the underlying signal X 0 and the noise level σ. Due to the

general result proved by Oymak and Hassibi [OH16, Theorem 3.1], quantities in (2.5.3) and (2.5.4) are closely

related with statistical dimension,

Rmm (f, f(X 0)) = sup
X 0∈Tr

δ (C (f,X 0)) and Rmm (f) = sup
X 0∈Tr

δ (C (f,X 0))−O(nK/2), (2.5.5)

where we recall that C (f,X 0) denotes the descent cone of f at the point X 0. Based on this result, we can
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Table 2.2: Minimax NMSE risks of different convex regularizers for the low-rank tensor estimation. Note that the risks
for the Single Norm model and the SNNmodel are essentially on the same order, which is substantially higher than the one for the
Square model. This can be viewed as a dual phenomenon of our results (Theorem 2.7 and Theorem 2.16) regarding the exact low-rank
tensor recovery using generic measurements. Both of these two results arise from the study on the statistical dimension of the descent
cone of certain convex function f at the target signal x0.

Model Convex regularizer f(·) Rmm,f(X 0)(f) Rmm(f)

Single Norm
∥∥X (1)

∥∥
∗ Θ(rnK−1) Θ(rnK−1)

SNN
∑
i∈[K] λi

∥∥X (i)
∥∥
∗ Θ(rnK−1) Θ(rnK−1)

Square ‖X�‖∗ Θ(rbK2 cndK2 e) Θ(rbK2 cndK2 e)

easily characterize the Minimax MSE risks of several convex functions f discussed in this chapter (see Table

2.2). 7

To empirically verify the results in Table 2.2, we construct X 0 as a 4-mode n× n× n× n (super)diagonal

tensor with only the first r diagonal entries as 1 and 0 elsewhere, and choose σ = 10−8. Convex regularizers

f(·) listed in Table 2.2:
∥∥X (1)

∥∥
∗,
∑
i∈[K]

∥∥X (i)
∥∥
∗, and ‖X�‖∗, are respectively tested. For different pairs (r, n),

we compute the empirical NMSE by averaging 1
σ2

∥∥∥X̂ f(X 0) −X 0

∥∥∥2

F
over 10 repeats. Curves are fitted based

on the complexities displayed in Table 2.2. It can be clearly observed that the obtained curves fit the empirical

NMSE quite tightly.

2.6 Proofs for Section 2.2

Proof of Lemma 2.3. The arguments we used below are primarily adapted from [ENP12], where their

interest is to establish the number of Gaussian measurements required to recover a low rank matrix by rank

minimization.

Notice that every D ∈ S2r, and every i, 〈Gi,D〉 is a standard Gaussian random variable, and so

∀ t > 0, P [|〈Gi,D〉| < t] < 2t · 1√
2π

= t

√
2
π
. (2.6.1)

7For the SNN model (f =
∑

i∈[K] λi
∥∥X (i)

∥∥
∗
), we also have λi’s to choose, and so Rmm (f, f(X 0)) and Rmm (f) are instead

naturally defined as

Rmm (f, f(X 0)) := sup
X0∈Tr,σ>0

inf
λ>0

1
σ2 E

[∥∥X̂ f(X0) −X 0
∥∥2

F

]
, (2.5.6)

Rmm (f) := sup
X0∈Tr,σ>0

inf
τ>0,λ>0

1
σ2 E

[∥∥X̂ τ −X 0
∥∥2

F

]
. (2.5.7)
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Figure 2.4: Tensor denoising. Each cross corresponds to the empirical estimate of NMSE for a (r, n)-pair. Different
colors are used to indicate different convex models. The blue dashed lines are fitted using polynomials consistent with
the complexities displayed in Table 2.2.

LetN be an ε-net forS2r in terms of ‖·‖F . Because the measurements are independent, for any fixed D̄ ∈ S2r,

P
[∥∥G[D̄]

∥∥
∞ < t

]
<
(
t
√

2/π
)m

. (2.6.2)

Moreover, for any D ∈ S2r, we have

‖G[D]‖∞ ≥ max
D̄∈N

{ ∥∥G[D̄]
∥∥
∞ − ‖G‖F→∞

∥∥D̄ −D
∥∥
F

}
(2.6.3)

≥ min
D̄∈N

{∥∥G[D̄]
∥∥
∞

}
− ε ‖G‖F→∞ . (2.6.4)

Hence,

P
[

inf
D∈S2r

‖G[D]‖∞ < ε log(1/ε)
]

≤ P
[

min
D∈N

‖G[D]‖∞ < 2ε log(1/ε)
]

+ P [‖G‖F→∞ > log(1/ε)]

≤ #N×
(

2
√

2/π × ε log(1/ε)
)m

+ P [‖G‖F→∞ > log(1/ε)]

≤ βd(2
√

2/π)mεm−d log(1/ε)m + P [‖G‖F→∞ > log(1/ε)] . (2.6.5)

Sincem ≥ d+ 1, (2.6.5) goes to zero as ε↘ 0. Hence, taking a sequence of decreasing ε, we can show that

P [infD∈S2r ‖G[D]‖∞ = 0] ≤ t for every positive t, establishing the result.
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Proof of Lemma 3.8. This follows from the basic fact that for any tensor X and matrixU of compatible size,

‖X ×k U‖F =
∥∥UX (k)

∥∥
F
≤ ‖U‖

∥∥X (k)
∥∥
F

= ‖U‖ ‖X‖F . (2.6.6)

Write

∥∥[[C;U1, . . . ,UK ]]− [[C′;U ′1, . . . ,U ′K ]]
∥∥
F

≤
∥∥[[C;U1, . . . ,UK ]]− [[C′;U1, . . . ,UK ]]

∥∥
F

+

∥∥∥∥∥
K∑
i=1

[[C′;U ′1, . . . ,U ′i ,Ui+1, . . .Uk]]− [[C′;U ′1, . . . ,U ′i−1,Ui, . . .UK ]]

∥∥∥∥∥
F

≤
∥∥C − C′

∥∥
F

+
K∑
i=1
‖Ui −U ′i‖,

where the first inequality follows from triangle inequality and the second inequality follows from the fact

that ‖C‖F = 1, ‖Uj‖ = 1, U∗i Ui = I and U ′i
∗
U ′i = I .

Proof of Lemma 2.5. The idea of this proof is to construct a net for each component of the Tucker decompo-

sition and then combine those nets to form a compound net with the desired cardinality.

Denote C = {C ∈ R2r×2r×···×2r | ‖C‖F = 1} and O = {U ∈ Rn×r | U∗U = I}. Clearly, for any C ∈ C,

‖C‖F = 1, and for any U ∈ O, ‖U‖ = 1. Thus by [Ver07, Prop. 4] and [Ver12, Lemma 5.2], there exists an
ε

K+1 -net C
′ covering Cwith respect to the Frobenius norm such that #C′ ≤ ( 3(K+1)

ε )(2r)K , and there exists an
ε

K+1 -net O
′ covering O with respect to the operator norm such that #O′ ≤ ( 3(K+1)

ε )2nr. Construct

S′2r = {[[C′;U ′1, . . . ,U ′K ]] | C′ ∈ C′, U ′i ∈ O′}. (2.6.7)

Clearly #S′2r ≤
(

3(K+1)
ε

)(2r)K+2nrK
. The rest is to show that S′2r is indeed an ε-net covering S2r with

respect to the Frobenius norm.

For any fixed D = [[C;U1, · · · ,UK ]] ∈ S2r where C ∈ C and Ui ∈ O, by our constructions above,

there exist C′ ∈ C′ and U ′i ∈ O′ such that
∥∥C − C′

∥∥
F
≤ 3(K+1)

ε and ‖Ui −U ′i‖ ≤
3(K+1)

ε . Then D′ =

[[C′;U ′1, · · · ,U ′K ]] ∈ S′2r is within ε-distance from D, since by the triangle inequality derived in Lemma 2,

we have

∥∥D −D′
∥∥
F

=
∥∥[[C;U1, . . . ,UK ]]− [[C′;U ′1, . . . ,U ′K ]]

∥∥
F
≤
∥∥C − C′

∥∥
F

+
K∑
i=1
‖Ui −U ′i‖ ≤ ε. (2.6.8)

This completes the proof.
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2.7 Proofs for Section 2.3

Proof of Corollary 2.10. Denote λ = δ(C) − m. Then following the result derived by Amelunxen et al.

[ALMT14, Theorem 7.2], we have

P [C ∩ null(G) = {0}] ≤ 4 exp
(
− λ2/8

min{δ(C), δ(C◦)}+ λ

)
(2.7.1)

≤ 4 exp
(
− λ2/8
δ(C) + λ

)
≤ 4 exp

(
− (δ(C)−m)2

16δ(C)

)
.

Proof of Lemma 2.11. Denote circ(en, θ) as circn(θ), where en is the nth standard basis for Rn. Since

δ
(
circ(x0, θ)

)
= δ
(
circ(en, θ)

)
, it is sufficient to prove δ

(
circn(θ)

)
≤ n sin2 θ + 2.

Let us first consider the case where n is even. Define a discrete random variable V supported on

{0, 1, 2, · · · , n} with probability mass function P [V = k] = vk. Here vk denotes the k-th intrinsic volumes of

circn(θ). Then it can be verified [see Ame11, Ex. 4.4.8]

vk = 1
2

( 1
2 (n− 2)
1
2 (k − 1)

)
sink−1(θ) cosn−k−1(θ) for k = 1, 2, · · · , n− 1. (2.7.2)

From Prop. 5.11 of [ALMT14], we know that

δ
(
circn(θ)

)
= E [V ] =

n∑
k=1

P [V ≥ k] . (2.7.3)

Moreover, by the interlacing result [ALMT14, Prop. 5.6] and the fact that P [V ≥ 2k] = P [V ≥ 2k − 1] −

P [V = 2k − 1], we have

P [V ≥ 1] ≤ 2P [V = 1] + 2P [V = 3] + · · ·+ 2P [V = n− 1] ,

P [V ≥ 2] ≤ P [V = 1] + 2P [V = 3] + · · ·+ 2P [V = n− 1] ;

P [V ≥ 3] ≤ 2P [V = 3] + 2P [V = 5] + · · ·+ 2P [V = n− 1] ,

P [V ≥ 4] ≤ P [V = 3] + 2P [V = 5] + · · ·+ 2P [V = n− 1] ;

...
...

...

P [V ≥ n− 1] ≤ 2P [V = n− 1] ,

P [V ≥ n] ≤ P [V = n− 1] .
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Summing up the above inequalities, we have

E [V ] =
n∑
k=1

P [V ≥ k] (2.7.4)

≤
∑

k=1,3,··· ,n−1
2(k − 1)vk +

∑
k=1,3,··· ,n−1

3vk

≤ (n− 2) sin2 θ + 3
2

n∑
k=0

vk

≤ (n− 2) sin2 θ + 3
2 = n sin2 θ + 2 cos2 θ − 1

2 ,

where the second last inequality follows from the observations that
∑
k=1,3,··· ,n−1

k−1
2 ·(2vk) = E

[
Bin(n−2

2 , sin2 θ)
]

and
∑n
k=0 vk ≥

∑
k=1,3,··· ,n−1 2vk again by the interlacing result [ALMT14, Prop. 5.6].

Suppose n is odd. Since the intersection of circn+1(θ) with any n-dimensional linear subspace containing

en+1 is an isometric image of circn(θ), by Prop. 4.1 of [ALMT14], we have

δ(circn(θ)) = δ(circn(θ)× {0}) ≤ δ(circn+1(θ)) ≤ (n+ 1) sin2 θ + 2 cos2 θ − 1
2 ≤ n sin2 θ + cos2 θ + 1

2 .

(2.7.5)

Thus, taking both cases (n is even and n is odd) into consideration, we have

δ
(
circn(θ)

)
≤ n sin2 θ + cos2 θ + 1

2 < n sin2 θ + 2. (2.7.6)

Proof of Theorem 2.12. Notice that for any fixedm > 0, the function f : t→ 4 exp
(
− (t−m)2

16t

)
is decreasing

for t ≥ m. Then due to Corollary 2.10 and the fact that δ(C) ≥ κ− 2 ≥ m, we have

P [x0 is the unique optimal solution to (2.3.2)] = P [C ∩ null(G) = {0}] (2.7.7)

≤ 4 exp
(
− (δ(C)−m)2

16δ(C)

)
≤ 4 exp

(
− (κ−m− 2)2

16 (κ− 2)

)
.

Proof of Theorem 2.13. The argument for Theorem 2.12 can be easily adapted to prove Theorem 2.13, with

the following additional observation regarding the function ‖A[·]‖�, where ‖·‖� is a norm in Rm with dual

norm ‖·‖◦�, and A : Rn → Rm is a linear operator satisfying A[x0] 6= 0. Essentially, we will next prove that

∂ ‖A[·]‖� (x0) is contained in a circular cone, which is analogous to (2.3.12).

For any u ∈ ∂ ‖A[·]‖� (x0), there exists a v ∈ ∂ ‖·‖� (A[x0]) such that u = A?v. Thus we have

cos(∠(u,x0)) = 〈u,x0〉
‖u‖ ‖x0‖

= 〈A∗v,x0〉
‖A∗v‖ ‖x0‖

≥ 〈v,Ax0〉
‖A‖ ‖v‖ ‖x0‖

. (2.7.8)



CHAPTER 2. LOW-RANK TENSOR RECOVERY 35

Define L := supx6=0 ‖x‖� / ‖x‖2, which implies that ‖·‖� is L-Lipschitz: ‖x‖� ≤ L ‖x‖ for all x. Then

‖v‖ ≤ L ‖v‖◦� for all v as well. Thus, we have

cos(∠(u,x0)) ≥ 〈v,Ax0〉
L ‖A‖ ‖v‖◦� ‖x0‖

. (2.7.9)

Recall that

∂ ‖·‖� (x) =
{
v | 〈v,x〉 = ‖x‖� , ‖v‖

◦
� ≤ 1

}
. (2.7.10)

We can therefore further simplify

cos(∠(u,x0)) ≥
‖Ax0‖�

L ‖A‖ ‖x0‖
, (2.7.11)

which is equivalent to saying

∂ ‖A[·]‖� (x0) ⊆ circ(x0, θ), (2.7.12)

with θ := cos−1
(
‖Ax0‖�
L‖A‖‖x0‖

)
.

2.8 First-Order Methods for Problems (2.3.22) and (2.4.5)

In the previous sections, we have proposed and analyzed several convex problems related with tensor

recovery and denoising. Though these problems are computationally tractable in general, off-the-shelf convex

software packages, e.g. CVX [GB14, GB08], may not tame the large-scale monster in the tensor domain. For

example, a four-way tensor with length 30 along each mode, has amounted to nearly one million elements in

store. Consequently, we leverage more scalable first-order methods to solve convex problems involved in the

chapter. 8

2.8.1 Dykstra’s Algorithm for problem (2.3.22)

By splitting X into {X i}i∈[K], problem (2.3.22) can be reformulated as

min
{X i}i∈[K]

∑
i∈[K]

∥∥Z0 −X (i)
∥∥2
F

s.t.
∑
i∈[K]

∥∥(X i)(i)
∥∥
∗ ≤ τ := Kr (2.8.1)

8Matlab codes are available on CM’s personal website: https://sites.google.com/site/mucun1988/. Matlab Tensor Toolbox
[BK15] has been utilized in our implementation.

https://sites.google.com/site/mucun1988/
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X 1 = X 2 = · · · = XK ∈ ⊗i∈[K]Rn.

This is essentially to compute PC1∩C2 [z0]: the projection of z0 := (Z0,Z0, · · · ,Z0)︸ ︷︷ ︸
K times

onto the intersection of

two closed convex sets C1 and C2 in the Hilbert spaceH, whereH :=×i∈[K] R
n×n×···×n and

C1 :=

(X 1,X 2, · · · ,XK) ∈ H

∣∣∣∣∣∣
∑
i∈[K]

∥∥(X i)(i)
∥∥
∗ ≤ τ

 , (2.8.2)

C2 := {(X 1,X 2, · · · ,XK) ∈ H | X 1 = X 2 = · · · = XK} . (2.8.3)

As both PC1 [·] andPC2 [·] have closed form solutions that can be easily computed, we apply Dykstra’s algorithm

[see BC11, Chap. 29.1] to tackle problem (2.3.22).

Algorithm 1 Dykstra’s algorithm for problem (2.3.22)

1: Initialization: z(0) ← (Z0,Z0, · · · ,Z0) ∈ H, q(−1) ← 0 ∈ H, q(0) ← 0 ∈ H;
2: for n← 1, 2, . . . do
3: if 2 | n then
4: z(n) ← PC2 [z(n−1) + q(n−2)] ;
5: q(n) ← z(n−1) + q(n−2) − z(n);
6: else
7: z(n) ← PC1 [z(n−1) + q(n−2)] ;
8: q(n) ← z(n−1) + q(n−2) − z(n);
9: end if
10: end for

For the sequence {z(n)} generated by Algorithm 1, its convergence to the optimal solution of problem

(2.3.22) follows directly from Theorem 29.2 of the book by Bauschke and Combettes [BC11].

2.8.2 Douglas-Rachford Algorithm for problem (2.4.5)

By splitting X into {X i}i∈[K+1], problem (2.4.5) can be reformulated as

min
{X i}i∈[K+1]

∑
i∈[K]

∥∥∥(X i)(i)

∥∥∥
∗

s.t. PΩ[XK+1] = M (2.8.4)

X 1 = X 2 = · · · = XK+1 ∈ Rn×n×···×n.

If we denote x := (X 1,X 2, · · · ,XK+1) ∈ H :=×i∈[K+1] R
n×n×···×n, then problem (2.8.4) can be com-
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pactly expressed as

min
x∈H

F (x) +G(x), (2.8.5)

where

F (x) :=
∑
i∈[K]

∥∥∥(X i)(i)

∥∥∥
∗

+ 1{PΩ[XK+1]=M}, (2.8.6)

G(x) := 1{X 1=X 2=···=XK+1}, and (2.8.7)

here the indicator function for a set C, 1C(x), equals 0 if x ∈ C and +∞ otherwise. Note that the proximity

operators of F and G, i.e.

proxF (x) := arg min
y∈H

F (y) + 1
2 ‖x− y‖

2 and (2.8.8)

proxG(x) := arg min
y∈H

G(y) + 1
2 ‖x− y‖

2 (2.8.9)

can be both easily computed. Therefore, it is quite suitable to apply the Douglas-Rachford algorithm here [see

CP11, for more details].

Algorithm 2 Douglas-Rachford algorithm for problem (2.4.5)

1: Initialization: x(0) ← 0 ∈ H;
2: for n← 0, 1, 2, . . . do
3: y(n) ← proxG(x(n));
4: x(n+1) ← proxF (2y(n) − x(n)) + x(n) − y(n);
5: end for
6: Output proxG(x(n+1));

2.9 Conclusion

In this chapter, we establish several theoretical bounds for the problem of low-rank tensor recovery using ran-

domGaussianmeasurements. For the nonconvexmodel (2.2.1), we show that (2r)K+2nrK+1 measurements

are sufficient to recover any X 0 ∈ Tr almost surely. For the conventional convex surrogate sum-of-nuclear-

norms (SNN) model (2.3.1), we prove a necessary condition that Ω(rnK−1) Gaussian measurements are

required for reliable recovery. This lower bound is derived from our study of multi-structured object recovery

in a very general setting, which can be applied to many other scenarios (e.g. signal processing, metric

learning, computer vision). To narrow the apparent gap between the non-convex model and the SNN model,



CHAPTER 2. LOW-RANK TENSOR RECOVERY 38

we unfold the tensor into a more balanced matrix while preserving its low-rank property, leading to our

square reshaping model (2.4.4). We then prove that O(rbK2 cndK2 e) measurements are sufficient to recover a

tensor X 0 ∈ Tr with high probability. Though the theoretical results only pertain to Gaussian measurements,

our numerical experiments still suggest the square reshaping model outperforms the SNN model in other

settings.

ComparedwithΩ(rnK−1)measurements required by the SNNmodel, the sample complexity,O(rbK2 cndK2 e),

required by the square reshaping (2.4.4), is always within a constant of it, and is much better for small r

andK ≥ 4. Although this is a significant improvement, in contrast with the nonconvex model (2.2.1), the

improved sample complexity achieved by the square model is still suboptimal. It remains an open and

intriguing problem to obtain near-optimal tractable convex relaxations for allK > 2.

Since the release of our work [MHWG13] online, our proposed square model for low-rank tensor recovery

has been successfully applied under different contexts, including seismic reconstruction [GCS15], traffic data

recovery [TWW+] and video recovery [JMZ15, BPTD17], to name a few. Moreover, we have also noted that

several interesting models and algorithms have been proposed and analyzed, focusing on the low-rank tensor

completion (LRTC) problem. Yuan and Zhang [OJF+15] extended the negative result for the SNN model to

more general sampling schemes. Yuan and Zhang [YZ15] analyzed the tensor nuclear norm model (though

not computationally tractable) and established better sampling complexity result. Several other works – e.g.

[JO14, Asw14], achieved better sample complexity using tractable methods by considering special subclasses

of low-rank tensors. In addition, many works in the field of numerical optimization have designed efficient

methods to solve LRTC related non-convex models, e.g. alternating minimization [RPABBP13, XHYS13],

Riemannian optimization [KSV14], where empirical successes have been greatly witnessed. Further analyzing

these methods is an interesting problem for future research.

Putting our work in a broader setting, to recover objects with multiple structures, regularizing with a

combination of individual structure-inducing norms is proven to be substantially suboptimal (Theorem 2.12

and also [OJF+12]). The resulting sample requirements tend to be much larger than the intrinsic degrees of

freedom of the low-dimensional manifold in which the structured signal lies. Our square model for low-rank

tensor recovery demonstrates the possibility that a better exploitation of those structures can significantly

reduce this sample complexity (see also [RBV13, ROV14] for ideas in this direction). However, there are still

no clear clues on how to intelligently utilize several simultaneous structures generally, and moreover how to

design tractable methods to recover multi-structured objects with near minimal numbers of measurements.

These problems are definitely worth future study.
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Chapter 3

Robust Low-Rank Tensor Recovery

The robust low-rank tensor recovery problem aims to recover the underlying low-rank tensor from both

sparse corruptions and dense small ones. More formally, we are trying to (robustly) recover the low-rank

tensor L0 from the corrupted observations T :

T = L0 + S0 + N 0, (3.0.1)

where S0 is a sparse tensor and N 0 is a dense tensor with small magnitudes.

In the previous chapter, we have proposed and proved the convex function
∥∥∥(·)(R×C)

∥∥∥
∗
as an appropriate

convex surrogate to encourage the low-rankness of tensors, with a proper choice of R, C partitioning the

index set [K]. Moreover, the `1 norm, ‖·‖1, has been well known as a convex replacement for the sparsity.

Therefore, it is natural to solve the following convex program to tackle the robust low-rank tensor recovery

task:

min
L, S

1
2
∥∥L(R×C) + S(R×C) − T (R×C)

∥∥2
F

+ λL
∥∥L(R×C)

∥∥
∗ + λS

∥∥S(R×C)
∥∥

1 , (3.0.2)

where λL, λS ≥ 0 are regularization parameters.

Problem (3.0.2) is essentially equivalent to the stable principal component pursuit (SPCP) problem [CLMW11,

ZLW+10], which is originally proposed for the low-rank matrix recovery. In the rest of this chapter, we

will focus on developing scalable optimization methods to solve a convex model (more general than stable

principal component pursuit) called compressive principal component pursuit (CPCP) .
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3.1 Robust Low-Rank Matrix Recovery

Suppose that a matrixM0 ∈ Rm×n is of the formM0 = L0 + S0 +N0, where L0 is a low-rank matrix, S0 is

a sparse error matrix, andN0 is a dense noise matrix. Linear measurements

b = A[M0] =
(
〈A1,M0〉 , 〈A2,M0〉 , . . . , 〈Ap,M0〉

)> ∈ Rp (3.1.1)

are collected, where A : Rm×n → Rp is the sensing operator,Ak is the sensing matrix for the k-th measure-

ment and 〈Ak,M0〉
.= Tr(M>

0 Ak). Can we, in a tractable way, recover L0 and S0 from b, given A?

One natural approach is to solve the optimization combining the fidelity term and the structural terms:

min
L,S

1
2 ‖b−A[L+ S]‖22 + λLrank(L) + λS ‖S‖0 . (3.1.2)

Here, λL and λS are regularization parameters, and ‖S‖0 denotes the number of nonzero entries in S.

Unfortunately, problem (3.1.2) is nonconvex, and hence is not directly tractable. However, by replacing

the `0 norm ‖S‖0 with the `1 norm ‖S‖1
.=
∑m
i=1
∑n
j=1 |Sij |, and replacing the rank rank(L) with the nuclear

norm ‖L‖∗ (defined as the sum of the singular values of L), we obtain a natural, tractable, convex relaxation

of (3.1.2),

min
L,S

1
2 ‖b−A[L+ S]‖22 + λL ‖L‖∗ + λS ‖S‖1 . (3.1.3)

This convex surrogate is sometimes referred to as compressive principal component pursuit (CPCP) [WGMM13].

Equivalently, since

{
M ∈ Rm×n | b = A[M ]

}
=

{
M ∈ Rm×n | PQ[M ] = PQ[M0]

}
,

where Q ⊆ Rm×n is a linear subspace spanned by the set of sensing matrices {Ai}pi=1, and PQ denotes the

projection operator onto that subspace, we can rewrite problem (3.1.3) in the (possibly) more compact form, 1

min
L,S

f(L,S) .= 1
2 ‖PQ[L+ S −M0]‖2F + λL ‖L‖∗ + λS ‖S‖1 . (3.1.4)

Recently, CPCP and its close variants have been studied for different sensing operatorsA[·] (or equivalently

different subspacesQ). In specific, [CSPW11, CLMW11, ZLW+10, HKZ11, ANW12] consider the case where

1 Despite being equivalent, one formulation might be preferred over the other in practice, depending on the specifications of the
sensing operatorA[·]. In this chapter, we will mainly focus on solving problem (3.1.4) and its variants. Our methods, however, are not
restrictive to (3.1.4) and can be easily extended to problem (3.1.3).
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a subset Ω ⊆ {1, 2, . . . ,m} × {1, 2, . . . , n} of the entries ofM0 is observed. Then CPCP can be reduced to

min
L,S

1
2 ‖PΩ[L+ S −M0]‖2F + λL ‖L‖∗ + λS ‖S‖1 , (3.1.5)

where PΩ[·] denotes the orthogonal projection onto the linear space of matrices supported on Ω, i.e.,

PΩ[M0](i, j) = (M0)ij if (i, j) ∈ Ω and PΩ[M0](i, j) = 0 otherwise. [WGMM13] studies the case where

each Ak is an i.i.d. N (0, 1) matrix, which is equivalent (in distribution) to saying that we choose a linear

subspace Q uniformly at random from the set of all p-dimensional subspaces of Rm×n and observe PQ[M0].

Accordingly, all the above provide theoretical guarantees for CPCP, under fairly mild conditions, to produce

accurate estimates of L0 and PΩ[S0] (or S0), even when the number of measurements p is substantially less

thanmn.

Inspired by these theoretical results, researchers from different fields have leveraged CPCP to solve many

practical problems, including video background modeling [CLMW11], batch image alignment [PGW+12],

face verification [ZMKW13], photometric stereo [WGS+11], dynamicMRI [OCS14], topicmodeling [MZWM10],

latent variable graphical model learning [CPW12] and outlier detection and robust Principal Component

Analysis [CLMW11], to name just a few.

Living in the era of big data, most of these applications involve large datasets and high dimensional data

spaces. Therefore, to fully realize the benefit of the theory, we need provably convergent and scalable algorithms

for CPCP. This has motivated much research into the development of first-order methods for problem (3.1.4)

and its variants; e.g., see [LGW+09, LCM10, YY13b, TY11, AGM12, AI15]. These methods, in essence, all

exploit a closed-form expression for the proximal operator of the nuclear norm, which involves the singular

value decomposition (SVD). Hence, the dominant cost in each iteration is computing an SVD of the same

size as the input data. This is substantially more scalable than off-the-shelf interior point solvers such as

SDPT3 [TTT03]. Nevertheless, the superlinear cost of each iteration has limited the practical applicability

of these first-order methods to problems involving several thousands of data points and several thousands

of dimensions. The need to compute a sequence of full or partial SVDs is a serious bottleneck for truly

large-scale applications.

As a remedy, in this chapter, we design more scalable algorithms to solve CPCP that compute only a

rank-one SVD in each iteration. Our approach leverages two classical and widely studied ideas – Frank-Wolfe

iterations to handle the nuclear norm, and proximal steps to handle the `1 norm. This turns out to be an ideal

combination of techniques to solve large-scale CPCP problems. In particular, it yields algorithms that are

substantially more scalable than prox-based first-order methods such as ISTA and FISTA [BT09], and converge
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much faster in practice than a straightforward application of Frank-Wolfe.

The remainder of this chapter is organized as follows. Section 3.2 reviews the general properties of the

Frank-Wolfe algorithm, and describes several basic building blocks that we will use in our algorithms. Section

3.3 and Section 3.4 respectively describe how to modify the Frank-Wolfe algorithm to solve CPCP’s norm

constrained version

min
L,S

l(L,S) .= 1
2 ‖PQ[L+ S −M0]‖2F s.t. ‖L‖∗ ≤ τL, ‖S‖1 ≤ τS , (3.1.6)

and the penalized version, i.e. problem (3.1.4), by incorporating proximal regularization to more effectively

handle the `1 norm. Convergence results and our implementation details are also discussed. Section 3.5

presents numerical experiments on large datasets that demonstrate the scalability of our proposed algorithms.

In Section 3.6, we summarize our contributions and discuss potential future works.

3.2 Preliminaries on Frank-Wolfe method

3.2.1 Frank-Wolfe method

The Frank-Wolfe (FW) method [FW56], also known as the conditional gradient method [LP66], applies to the

general problem of minimizing a differentiable convex function h over a compact, convex domain D ⊆ Rn:

minimize h(x) subject to x ∈ D ⊆ Rn. (3.2.1)

Here, ∇h is assumed to be L-Lipschitz:

∀x, y ∈ D, ‖∇h(x)−∇h(y)‖ ≤ L ‖x− y‖ . (3.2.2)

Throughout, we let D = maxx,y∈D ‖x− y‖ denote the diameter of the feasible set D.

In its simplest form, the Frank-Wolfe algorithm proceeds as follows. At each iteration k, we linearize the

objective function h about the current point xk:

h(v) ≈ h(xk) +
〈
∇h(xk),v − xk

〉
. (3.2.3)

We minimize the linearization over the feasible set D to obtain

vk ∈ arg min
v∈D

〈
∇h(xk),v

〉
, (3.2.4)
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Algorithm 3 Frank-Wolfe method for problem (3.2.1)

1: Initialization: x0 ∈ D;
2: for k = 0, 1, 2, . . . do
3: vk ∈ argminv∈D

〈
v,∇h(xk)

〉
;

4: γ = 2
k+2 ;

5: xk+1 = xk + γ(vk − xk);
6: end for

and then take a step in the feasible descent direction vk − xk:

xk+1 = xk + 2
k + 2(vk − xk). (3.2.5)

This yields a very simple procedure, which we summarize as Algorithm 3. The particular step size, 2
k+2 ,

comes from the convergence analysis of the algorithm, which we discuss in more details below.

First proposed in [FW56], FW-type methods have been frequently revisited in different fields. Recently,

they have experienced a resurgence in statistics, machine learning and signal processing, due to their ability to

yield highly scalable algorithms for optimization with structure-encouraging norms such as the `1 norm and

nuclear norm. In particular, if x is a matrix and D = {x | ‖x‖∗ ≤ β} is a nuclear norm ball, the subproblem

min
v∈D

〈v,∇h(x)〉 (3.2.6)

can be solved using only the singular vector pair corresponding to the single leading singular value of the

matrix ∇h(x). Thus, at each iteration, we only have to compute a rank-one partial SVD. This is substantially

cheaper than the full/partial SVD exploited in proximal methods [JS10, HJN14]. We recommend [Jag13] as a

comprehensive survey of the latest developments in FW-type methods.

Algorithm 4 Frank-Wolfe method for problem (3.2.1) with general updating scheme

1: Initialization: x0 ∈ D;
2: for k = 0, 1, 2, . . . do
3: vk ∈ argminv∈D

〈
v,∇h(xk)

〉
;

4: γ = 2
k+2 ;

5: Update xk+1 to some point in D such that h(xk+1) ≤ h(xk + γ(vk − xk));
6: end for

In the past five decades, numerous variants of Algorithm 3 have been proposed and implemented. Many

modify Algorithm 3 by replacing the simple updating rule (3.2.5) with more sophisticated schemes, e.g.,

xk+1 ∈ arg min
x

h(x) s.t. x ∈ conv{xk, vk} (3.2.7)
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or

xk+1 ∈ arg min
x

h(x) s.t. x ∈ conv{xk, vk, vk−1, . . . , vk−j}. (3.2.8)

The convergence of these schemes can be analyzed simultaneously, using the fact that they produce iterates

xk+1 whose objective is no greater than that produced by the original Frank-Wolfe update scheme:

h(xk+1) ≤ h(xk + γ(vk − xk)).

Algorithm 4 states a general version of Frank-Wolfe, whose update is only required to satisfy this relationship.

It includes as special cases the updating rules (3.2.5), (3.2.7) and (3.2.8). This flexibility will be crucial for

effectively handling the sparse structure in the CPCP problems (3.1.4) and (3.1.6).

The convergence of Algorithm 4 can be proved using well-established techniques [HJN14, Jag13, DR70,

DH78, Pat93, Zha03, Cla10, FG16]. Using these ideas, one can show that it converges at a rate of O(1/k) in

function value:

Theorem 3.1 Let x? be an optimal solution to (3.2.1). For {xk} generated by Algorithm 4, we have for k =

0, 1, 2, . . . ,

h(xk)− h(x?) ≤ 2LD2

k + 2 . (3.2.9)

Proof For k = 0, 1, 2, . . . , we have

h(xk+1) ≤ h(xk + γ(vk − xk))

≤ h(xk) + γ
〈
∇h(xk),vk − xk

〉
+ Lγ2

2
∥∥vk − xk∥∥2

≤ h(xk) + γ
〈
∇h(xk),vk − xk

〉
+ γ2LD2

2 (3.2.10)

≤ h(xk) + γ
〈
∇h(xk),x? − xk

〉
+ γ2LD2

2

≤ h(xk) + γ(h(x?)− h(xk)) + γ2LD2

2 , (3.2.11)

where the second inequality holds since∇h(·) is L-Lipschitz continuous; the third line follows becauseD

is the diameter for the feasible set D; the fourth inequality follows from vk ∈ argminv∈D
〈
v,∇h(xk)

〉
and

x? ∈ D; the last one holds since h(·) is convex.

Rearranging terms in (3.2.11), one obtains that for k = 0, 1, 2, . . . ,

h(xk+1)− h(x?) ≤ (1− γ)
(
h(xk)− h(x?)

)
+ γ2LD2

2 . (3.2.12)
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Therefore, by mathematical induction, it can be verified that

h(xk)− h(x?) ≤ 2LD2

k + 2 , for k = 1, 2, 3, . . . .

Remark 3.2 Note that the constant in the rate of convergence depends on the Lipschitz constant L of h and the

diameter D.

While Theorem 3.1 guarantees that Algorithm 4 converges at a rate of O(1/k), in practice it is useful to

have a more precise bound on the suboptimality at iterate k. The surrogate duality gap

d(xk) =
〈
xk − vk,∇h(xk)

〉
, (3.2.13)

provides a useful upper bound on the suboptimality h(xk)− h(x?) :

h(xk)− h(x?) ≤ −
〈
x? − xk,∇h(xk)

〉
≤ −min

v

〈
v − xk,∇h(xk)

〉
=
〈
xk − vk,∇h(xk)

〉
= d(xk). (3.2.14)

This was first proposed in [FW56] and later [Jag13] showed that d(xk) = O(1/k). Next, we provide a

refinement of this result, using ideas from [Jag13, Cla10]:

Theorem 3.3 Let {xk} be the sequence generated by Algorithm 4. Then for anyK ≥ 1, there exists 1 ≤ k̃ ≤ K

such that

d(xk̃) ≤ 6LD2

K + 2 . (3.2.15)

Proof For notational convenience, we denote hk .= h(xk), ∆k .= h(xk) − h(x?), dk .= d(xk), C .= 2LD2,

B
.= K + 2, k̂ .= d 1

2Be − 1, µ .= d 1
2Be/B.

Suppose on the contrary that

dk >
3C
B
, for all k ∈

{
d12Be − 1, d12Be, . . . , K

}
. (3.2.16)

From (3.2.10), we know that for any k ≥ 1

∆k+1 ≤ ∆k + γ
〈
∇h(xk),vk − xk

〉
+ γ2LD2

2 = ∆k − 2dk

k + 2 + C

(k + 2)2 . (3.2.17)
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Therefore, by using (3.2.17) repeatedly, one has

∆K+1 ≤ ∆k̂ −
K∑
k=k̂

2dk

k + 2 +
K∑
k=k̂

C

(k + 2)2

< ∆k̂ − 6C
B

K∑
k=k̂

1
k + 2 + C

K∑
k=k̂

1
(k + 2)2

= ∆k̂ − 6C
B

B∑
k=k̂+2

1
k

+ C

B∑
k=k̂+2

1
k2

≤ C

µB
− 6C

B
· B − k̂ − 1

B
+ C · B − k̂ − 1

B(k̂ + 1)

= C

µB
− 6C

B
(1− µ) + C

B

1− µ
µ

= C

µB
(2− 6µ(1− µ)− µ) (3.2.18)

where the second line is due to our assumption (3.2.16); the fourth line holds since ∆k̂ ≤ C
k̂+2 by Theorem 1,

and
∑b
k=a

1
k2 ≤ b−a+1

b(a−1) for any b ≥ a > 1.

Now define φ(x) = 2− 6x(1− x)− x. Clearly φ(·) is convex. Since φ( 1
2 ) = φ( 2

3 ) = 0, we have φ(x) ≤ 0 for

any x ∈ [ 1
2 ,

2
3 ]. As µ = d 1

2Be/B ∈ [ 1
2 ,

2
3 ], from (3.2.18), we have

∆K+1 = h(xK+1)− h(x?) < C

µB
φ(µ) ≤ 0,

which is a contradiction.

Remark 3.4 The convergence rate for the duality gap matches the one for h(xk) − h(x?) (see (3.2.9)), which

suggests that the upper bound d(xk) can serve as a practical stopping criterion.

For our problem, the main computational burden in Algorithms 3 and 4 will be solving the linear

subproblem minv∈D
〈
v,∇h(xk)

〉
,2 i.e. minimizing linear functions over the unit balls for ‖·‖∗ and ‖·‖1.

Fortunately, both of these operations have simple closed-form solutions, which we will describe in the next

section.

3.2.2 Optimization oracles

We now describe several optimization oracles involving the `1 norm and the nuclear norm, which serve as

the main building blocks for our methods. These oracles have computational costs that are (essentially) linear

2In some situations, we can significantly reduce this cost by solving this problem inexactly [DH78, Jag13]. Our algorithms and results
can also tolerate inexact step calculations; we omit the discussion here for simplicity.
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in the size of the input.

Minimizing a linear function over the nuclear norm ball Since the dual norm of the nuclear norm is the

operator norm, i.e., ‖Y ‖ = max‖X‖∗≤1 〈Y ,X〉, the optimization problem

minimizeX 〈Y ,X〉 subject to ‖X‖∗ ≤ 1 (3.2.19)

has optimal value −‖Y ‖. One minimizer is the rank-one matrixX? = −uv>, where u and v are the left-

and right- singular vectors corresponding to the top singular value of Y , and can be efficiently computed

(e.g. using power method).

Minimizing a linear function over the `1 ball Since the dual norm of the `1 norm is the `∞ norm, i.e.,

‖Y ‖∞ := max(i,j) |Yij | = max‖X‖1≤1 〈Y ,X〉, the optimization problem

minimizeX 〈Y ,X〉 subject to ‖X‖1 ≤ 1 (3.2.20)

has optimal value−‖Y ‖∞. Oneminimizer is the one-sparsematrixX? = −sgn(Yi?j?)ei?e>j? , where (i?, j?) ∈

arg max(i,j) |Yij |; i.e. X? has exactly one nonzero element.

Projection onto the `1 ball To effectively handle the sparse term in the norm constrained problem (3.1.6),

we will need to modify the Frank-Wolfe algorithm by incorporating additional projection steps. For any

Y ∈ Rm×n and β > 0, the projection onto the `1-ball:

P‖·‖1≤β [Y ] = arg min
‖X‖1≤β

1
2 ‖X − Y ‖

2
F , (3.2.21)

can be easily solved with O (mn(logm+ logn)) cost [DSSSC08]. Moreover, a divide and conquer algorithm,

achieving linear cost in expectation to solve (3.2.21), has also been proposed in [DSSSC08].

Proximal mapping of `1 norm To effectively handle the sparse term arising in problem (3.1.4), we will

need to modify the Frank-Wolfe algorithm by incorporating additional proximal steps. For any Y ∈ Rm×n

and λ > 0, the proximal mapping of `1 norm has the following closed-form expression

Tλ[Y ] = arg min
X∈Rm×n

1
2 ‖X − Y ‖

2
F + λ ‖X‖1 , (3.2.22)

where Tλ : R→ R denotes the soft-thresholding operator Tλ(x) = sgn(x) max{|x| − λ, 0}, and extension to

matrices is obtained by applying the scalar operator Tλ(·) to each element.
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3.3 Frank-Wolfe-Projection Method for Norm Constrained Problem

In this section, we develop scalable algorithms for the norm-constrained compressive principal component

pursuit problem,

min
L,S

l(L,S) = 1
2 ‖PQ[L+ S −M ]‖2F s.t. ‖L‖∗ ≤ τL, ‖S‖1 ≤ τS . (3.3.1)

We first describe a straightforward application of the Frank-Wolfe method to this problem. We will see that

although it has relatively cheap iterations, it converges very slowly on typical numerical examples, because it

only makes a one-sparse update to the sparse term S at a time. We will show how to remedy this problem by

augmenting the FW iteration with an additional proximal step (essentially a projected gradient step) in each

iteration, yielding a new algorithm which updates S much more efficiently. Because it combines Frank-Wolfe

and projection steps, we will call this new algorithm Frank-Wolfe-Projection (FW-P).

Properties of the objective and constraints. To apply Frank-Wolfe to (3.3.1), we first note that the objective

l(L,S) in (3.3.1) is differentiable, with

∇Ll(L,S) = PQ[L+ S −M ] (3.3.2)

∇Sl(L,S) = PQ[L+ S −M ]. (3.3.3)

Moreover, the following lemma shows that the gradient map ∇l(L,S) = (∇Ll,∇Sl) is 2-Lipschitz:

Lemma 3.5 For all (L,S) and (L′,S′), we have ‖∇l(L,S)−∇l(L′,S′)‖F ≤ 2 ‖(L,S)− (L′,S′)‖F .

Proof From (3.3.2) and (3.3.3), we have

‖∇l(L,S)−∇l(L′,S′)‖2F = 2 ‖PQ[L+ S −M ]− PQ[L′ + S′ −M ]‖2F

= 2 ‖PQ[L+ S]− PQ[L′ + S′]‖2F

≤ 2 ‖L+ S −L′ − S′‖2F

≤ 4 ‖L−L′‖2F + 4 ‖S − S′‖2F

= 4 ‖(L,S)− (L′,S′)‖2F ,

which implies the result.

The feasible set in (3.3.1) is compact. The following lemma bounds its diameter D:
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Lemma 3.6 The feasible set D = {(L,S) | ‖L‖∗ ≤ τL, ‖S‖1 ≤ τS} has diameter D ≤ 2
√
τ2
L + τ2

S .

Proof For any Z = (L,S) and Z ′ = (L′,S′) ∈ D,

‖Z −Z ′‖2F = ‖L−L′‖2F + ‖S − S′‖2F ≤ (‖L‖F + ‖L′‖F )2 + (‖S‖F + ‖S′‖F )2

≤ (‖L‖∗ + ‖L′‖∗)
2 + (‖S‖1 + ‖S′‖1)2 ≤ 4τ2

L + 4τ2
S . (3.3.4)

3.3.1 Frank-Wolfe for problem (3.3.1)

Since (3.3.1) asks us to minimize a convex, differentiable function with Lipschitz gradient over a compact

convex domain, the Frank-Wolfe method in Algorithm 3 applies. It generates a sequence of iterates xk =

(Lk,Sk). Using the expression for the gradient in (3.3.2)-(3.3.3), at each iteration, the step direction vk =

(V k
L ,V

k
S ) is generated by solving the linearized subproblem V k

L

V k
S

 ∈ arg min
〈 PQ[Lk + Sk −M ]

PQ[Lk + Sk −M ]

 ,

 VL

VS

〉 (3.3.5)

s.t. ‖VL‖∗ ≤ τL, ‖VS‖1 ≤ τS ,

which decouples into two independent subproblems:

V k
L ∈ arg min

‖VL‖∗≤τL
〈PQ[Lk + Sk −M ], VL〉,

V k
S ∈ arg min

‖VS‖1≤τS
〈PQ[Lk + Sk −M ], VS〉.

These subproblems can be easily solved by exploiting the linear optimization oracles introduced in Section

3.2.2. In particular,

V k
L = −τLuk(vk)>, (3.3.6)

V k
S = −τS · δki?j? · eki?(ekj?)>, (3.3.7)

where uk and vk are leading left- and right- singular vectors of PQ[Lk + Sk −M ], (i?, j?) is the index of

the largest element of PQ[Lk + Sk −M ] in magnitude and δkij = sgn
[(
PQ[Lk + Sk −M ]

)
ij

]
. Algorithm 5

gives the Frank-Wolfe method specialized to problem (3.3.1).

The major advantage of Algorithm 5 lies in the simplicity of the update rules (3.3.6)-(3.3.7). Both have
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Algorithm 5 Frank-Wolfe method for problem (3.3.1)

1: Initialization: L0 = S0 = 0;
2: for k = 0, 1, 2, · · · do
3: Dk

L ∈ arg min‖DL‖∗≤1〈PQ[Lk + Sk −M ], DL〉; V k
L = τLD

k
L;

4: Dk
S ∈ arg min‖DS‖1≤1〈PQ[Lk + Sk −M ], DS〉; V k

S = τSD
k
S ;

5: γ = 2
k+2 ;

6: Lk+1 = Lk + γ(V k
L −Lk);

7: Sk+1 = Sk + γ(V k
S − Sk);

8: end for

0 20 40 60 80 100
−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

iter. no.

lo
g 10

(r
el

. e
rr

.)

Lk

 

 

FW
FW−P

0 20 40 60 80 100
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

iter. no.

lo
g 10

(r
el

. e
rr

.)

Sk

 

 

FW
FW−P

Figure 3.1: Comparisons between Algorithms 5 and 6 for problem (3.3.1) on synthetic data. The data are gener-
ated in Matlab as m = 1000; n = 1000; r = 5; L0 = randn(m, r) ∗ randn(r, n); Omega = ones(m,n); S0 =
100 ∗ randn(m,n). ∗ (rand(m,n) < 0.01); M = L0 + S0 + randn(m,n); τL = norm_nuc(L0); τS =
norm(vec(S0), 1); The left figure plots log10(

∥∥Lk − L0
∥∥
F
/ ‖L0‖F ) versus the iteration number k. The right figure

plots log10(
∥∥Sk − S0

∥∥
F
/ ‖S0‖F ) versus k. The FW-P method is clearly more efficient than the straightforward FW

method in recovering L0 and S0.

closed form, and both can be computed in time (essentially) linear in the size of the input. Because V k
L is

rank-one, the algorithm can be viewed as performing a sequence of rank one updates.

The major disadvantage of Algorithm 5 is that S has only a one-sparse update at each iteration, since

V k
S = −τS · δi?j? · eki?(ekj?)> has only one nonzero entry. This is a significant disadvantage in practice,

as the optimal S? may have a relatively large number of nonzero entries. Indeed, in theory, the CPCP

relaxation works even when a constant fraction of the entries in S0 are nonzero. In applications such as

foreground-background separation, the number of nonzero entries in the target sparse term can be quite

large. The dashed curves in Figure 3.1 show the effect of this on the practical convergence of the algorithm,

on a simulated example of size 1, 000× 1, 000, in which about 1% of the entries in the target sparse matrix S0

are nonzero. As shown, the progress is quite slow.
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3.3.2 FW-P algorithm: combining Frank-Wolfe and projected gradient

To overcome the drawback of the naive Frank-Wolfe algorithm described above, we propose incorporating an

additional gradient projection step after each Frank-Wolfe update. This additional step updates the sparse

term S only, with the goal of accelerating convergence in these variables. At iteration k, let (Lk+1/2,Sk+1/2)

be the result produced by Frank-Wolfe. To produce the next iterate, we retain the low rank term Lk+1/2, but

set

Sk+1 = P‖·‖1≤τS
[
Sk+ 1

2 −∇Sl(Lk+ 1
2 ,Sk+ 1

2 )
]

(3.3.8)

= P‖·‖1≤τS
[
Sk+ 1

2 − PQ[Lk+ 1
2 + Sk+ 1

2 −M ]
]

; (3.3.9)

i.e. we simply take an additional projected gradient step in the sparse term S. The resulting algorithm is

presented as Algorithm 6 below. We call this method the FW-P algorithm, as it combines Frank-Wolfe steps

and projections. In Figure 3.1, we compare Algorithms 5 and 6 on synthetic data. In this example, the FW-P

method is clearly more efficient in recovering L0 and S0.

Algorithm 6 FW-P method for problem (3.3.1)

1: Initialization: L0 = S0 = 0;
2: for k = 0, 1, 2, · · · do
3: Dk

L ∈ arg min‖DL‖∗≤1〈PQ[Lk + Sk −M ], DL〉; V k
L = τLD

k
L;

4: Dk
S ∈ arg min‖DS‖1≤1〈PQ[Lk + Sk −M ], DS〉; V k

S = τSD
k
S ;

5: γ = 2
k+2 ;

6: Lk+ 1
2 = Lk + γ(V k

L −Lk);
7: Sk+ 1

2 = Sk + γ(V k
S − Sk);

8: Sk+1 = P‖·‖1≤τS
[
Sk+ 1

2 − PQ[Lk+ 1
2 + Sk+ 1

2 −M ]
]
;

9: Lk+1 = Lk+ 1
2 ;

10: end for

The convergence of Algorithm 6 can be analyzed by recognizing it as a specific instance of the generalized

Frank-Wolfe iteration in Algorithm 4. This projection step (3.3.9) can be regarded as a proximal step to set

Sk+1 as

arg min
‖S‖1≤τS

l̂k+ 1
2 (S) :=l(Lk+ 1

2 ,Sk+ 1
2 )+

〈∇Sl(Lk+ 1
2 ,Sk+ 1

2 ),S − Sk+ 1
2 〉+ 1

2

∥∥∥S − Sk+ 1
2

∥∥∥2

F
.

It can then be easily verified that

l̂k+ 1
2 (Sk+ 1

2 ) = l(Lk+ 1
2 ,Sk+ 1

2 ), and l̂k+ 1
2 (S) ≥ l(Lk+ 1

2 ,S) for any S, (3.3.10)
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since∇Sl(L,S) is 1-Lipschitz. This implies that the FW-P algorithm chooses a next iterate whose objective is

no worse than that produced by the Frank-Wolfe step:

l(Lk+1,Sk+1) = l(Lk+ 1
2 ,Sk+1) ≤ l̂k+ 1

2 (Sk+1) ≤ l̂k+ 1
2 (Sk+ 1

2 ) = l(Lk+ 1
2 ,Sk+ 1

2 ).

This is precisely the property that is required to invoke Algorithm 4 and Theorems 3.1 and 3.3. Using Lemmas

3.8 and 3.9 to estimate the Lipschitz constant of ∇l and the diameter of D, we obtain the following result,

which shows that FW-P retains the O(1/k) convergence rate of the original FW method:

Theorem 3.7 Let l? be the optimal value to problem (3.3.1), xk = (Lk,Sk) and vk = (V k
L ,V

k
S ) be the sequence

produced by Algorithm 6. Then we have

l(Lk,Sk)− l? ≤ 16(τ2
L + τ2

S)
k + 2 . (3.3.11)

Moreover, for anyK ≥ 1, there exists 1 ≤ k̃ ≤ K such that the surrogate duality gap (defined in (3.2.13)) satisfies

d(xk̃) =
〈
xk̃ − vk̃,∇l(xk̃)

〉
≤ 48(τ2

L + τ2
S)

K + 2 . (3.3.12)

Proof Substituting L = 2 (Lemma 3.5) and D ≤ 2
√
τ2
L + τ2

S (Lemma 3.6) into Theorems 3.1 and 3.3, we can

easily obtain the above result.

3.4 Frank-Wolfe-Thresholding Method for Penalized Problem

In this section, we develop a scalable algorithm for the penalized version of the CPCP problem,

min
L,S

f(L,S) .= 1
2 ‖PQ[L+ S −M ]‖2F + λL ‖L‖∗ + λS ‖S‖1 . (3.4.1)

In Section 3.4.1, we reformulate problem (3.4.1) into the form of (3.2.1) so that the Frank-Wolfe method can be

applied. In Section 3.4.2, we apply the Frank-Wolfe method directly to the reformulated problem, achieving

linear per-iteration cost and O(1/k) convergence in function value. However, because it updates the sparse

term one element at a time, it converges very slowly on typical numerical examples. In Section 3.4, we

introduce our FW-T method, which resolves this issue. Our FW-T method essentially exploits the Frank-Wolfe

step to handle the nuclear norm and a proximal gradient step to handle the `1-norm, while keeping iteration cost low

and retaining convergence guarantees.
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3.4.1 Reformulation as smooth, constrained optimization

Note that problem (3.4.1) has a non-differentiable objective function and an unbounded feasible set. To apply

the Frank-Wolfe method, we exploit a two-step reformulation to transform (3.4.1) into the form of (3.2.1).

First, we borrow ideas from [HJN14] and work with the epigraph reformulation of (3.4.1),

min g(L,S, tL, tS) .= 1
2 ‖PQ[L+ S −M ]‖2F + λLtL + λStS

s.t. ‖L‖∗ ≤ tL, ‖S‖1 ≤ tS , (3.4.2)

obtained by introducing auxiliary variables tL and tS . Now the objective function g(L,S, tL, tS) is differen-

tiable, with

∇Lg(L,S, tL, tS) = ∇Sg(L,S, tL, tS) = PQ[L+ S −M ], (3.4.3)

∇tLg(L,S, tL, tS) = λL, ∇tSg(L,S, tL, tS) = λS . (3.4.4)

A calculation, which we summarize in the following lemma, shows that the gradient ∇g(L,S, tL, tS) =

(∇Lg,∇Sg,∇tLg,∇tSg) is 2-Lipschitz:

Lemma 3.8 For all (L,S, tL, tS) and (L′,S′, t′L, t′S) feasible to (3.4.2),

‖∇g(L,S, tL, tS)−∇g(L′,S′, t′L, t′S)‖F ≤ 2 ‖(L,S, tL, tS)− (L′,S′, t′L, t′S)‖F . (3.4.5)

Proof Based on (3.4.3) and (3.4.4), it follows directly that

‖∇g(L,S, tL, tS)−∇g(L′,S′, t′L, t′S)‖2F ≤ 4 ‖L−L′‖2F + 4 ‖S − S′‖2F

≤ 4 ‖(L,S, tL, tS)− (L′,S′, t′L, t′S)‖2F ,

which implies the result.

However, the Frank-Wolfe method still cannot deal with (3.4.2), since its feasible region is unbounded. If

we could somehow obtain upper bounds on the optimal values of tL and tS : UL ≥ t?L and US ≥ t?S , then we

could solve the equivalent problem

min 1
2 ‖PQ[L+ S −M ]‖2F + λLtL + λStS (3.4.6)

s.t. ‖L‖∗ ≤ tL ≤ UL, ‖S‖1 ≤ tS ≤ US ,

which now has a compact and convex feasible set. One simple way to obtain such UL, US is as follows. One

trivial feasible solution to problem (3.4.2) is L = 0, S = 0, tL = 0, tS = 0. This solution has objective value
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1
2 ‖PQ[M ]‖2F . Hence, the optimal objective value is no larger than this. This implies that for any optimal

t?L, t
?
S ,

t?L ≤
1

2λL
‖PQ[M ]‖2F , t?S ≤

1
2λS
‖PQ[M ]‖2F . (3.4.7)

Hence, we can always choose

UL = 1
2λL
‖PQ[M ]‖2F , US = 1

2λS
‖PQ[M ]‖2F (3.4.8)

to produce a valid, bounded feasible region. The following lemma bounds its diameter D:

Lemma 3.9 The feasible set D = {(L,S, tL, tS) | ‖L‖∗ ≤ tL ≤ UL, ‖S‖1 ≤ tS ≤ US} has diameter D ≤
√

5 ·
√
U2
L + U2

S .

Proof Since for any Z = (L,S, tL, tS), Z ′ = (L′,S′, t′L, t′S) ∈ D, we have

‖Z −Z ′‖2F = ‖L−L′‖2F + ‖S − S′‖2F + (tL − t′L)2 + (tS − t′S)2

≤ (‖L‖F + ‖L′‖F )2 + (‖S‖F + ‖S′‖F )2 + (tL − t′L)2 + (tS − t′S)2

≤ (‖L‖∗ + ‖L′‖∗)
2 + (‖S‖1 + ‖S′‖1)2 + (tL − t′L)2 + (tS − t′S)2

≤ (UL + UL)2 + (US + US)2 + U2
L + U2

S

= 5(U2
L + U2

S),

which implies the result.

With these modifications, we can apply Frank-Wolfe directly to obtain a solution (L̂, Ŝ, t̂L, t̂S) to (3.4.6),

and hence to produce a solution (L̂, Ŝ) to the original problem (3.4.1). In subsection 3.4.2, we describe how

to do this. Unfortunately, this straightforward solution has two main disadvantages. First, as in the norm

constrained case, it produces only one-sparse updates to S, which results in slow convergence. Second,

the exact primal convergence rate in Theorem 3.1 depends on the diameter of the feasible set, which in

turn depends on the accuracy of our (crude) upper bounds UL and US . In subsection 3.4.3, we show how

to remedy both issues, yielding a Frank-Wolfe-Thresholding method that performs significantly better in

practice.
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3.4.2 Frank-Wolfe for problem (3.4.6)

Applying the Frank-Wolfe method in Algorithm 3 generates a sequence of iterates xk = (Lk,Sk, tkL, tkS).

Using the expressions for the gradient in (3.4.3) and (3.4.4), at each iteration, vk = (V k
L ,V

k
S , V

k
tL , V

k
tS ) is

generated by solving the linearized subproblem

vk ∈ arg min
v∈D

〈
PQ[Lk + Sk −M ],VL + VS

〉
+ λLVtL + λSVtS , (3.4.9)

which can be decoupled into two independent subproblems,

(V k
L , V

k
tL) ∈ arg min

‖VL‖∗≤VtL≤UL
gL(VL, VtL) .=

〈
PQ[Lk + Sk −M ],VL

〉
+ λLVtL (3.4.10)

(V k
S , V

k
tS ) ∈ arg min

‖VS‖1≤VtS≤US
gS(VS , VtS ) .=

〈
PQ[Lk + Sk −M ],VS

〉
+ λSVtS . (3.4.11)

Let us consider problem (3.4.10) first. Set

Dk
L ∈ arg min

‖DL‖∗≤1
ĝL(DL) .=

〈
PQ[Lk + Sk −M ],DL

〉
+ λL. (3.4.12)

Because gL(VL, VtL) is a homogeneous function, i.e., gL(αVL, αVtL) = αgL(VL, VtL), for any α ∈ R, its

optimal value gL(V k
L , V

k
tL) = V ktL ĝL(Dk

L). Hence V ktL = UL if ĝL(Dk
L) < 0, and V ktL = 0 if ĝL(Dk

L) > 0. From

this observation, it can be easily verified (see also [HJN14, Lemma 1] for a more general treatment) that

(V k
L , V

k
tL) ∈


{(0, 0)} if ĝL(Dk

L) > 0

conv{(0, 0), UL(Dk
L, 1)} if ĝL(Dk

L) = 0{
UL(Dk

L, 1)
}

if ĝL(Dk
L) < 0.

(3.4.13)

In a similar manner, we can update (V k
S , V

k
tS ). This leads fairly directly to the implementation of the Frank-

Wolfe method for problem (3.4.6), described in Algorithm 7. As a direct corollary of Theorem 3.1, using

parameters calculated in Lemmas 3.8 and 3.9, we have

Corollary 3.10 Let x? = (L?,S?, t?L, t?S) be an optimal solution to (3.4.6). For {xk} generated by Algorithm 7,

we have for k = 0, 1, 2, . . . ,

g(xk)− g(x?) ≤ 20(U2
L + U2

S)
k + 2 . (3.4.14)

Proof Applying Theorem 3.1 with parameters calculated in Lemmas 3.8 and 3.9, we directly have

g(xk)− g(x?) ≤
2 · 2 ·

(√
5(U2

L + U2
S)
)2

k + 2 = 20(U2
L + U2

S)
k + 2 . (3.4.15)
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Algorithm 7 Frank-Wolfe method for problem (3.4.6)

1: Initialization: L0 = S0 = 0; t0L = t0S = 0;
2: for k = 0, 1, 2, . . . do
3: Dk

L ∈ arg min‖DL‖∗≤1〈PQ[Lk + Sk −M ], DL〉;
4: Dk

S ∈ arg min‖DS‖1≤1〈PQ[Lk + Sk −M ], DS〉;
5: if λL ≥ −〈PQ[Lk + Sk −M ], Dk

L〉 then
6: V k

L = 0; V ktL = 0
7: else
8: V k

L = ULD
k
L, V ktL = UL;

9: end if
10: if λS ≥ −〈PQ[Lk + Sk −M ], Dk

S〉 then
11: V k

S = 0; V ktS = 0;
12: else
13: V k

S = USD
k
S , V ktS = US ;

14: end if
15: γ = 2

k+2 ;
16: Lk+1 = (1− γ)Lk + γV k

L , t
k+1
L = (1− γ)tkL + γV ktL ;

17: Sk+1 = (1− γ)Sk + γV k
S , t

k+1
S = (1− γ)tkS + γV ktS ;

18: end for

A more careful calculation below slightly improves the constant in (3.4.15).

g(xk+1) = g(xk + γ(vk − xk))

≤ g(xk) + γ
〈
∇g(xk),vk − xk

〉
+ γ2 ∥∥V k

L −Lk
∥∥2
F

+ γ2 ∥∥V k
S − Sk

∥∥2
F

≤ g(xk) + γ
〈
∇g(xk),vk − xk

〉
+ 4γ2(U2

L + U2
S), (3.4.16)

where the second line holds by noting that g is only linear in tL and tS ; the last line holds as

∥∥V k
L −Lk

∥∥2
F
≤ (

∥∥V k
L

∥∥
F

+
∥∥Lk∥∥

F
)2 ≤ (UL + UL)2 = 4U2

L, and∥∥V k
S − Sk

∥∥2
F
≤ (

∥∥V k
S

∥∥
F

+
∥∥Sk∥∥

F
)2 ≤ (US + US)2 = 4U2

S .

Following the arguments in the proof of Theorem 1 with (3.2.10) replaced by (3.4.16), we can easily obtain

that

g(xk)− g(x?) ≤ 16(U2
L + U2

S)
k + 2 .

In addition to the above convergence result, another major advantage of Algorithm 7 is the simplicity of

the update rules (lines 3-4 in Algorithm 7). Both have closed-form solutions that can be computed in time

(essentially) linearly dependent on the size of the input.

However, two clear limitations substantially hinder Algorithm 7’s efficiency. First, as in the norm con-
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strained case, V k
S has only one nonzero entry, so S has a one-sparse update in each iteration. Second, the

exact rate of convergence relies on our (crude) guesses of UL and US (Corollary 3.10). In the next subsection,

we present remedies to resolve both issues.

3.4.3 FW-T algorithm: combining Frank-Wolfe and proximal methods

To alleviate the difficulties faced byAlgorithm7, we propose a new algorithm called Frank-Wolfe-Thresholding

(FW-T) (Algorithm 8), that combines a modified FW step with a proximal gradient step. Below we highlight

the key features of FW-T.

Proximal gradient step for S To update S in a more efficient way, we incorporate an additional proximal

gradient step for S. At iteration k, let (Lk+ 1
2 ,Sk+ 1

2 ) be the result produced by Frank-Wolfe step. To produce

the next iterate, we retain the low-rank term Lk+ 1
2 , but execute a proximal gradient step for the function

f(Lk+ 1
2 ,S) at the point Sk+ 1

2 , i.e.

Sk+1 ∈ arg min
S

〈
∇Sf(Lk+ 1

2 ,Sk+ 1
2 ), S − Sk+ 1

2

〉
+ 1

2

∥∥∥S − Sk+ 1
2

∥∥∥2

F
+ λS ‖S‖1

= arg min
S

〈
PQ[Lk+ 1

2 + Sk+ 1
2 −M ],S − Sk+ 1

2

〉
+ 1

2

∥∥∥S − Sk+ 1
2

∥∥∥2

F
+ λS ‖S‖1 (3.4.17)

which can be easily computed using the soft-thresholding operator:

Sk+1 = TλS
[
Sk+ 1

2 − PQ[Lk+ 1
2 + Sk+ 1

2 −M ]
]
. (3.4.18)

Exact line search For the Frank-Wolfe step, instead of choosing the fixed step length 2
k+2 , we implement an

exact line search by solving a two-dimensional quadratic problem (3.4.20), as in [HJN14]. This modification

turns out to be crucial to achieve a primal convergence result that only weakly depends on the tightness of

our guesses UL and US .

Adaptive updates of UL and US We initialize UL and US using the crude bound (3.4.8). Then, at the end

of the k-iteration, we respectively update

Uk+1
L = g(Lk+1,Sk+1, tk+1

L , tk+1
S )/λL, Uk+1

S = g(Lk+1,Sk+1, tk+1
L , tk+1

S )/λS . (3.4.19)

This scheme maintains the property that Uk+1
L ≥ t?L and Uk+1

S ≥ t?S . Moreover, we prove (Lemma 3.11) that g

is non-increasing through our algorithm, and so this scheme produces a sequence of tighter upper bounds
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Algorithm 8 FW-T method for problem (3.4.1)
1: Input: data matrixM ∈ Rm×n; weights λL, λS > 0; max iteration number T ;
2: Initialization: L0 = S0 = 0; t0L = t0S = 0; U0

L = g(L0,S0, t0L, t
0
S)/λL; U0

S = g(L0,S0, t0L, t
0
S)/λS ;

3: for k = 0, 1, 2, · · · , T do
4: same as lines 3-14 in Algorithm 7;

5:

(
Lk+ 1

2 ,Sk+ 1
2 , t

k+ 1
2

L , t
k+ 1

2
S

)
is computed as an optimizer to

min 1
2 ‖PQ[L+ S −M ]‖2F + λLtL + λStS (3.4.20)

s.t.
(
L
tL

)
∈ conv

{(
Lk

tkL

)
,

(
V k
L

V ktL

)}
(
S
tS

)
∈ conv

{(
Sk

tkS

)
,

(
V k
S

V ktS

)}
;

6: Sk+1 = T
[
Sk+ 1

2 − PQ[Lk+ 1
2 + Sk+ 1

2 −M ], λS
]
;

7: Lk+1 = Lk+ 1
2 , tk+1

L = t
k+ 1

2
L ; tk+1

S =
∥∥Sk+1

∥∥
1;

8: Uk+1
L = g(Lk+1,Sk+1, tk+1

L , tk+1
S )/λL;

9: Uk+1
S = g(Lk+1,Sk+1, tk+1

L , tk+1
S )/λS ;

10: end for

for U?L and U?S . Although this dynamic scheme does not improve the theoretical convergence result, some

acceleration is empirically exhibited.

Convergence analysis Since both the FW step and the proximal gradient step do not increase the objective

value, we can easily recognize FW-T method as a descent algorithm:

Lemma 3.11 Let {(Lk,Sk, tkL, tkS)} be the sequence of iterates produced by the FW-T algorithm. For each

k = 0, 1, 2 · · · ,

g(Lk+1,Sk+1, tk+1
L , tk+1

S ) ≤ g(Lk+ 1
2 ,Sk+ 1

2 , t
k+ 1

2
L , t

k+ 1
2

S ) ≤ g(Lk,Sk, tkL, tkS). (3.4.21)

Proof Since (Lk,Sk, tkL, tkS) is always feasible to the quadratic program (3.4.20),

g(Lk+ 1
2 ,Sk+ 1

2 , t
k+ 1

2
L , t

k+ 1
2

S ) ≤ g(Lk,Sk, tkL, tkS). (3.4.22)

Based on (3.4.17), the threshold step (line 6 in Algorithm 3) can be written as

Sk+1 = arg min
S

ĝk+ 1
2 (S) .= 1

2

∥∥∥PQ[Lk+ 1
2 + Sk+ 1

2 −M ]
∥∥∥2

F
+ λLt

k+ 1
2

L + λS ‖S‖1

+ 〈PQ[Lk+ 1
2 + Sk+ 1

2 −M ], S − Sk+ 1
2 〉+ 1

2

∥∥∥S − Sk+ 1
2

∥∥∥2

F
.
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The following properties of ĝk+ 1
2 (·) can be easily verified

ĝk+ 1
2 (Sk+ 1

2 ) = g(Lk+ 1
2 ,Sk+ 1

2 , t
k+ 1

2
L , ‖Sk+ 1

2 ‖1) ≤ g(Lk+ 1
2 ,Sk+ 1

2 , t
k+ 1

2
L , t

k+ 1
2

S );

ĝk+ 1
2 (S) ≥ g(Lk+ 1

2 ,S, t
k+ 1

2
L , ‖S‖1), for any S.

Therefore, we have

g(Lk+1,Sk+1, tk+1
L , tk+1

S ) = g(Lk+ 1
2 ,Sk+1, t

k+ 1
2

L , tk+1
S ) ≤ ĝk+ 1

2 (Sk+1)

≤ ĝk+ 1
2 (Sk+ 1

2 ) ≤ g(Lk+ 1
2 ,Sk+ 1

2 , t
k+ 1

2
L , t

k+ 1
2

S ) (3.4.23)

Combining (3.4.22) and (3.4.23), we obtain

g(Lk+1,Sk+1, tk+1
L , tk+1

S ) ≤ g(Lk+ 1
2 ,Sk+ 1

2 , t
k+ 1

2
L , t

k+ 1
2

S ) ≤ g(Lk,Sk, tkL, tkS).

Moreover, we can establish primal convergence (almost) independent of U0
L and U0

S :

Theorem 3.12 Let r?L and r?S be the smallest radii such that{
(L,S)

∣∣∣∣ f(L,S) ≤ g(L0,S0, t0L, t
0
S) = 1

2 ‖PQ[M ]‖2F

}
⊆ B(r?L)×B(r?S), (3.4.24)

where B(r) .= {X ∈ Rm×n| ‖X‖F ≤ r} for any r ≥ 0.a Then for the sequence {(Lk,Sk, tkL, tkS)} generated by

Algorithm 8, we have

g(Lk,Sk, tkL, tkS)− g(L?,S?, t?L, t?S) (3.4.25)

≤ min{4(t?L + r?L)2 + 4(t?S + r?S)2, 16(U0
L)2 + 16(U0

S)2}
k + 2 .

aSince the objective function in problem (3.4.1) is coercive, i.e. limk→+∞ f(Lk,Sk) = +∞ for any sequence (Lk,Sk) such
that limk→+∞

∥∥(Lk,Sk)
∥∥
F

= +∞, clearly r?L ≥ 0 and r?S ≥ 0 exist.

Proof For notational convenience, we denote

xk = (Lk,Sk, tkL, tkS), x? = (L?,S?, t?L, t?S) and vk = (V k
L ,V

k
S ,V

k
tL ,V

k
tS ).

For any point x = (L,S, tL, tS) ∈ Rm×n × Rm×n × R× R, we adopt the notation that L[x] = L, S[x] = S,

tL[x] = tL and tS [x] = tS .

Since g(xk) − g(x?) ≤ 16(U0
L)2+16(U0

S)2

k+2 can be easily established following the proof of Corollary 3.10,

below we will focus on the other part that g(xk)− g(x?) ≤ 4(t?L+r?L)2+4(t?S+r?S)2

k+2 .
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Let us first make two simple observations.

Since f(L?,S?) ≤ g(Lk,Sk, tkL, tkS), we have

UkL = g(Lk,Sk, tkL, tkS)/λL ≥ t?L and UkS = g(Lk,Sk, tkL, tkS)/λS ≥ t?S . (3.4.26)

Therefore, our UkL and UkS always bound t?L and t?S from above.

From Lemma 3.11, g(Lk,Sk, tkL, tkS) is non-increasing,

f(Lk,Sk) ≤ g(Lk,Sk, tkL, tkS) ≤ g(L0,S0, t0L, t
0
S),

which implies that (Lk,Sk) ⊆ B(r?L)×B(r?S), i.e.
∥∥Lk∥∥

F
≤ r?L and

∥∥Sk∥∥
F
≤ r?S .

Let us now consider the k-th iteration. Similar to the proof in [HJN14], we introduce the auxiliary point

vk+ = ( t
?
L

Uk
L

V k
L ,

t?S
Uk
S

V k
S ,

t?L
Uk
L

V k
tL ,

t?S
Uk
S

V k
tS ). Then based on our argument for (3.4.13), it can be easily verified that

(L[vk+], tL[vk+]) ∈ arg min
‖VL‖∗≤VtL≤t

?
L

gL(VL, VtL) (3.4.27)

(S[vk+], tS [vk+]) ∈ arg min
‖VS‖1≤VtS≤t

?
S

gS(VS , VtS ). (3.4.28)

Recall γ = 2
k+2 . We have

g(xk+ 1
2 )

≤ g(xk + γ(vk+ − xk))

≤ g(xk) + γ〈∇g(xk), vk+ − xk〉+ γ2
(∥∥L[vk+]−L[xk]

∥∥2
F

+
∥∥S[vk+]− S[xk]

∥∥2
F

)
≤ g(xk) + γ

(
gL(L[vk+ − xk], tL[vk+ − xk]) + gS(S[vk+ − xk], tS [vk+ − xk])

)
+γ2 ((t?L + r?L)2 + (t?S + r?S)2)

≤ g(xk) + γ
(
gL(L[x? − xk], tL[x? − xk]) + gS(S[x? − xk], tS [x? − xk])

)
+γ2 ((t?L + r?L)2 + (t?S + r?S)2)

= g(xk) + γ〈∇g(xk), x? − xk〉+ γ2 ((t?L + r?L)2 + (t?S + r?S)2)
≤ g(xk) + γ

(
g(x?)− g(xk)

)
+ γ2 ((t?L + r?L)2 + (t?S + r?S)2) ,

where the first inequality holds since xk + γ(vk+ − xk) is feasible to the quadratic program (3.4.20) while

xk+ 1
2 minimizes it; the third inequality is due to the facts that

∥∥L[vk+]−L[xk]
∥∥
F
≤

∥∥L[vk+]
∥∥
F

+
∥∥L[xk]

∥∥
F
≤
∥∥L[vk+]

∥∥
∗ +

∥∥L[xk]
∥∥
F
≤ t?L + r?L
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∥∥S[vk+]− S[xk]
∥∥
F
≤

∥∥S[vk+]
∥∥
F

+
∥∥S[xk]

∥∥
F
≤
∥∥S[vk+]

∥∥
1 +

∥∥S[xk]
∥∥
F
≤ t?S + r?S ;

the fourth inequality holds as (L[x?], tL[x?]) and (S[x?], tS [x?]) are respectively feasible to (3.4.27) and

(3.4.28) while (L[vk+], tL[vk+]) and (S[vk+], tS [vk+]) respectively minimize (3.4.27) and (3.4.28);

Therefore, we obtain

g(xk+ 1
2 )− g(x?) ≤ (1− γ)

(
g(xk)− g(x?)

)
+ γ2 ((t?L + r?L)2 + (t?S + r?S)2) .

Moreover, by Lemma 3.11, we have

g(xk+1) ≤ g(xk+ 1
2 ).

Thus, we obtain the recurrence

g(xk+1)− g(x?) ≤ (1− γ)
(
g(xk)− g(x?)

)
+ γ2 ((t?L + r?L)2 + (t?S + r?S)2) .

Applying mathematical induction, one can easily obtain that

g(Lk,Sk, tkL, tkS)− g(L?,S?, t?L, t?S) ≤
4
(
(t?L + r?L)2 + (t?S + r?S)2)

k + 2 .

Since U0
L and U0

S are quite crude upper bounds for t?L and t?S , 16(U0
L)2 + 16(U0

S)2 could be much larger

than 4(t?L + r?L)2 + 4(t?S + r?S)2. Therefore, this primal convergence results depend on U0
L and U0

S in a very

weak manner.

However, the convergence result of the surrogate duality gap d(xk) still hinges upon the upper bounds:

Theorem 3.13 Let xk denote (Lk,Sk, tkL, tkS) generated by Algorithm 8. Then for any K ≥ 1, there exists

1 ≤ k̃ ≤ K such that

g(xk̃)− g(x?) ≤ d(xk̃) ≤
48
(
(U0

L)2 + (U0
S)2)

K + 2 . (3.4.29)

Proof Define ∆k = g(xk)− g(x?). Following (3.4.16), we have

∆k+1 ≤ ∆k + γ
〈
∇g(xk),vk − xk

〉
+ 4γ2 ((U0

L)2 + (U0
S)2) . (3.4.30)

Then following the arguments in the proof of Theorem 2 with (3.2.17) replaced by (3.4.30), we can easily

obtain the result.
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Stopping criterion Compared to the convergence of g(xk) (Theorem 3.12), the convergence result for d(xk)

can be much slower (Theorem 3.13). Therefore, here the surrogate duality gap d(·) is not that suitable to

serve as a stopping criterion. Consequently, in our implementation, we terminate Algorithm 8 if

|
(
g(xk+1)− g(xk)

)
|/g(xk) ≤ ε, (3.4.31)

for five consecutive iterations.

3.5 Numerical Experiments

In this section, we report numerical results obtained by applying our FW-T method (Algorithm 8) to problem

(3.1.5) with real data arising from applications considered in [CLMW11]: foreground/background separation in

surveillance videos, and shadow and specularity removal from face images.

Given observations {M0(i, j) | (i, j) ∈ Ω}, where Ω ⊆ {1, . . . ,m} × {1, . . . , n} is the index set of the

observable entries inM0 ∈ Rm×n, we assigned weights

λL = δρ ‖PΩ[M0]‖F and λS = δ
√
ρ ‖PΩ[M0]‖F /

√
max(m,n)

to problem (3.1.5), 3 where ρ = |Ω|/mn and δ is chosen as 0.001 for the surveillance problem and 0.01 for the

face problem.

We compared our FW-T method with the popular first-order methods iterative soft-thresholding algorithm

(ISTA) and fast iterative soft-thresholding algorithm (FISTA) [BT09], both of whose implementations used partial

singular value decomposition (SVD). In subsection 3.5.1, we provided detailed descriptions and implementations

of ISTA and FISTA.

We set ε = 10−3 in FW-T’s stopping criterion (3.4.31),4 and terminated ISTA and FISTA whenever they

reached the objective value returned by the FW-T method.5 All the experiments were conducted on a

computer with Intel Xeon E5-2630 Processor (12 cores at 2.4 GHz), and 64GB RAM running Matlab R2012b

(64 bits).

3The ratio λL/λS =
√
ρmax(m,n) follows the suggestion in [CLMW11]. For applications in computer vision at least, our choices

in λL and λS seem to be quite robust, although it is possible to improve the performance by making slight adjustments to our current
settings of λL and λS .

4As discussed in [YZ11, YY13a], with noisy data, solving optimization problems to high accuracy does not necessarily improve the
recovery quality. Consequently, we set ε to a modest value.

5All codes are available at: https://sites.google.com/site/mucun1988/publi
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3.5.1 ISTA & FISTA for problem (3.1.5)

Iterative soft-thresholding algorithm (ISTA), is an efficient way to tackle unconstrained nonsmooth optimization

problem especially at large scale. ISTA follows the general idea by iteratively minimizing an upper bound of

the original objective. In particular, when applied to problem (3.1.5) of our interest, ISTA updates (L,S) for

the k-th iteration by solving

(Lk+1,Sk+1) = arg min
L,S

〈 ∇Ll(Lk,Sk)

∇Sl(Lk,Sk)

 ,

 L−Lk

S − Sk

〉+ (3.5.1)

Lf
2

∥∥∥∥∥∥∥
 L

S

−
 Lk

Sk


∥∥∥∥∥∥∥

2

F

+ λL ‖L‖∗ + λS ‖S‖1 .

HereLf = 2denotes the Lipschitz constant of∇l(L,S)with respect to (L,S), and∇Ll(Lk,Sk) = ∇Sl(Lk,Sk) =

PΩ[Lk + Sk −M ]. Since L and S are decoupled in (3.5.1), equivalently we have

Lk+1 = arg min
L

∥∥∥∥L− (Lk − 1
2PΩ[Lk + Sk −M ]

)∥∥∥∥2

F

+ λL ‖L‖∗ , (3.5.2)

Sk+1 = arg min
S

∥∥∥∥S − (Sk − 1
2PΩ[Lk + Sk −M ]

)∥∥∥∥2

F

+ λS ‖S‖1 . (3.5.3)

The solution to problem (3.5.3) can be given explicitly in terms of the proximal mapping of ‖·‖1 as introduced

in Section 2.2, i.e.,

Sk+1 = TλS/2
[
Sk − 1

2PΩ[Lk + Sk −M ]
]
.

For a matrix X and any τ ≥ 0, let Dτ (X) denote the singular value thresholding operator Dτ (X) =

UTτ (Σ)V >, where X = UΣV > is the singular value decomposition of X . It is not difficult to show

[CCS10, MGC11] that the solution to problem (3.5.2) can be given explicitly by

Lk+1 = DλL/2
[
Lk − 1

2PΩ[Lk + Sk −M ]
]
.

Algorithm 9 summarizes our ISTA implementation for problem (3.1.5).
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Algorithm 9 ISTA for problem (3.1.5)

1: Initialization: L0 = 0, S0 = 0;

2: for k = 0, 1, 2, · · · do

3: Lk+1 = DλL/2
[
Lk − 1

2PΩ[Lk + Sk −M ]
]
;

4: Sk+1 = TλS/2
[
Sk − 1

2PΩ[Lk + Sk −M ]
]
;

5: end for

Regarding ISTA’s speed of convergence, it can be proved that f(Lk,Sk)− f? = O(1/k), where f? denotes

the optimal value of problem (3.1.5).

Fast iterative soft-thresholding algorithm (FISTA) introduced in [BT09], is an accelerated version of ISTA,

which incorporate a momentum step borrowed from Nesterov’s optimal gradient scheme [Nes83]. For FISTA,

a better convergence result, f(Lk,Sk) − f? = O(1/k2), can be achieved with a cost per iteration that is

comparable to ISTA. Algorithm 10 summarizes our FISTA implementation for problem (3.1.5).

Algorithm 10 FISTA for problem (3.1.5)

1: Initialization: L̂0 = L0 = 0, Ŝ0 = S0 = 0, t0 = 1;

2: for k = 0, 1, 2, · · · do

3: Lk+1 = DλL/2
[
L̂k − 1

2PΩ[L̂k + Ŝk −M ]
]
;

4: Sk+1 = TλS/2
[
Ŝk − 1

2PΩ[L̂k + Ŝk −M ]
]
;

5: tk+1 = 1+
√

1+4(tk)2

2 ;

6: L̂k+1 = Lk+1 + tk−1
tk+1 (Lk+1 −Lk);

7: Ŝk+1 = Sk+1 + tk−1
tk+1 (Sk+1 − Sk);

8: end for

Partial SVD In each iteration of either ISTA or FISTA, we only need those singular values that are larger

than λS/2 and their corresponding singular vectors. Therefore, a partial SVD can be utilized to reduce the

computational burden of a full SVD. Since most partial SVD software packages (e.g. PROPACK [Lar04])

require specifying in advance the number of top singular values and singular vectors to compute, we

heuristically determine this number (denoted as svk at iteration k). Specifically, let d = min{m,n}, and svpk

denote the number of computed singular values that were larger than λL/2 in the k-th iteration. Similar to
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[TY11], in our implementation, we start with sv0 = d/10, and adjust svk dynamically as follows:

svk+1 =


min{svpk + 1, d} if svpk < svk

min{svpk + round(0.05d), d} otherwise.

3.5.2 Foreground-background separation in surveillance video

In surveillance videos, due to the strong correlation between frames, it is natural to model the background

as low rank; while foreground objects, such as cars or pedestrians, that normally occupy only a fraction

of the video, can be treated as sparse. So, if we stack each frame as a column in the data matrixM0, it

is reasonable to assume that M0 ≈ L0 + S0, where L0 captures the background and S0 represents the

foreground movements. Here, we solved problem (3.1.5) for videos introduced in [LHGT04] and [JRP07].

The observed entries were sampled uniformly with ratio ρ chosen respectively as 1, 0.8 and 0.6.

Table 3.1 summarizes the numerical performances of FW-T, ISTA and FISTA in terms of the iteration

number and running time (in seconds). As can be observed, our FW-T method is more efficient than ISTA

and FISTA, and the advantage becomes more prominent as the size of the data grows and the observations

are more compressed (with smaller sampling ratio ρ). Even though the FW-T method took more iterations

than FISTA and in many cases than ISTA, it took less time in many cases but one due to its low per-iteration

cost. To illustrate this more clearly, in Figure 3.2, we plot the per-iteration cost of these three methods on the

Airport and Square videos as a function of the number of frames. The computational cost of FW-T scales

linearly with the size of the data, whereas the cost of the other methods increases superlinearly. Another

observation is that as the number of measurements decreases, the iteration numbers of both ISTA and FISTA

methods grow substantially, while those of the FW-T method remain quite stable. This explains the more

favorable behavior of the FW-T method when ρ is small. In Figure 3.3, frames of the original videos, the

backgrounds and the foregrounds produced by the FW-T method are presented, and the separation achieved

is quite satisfactory.

3.5.3 Shadow and specularity removal from face images

Images taken under varying illumination can also be modeled as the superposition of low-rank and sparse

components. Here, the data matrix M0 is again formed by stacking each image as a column. The low-

rank term L0 captures the smooth variations [BJ03], while the sparse term S0 represents cast shadows and

specularities [WYG+09, ZMKW13]. CPCP can be used to remove the shadows and specularities [CLMW11,
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Figure 3.2: Per-iteration cost vs. the number of frames in Airport and Square videos with full observation. The
per-iteration cost of our FW-T method grows linearly with the size of data, in contrast with the superlinear per-iteration
cost of ISTA and FISTA. That makes the FW-T method more advantageous or may even be the only feasible choice for
large problems.

ZMKW13]. Here, we solved problem (3.1.4) for YaleB face images [GBK01]. Table 3.2 summarizes the

numerical performances of FW-T, ISTA and FISTA. Similar to the observation made regarding the above

surveillance video experiment, the number of iterations required by ISTA and FISTA grows much faster

than it does for the FW-T method when ρ decreases. However, unlike in those tests, where the number of

frames in each dataset was at least several thousand, the number of frames here is just 65. This prevents

the FW-T method from significantly benefiting from its linear per-iteration cost and consequently, while

FW-T still outperforms ISTA for values of ρ ≤ 0.7, the FISTA method is always the fastest. In Figure 3.4, the

original images, the low-rank and the sparse parts produced by the FW-T method are presented. Visually,

the recovered low-rank component is smoother and better conditioned for face recognition than the original

image, while the sparse component corresponds to shadows and specularities.

3.6 Discussion

In this chapter, we have proposed scalable algorithms called Frank-Wolfe-Projection (FW-P) and Frank-Wolfe-

Thresholding (FW-T) for norm constrained and penalized versions of CPCP. Essentially, these methods

combine classical ideas in Frank-Wolfe and Proximal methods to achieve linear per-iteration cost, O(1/k)

convergence in function value and practical efficiency in updating the sparse component. Extensive numerical

experiments were conducted on computer vision related applications of CPCP, which demonstrated the

great potential of our methods for dealing with problems of very large scale. Moreover, the general idea of
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M0 L̂ Ŝ PΩ[M0] L̂ Ŝ

Figure 3.3: Surveillance videos. The videos from top to bottom are respectively Lobby, Campus, Escalator, Mall,
Restaurant, Hall, Airport and Square. The left panel presents videos with full observation (ρ = 1) and the right
one presents videos with partial observation (ρ = 0.6). Visually, the low-rank component successfully recovers the
background and the sparse one captures the moving objects (e.g. vehicles, pedestrians) in the foreground.

leveraging different methods to deal with different functions may be valuable for other demixing problems.

We are also aware that though our algorithms are extremely efficient in the beginning iterations and

quickly arrive at an approximate solution of practical significance, they become less competitive in solutions

of very high accuracy, due to the nature of Frank-Wolfe. This suggests further hybridization under our

framework (e.g. using nonconvex approaches to handle the nuclear norm) might be utilized in certain

applications (see [Lau12] for research in that direction).



CHAPTER 3. ROBUST LOW-RANK TENSOR RECOVERY 68

Table 3.1: Comparisons of FW-T, ISTA and FISTA on surveillance video data. The advantage of our FW-T method
becomes prominent when the data are at large scale and compressed (i.e. the small ρ scenarios).

FW-T ISTA FISTA
Data ρ iter. time iter. time iter. time

Lobby 1.0 96 1.94e+02 144 3.64e+02 41 1.60e+02

(20480× 1000) 0.8 104 2.33e+02 216 1.03e+03 52 3.55e+02

0.6 133 3.12e+02 380 1.67e+03 74 5.10e+02

Campus 1.0 45 1.56e+02 78 1.49e+03 23 4.63e+02

(20480× 1439) 0.8 44 1.57e+02 122 2.34e+03 30 6.45e+02

0.6 41 1.39e+02 218 4.27e+03 43 1.08e+03

Escalator 1.0 81 7.40e+02 58 4.19e+03 25 2.18e+03
(20800× 3417) 0.8 80 7.35e+02 90 8.18e+03 32 3.46e+03

0.6 82 7.68e+02 162 1.83e+04 43 5.73e+03

Mall 1.0 38 4.70e+02 110 5.03e+03 35 1.73e+03
(81920× 1286) 0.8 35 4.58e+02 171 7.32e+03 44 2.34e+03

0.6 44 5.09e+02 308 1.31e+04 62 3.42e+03

Restaurant 1.0 70 5.44e+02 52 3.01e+03 20 1.63e+03
(19200× 3055) 0.8 74 5.51e+02 81 4.84e+03 26 1.82e+03

0.6 76 5.73e+02 144 9.93e+03 38 3.31e+03

Hall 1.0 60 6.33e+02 52 2.98e+03 21 1.39e+03
(25344× 3584) 0.8 62 6.52e+02 81 6.45e+03 28 2.90e+03

0.6 70 7.43e+02 144 1.42e+04 39 4.94e+03

Airport 1.0 130 6.42e+03 29 2.37e+04 14 1.37e+04

(25344× 15730) 0.8 136 6.65e+03 45 6.92e+04 18 4.27e+04

0.6 154 7.72e+03 77 1.78e+05 24 7.32e+04

Square 1.0 179 1.24e+04 29 3.15e+04 13 1.51e+04

(19200× 28181) 0.8 181 1.26e+04 44 1.04e+05 17 6.03e+04

0.6 191 1.31e+04 78 2.63e+05 22 9.88e+05
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Table 3.2: Comparisons of FW-T, ISTA and FISTA on YaleB face data. The number of frames, 65, is relatively small for
this application. This disables the FW-T method to significantly benefit from its linear per-iteration cost and consequently
the FISTA method consistently has a better performance.

FW-T ISTA FISTA
Data ρ iter. time iter. time iter. time

YaleB01 1.0 65 34.0 49 21.4 17 8.69
(32256× 65) 0.9 68 35.6 59 23.9 19 8.62

0.8 79 42.2 76 35.3 22 10.9
0.7 76 39.9 97 44.0 25 11.1
0.6 71 37.5 127 50.2 29 12.9
0.5 80 40.5 182 77.9 35 15.2

YaleB02 1.0 64 34.6 51 19.2 18 7.31
(32256× 65) 0.9 64 26.8 61 22.6 20 7.32

0.8 71 33.9 78 27.7 22 8.61
0.7 71 31.3 99 36.6 26 11.0
0.6 73 36.6 132 53.7 30 12.4
0.5 63 28.0 177 64.6 35 13.4

YaleB03 1.0 62 26.0 49 16.6 18 6.00
(32256× 65) 0.9 71 27.5 62 20.3 20 6.43

0.8 69 30.0 78 26.0 22 8.32
0.7 78 31.5 101 32.9 26 9.00
0.6 73 28.7 132 40.4 30 10.6
0.5 70 28.0 181 60.3 36 12.8

YaleB04 1.0 63 28.5 47 16.6 17 6.35
(32256× 65) 0.9 67 28.7 58 23.1 19 7.98

0.8 68 31.7 72 26.3 23 9.39
0.7 69 30.7 92 35.9 26 9.84
0.6 71 29.4 124 40.0 29 10.1
0.5 74 29.4 174 67.3 36 14.3
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M0 L̂ Ŝ PΩ[M0] L̂ Ŝ

Figure 3.4: Face images. The pictures from top to bottom are respectively YaleB01, YaleB02, YaleB03 and YaleB04 face
images. The left panel presents the case with full observation (ρ = 1), while the right panel presents the case with
partial observation (ρ = 0.6). Visually, the recovered low-rank component is smoother and better conditioned for face
recognition than the original image, while the sparse component corresponds to shadows and specularities.



CHAPTER 4. SUCCESSIVE RANK-ONE APPROX. FOR NEARLY ORTHOGONALLY DECOMPOSABLE
SYMMETRIC TENSORS 71

Chapter 4

Successive Rank-One Approx. for Nearly

Orthogonally Decomposable Symmetric

Tensors

4.1 Introduction

The eigenvalue decomposition of symmetric matrices is one of the most important discoveries in mathematics

with an abundance of applications across all disciplines of science and engineering. One way to explain such

decomposition is to express the symmetric matrix as a minimal sum of rank-one symmetric matrices. It is

well known that the eigenvalue decomposition can be simply obtained via successive rank-one approximation

(SROA). Specifically, for a symmetric matrix X ∈ Rn×n with rank r, one approximates X by a rank-one

matrix to minimize the Frobenius norm error:

(λ1,x1) ∈ arg min
λ∈R,‖x‖=1

‖X − λxx>‖F ; (4.1.1)

then, one approximates the residualX − λ1x1x
>
1 by another rank-one matrix λ2x2x

>
2 , and so on. The above

procedure continues until one has found r rank-one matrices {λixix>i }
r
i=1; their summation,

∑r
i=1 λixix

>
i ,

yields an eigenvalue decomposition of X . Moreover, due to the optimal approximation property of the

eigen-decomposition, for any positive integer k ≤ r, the best rank-k approximation (in the sense of either the

Frobenius norm or the operator norm) toX is simply given by
∑k
i=1 λixix

>
i [EY36].
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In this article, we study decompositions of higher-order symmetric tensors, a natural generalization of

symmetric matrices. Many applications in signal processing, machine learning, and statistics, involve higher-

order interactions in data; in these cases, higher-order tensors formed from the data are the primary objects

of interest. A tensor T ∈
⊗p

i=1 Rni := Rn1×n2×···×np of order p is called symmetric if n1 = n2 = · · · = np = n

and its entries are invariant under any permutation of their indices. Symmetric tensors of order two (p = 2)

are symmetric matrices. In the sequel, we reserve the term tensor (without any further specification) for

tensors of order p ≥ 3. A symmetric rank-one tensor can be naturally defined as a p-fold outer product

v⊗p := v ⊗ v ⊗ · · · ⊗ v︸ ︷︷ ︸
p times

,

where v ∈ Rn and ⊗ denotes the outer product between vectors.1 The minimal number of rank-one

symmetric tensors whose sum is T is called the symmetric tensor rank in the literature, and any corresponding

decomposition is called a symmetric canonical decomposition [Har70]. Such decompositions have applications

in many scientific and engineering domains [McC87, Com94, SBG04, KB09, CJ10, AGH+14].

By analogy to the matrix case, successive rank-one approximations schemes have been proposed for sym-

metric tensor decomposition [ZG01, KR02, KBK05, WQ07]. Just as in the matrix case, one first approximates

T by a symmetric rank-one tensor

(λ1,v1) ∈ arg min
λ∈R,‖v‖=1

∥∥T − λv⊗p
∥∥
F
, (4.1.2)

and then approximate the residual T − λ1v
⊗p
1 again by another symmetric rank-one tensor, and so on. This

process continues until a certain stopping criterion is met. However, different from symmetric matrices, the

above procedure for higher order tensors (p ≥ 3) faces a number of computational and theoretical challenges.

Unlike problem (4.1.1)—which can be solved efficiently using simple techniques such as power iterations—

solving the rank-one approximation to higher order tensors is much more difficult: it is NP-hard, even for

symmetric third-order tensors [HL13]. Researchers in numerical linear algebra and numerical optimization

have devoted a great amount of effort to solve problem (4.1.2). Broadly speaking, existing methods for

problem (4.1.2) can be categorized into three types. First, as problem (4.1.2) is equivalent to finding the

extreme value of a homogeneous polynomial over the unit sphere, general-purpose polynomial solvers

based on the Sum-of-Squares (SOS) framework [Sho87, Nes00, Par00, Las01, Par03], such as Gloptipoly 3

[HLL09] and SOSTOOLS [PAV+13], can be effectively applied to the rank-one approximation problem. The

1For any 1 ≤ i1, i2, . . . , ip ≤ n and any v ∈ Rn, the (i1, i2, . . . , ip)-th entry of v⊗p is (v⊗p)i1,i2,...,ip = vi1vi2 · · · vip .
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SOS approach can solve any polynomial problem to any given accuracy through a sequence of semidefinite

programs; however, the size of these programs are very large for high-dimensional problems, and hence

these techniques are generally limited to relatively small-sized problems. The second approach is to treat

problem (4.1.2) as a nonlinear program [Ber99, WN99], and then to exploit and adapt the wealth of ideas from

numerical optimization. The resulting methods—which include [DLDMV00, ZG01, KR02, WQ07, KM11,

Han13, CHLZ12, ZLQ12, HCD14, GMWZ17] to just name a few—are empirically efficient and scalable, but

are only guaranteed to reach a local optimum or stationary point of the objective over the sphere. Therefore,

to maximize their performance, these methods need to run with several starting points. The final approach

is based on the recent trend of relaxing seemingly intractable optimization problems such as problem (4.1.2)

with more tractable convex optimization problems that can be efficiently solved [JMZ14, NW14, YYQ14].

The tensor structure in (4.1.2) has made it possible to design highly-tailored convex relaxations that appear

to be very effective. For instance, the semidefinite relaxation approach in [JMZ14] was able to globally solve

almost all the randomly generated instances that they tested. Aside from the above solvers, a few algorithms

have been specifically designed for the scenario where some side information regarding the solution of (4.1.2)

is known. For example, when the signs of the optimizer v1 are revealed, polynomial time approximation

schemes for solving (4.1.2) are available [LNQY09].

In contrast to the many active efforts and promising results on the computational side, the theoretical

properties of successive rank-one approximations are far less developed. Although SROA is justified for

matrix eigenvalue decomposition, it is known to fail for general tensors [SC10]. Indeed, much has been

established about the failings of low-rank approximation concepts for tensors that are taken for granted

in the matrix setting [Kol01, Kol03, Ste07, Ste08, DSL08]. For instance, the best rank-r approximation to a

general tensor is not even guaranteed to exist (though several sufficient conditions for this existence have been

recently proposed [LC10, LC14]). Nevertheless, SROA can be still justified for certain classes of symmetric

tensors that popularly arise in applications.

Nearly SOD tensors Indeed, in many applications (e.g., higher-order statistical estimation [McC87], inde-

pendent component analysis [Com94, CJ10], and parameter estimation for latent variable models [AGH+14]),

the input tensor T̂ may be fairly assumed to be a symmetric tensor slightly perturbed from the underlying

tensor T , which is symmetric and orthogonally decomposable (SOD) [MHG15, WS17, MHG17]. In specific,

T̂ = T + E,
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where the underlying SOD tensor can be written as T =
∑r
i=1 λiv

⊗p
i with 〈vi,vj〉 = δij for 1 ≤ i, j ≤ r,

and E is a perturbation tensor. In these aforementioned applications, we are interested in obtaining the

underlying pairs {(λi,vi)}ri=1. When E vanishes, it is known that
∑r
i=1 λiv

⊗p
i is the unique symmetric

canonical decomposition [Har70, Kru77], and moreover, successive rank-one approximation exactly recovers

{(λi,vi)}ri=1 [ZG01]. However, because of the inevitable perturbation term E arising from sampling errors,

noisy measurements, model misspecification, numerical errors, and so on, it is crucial to understand the

behavior of SROA when E 6= 0. In particular, one may ask whether SROA provides an accurate approximation to

{(λi,vi)}ri=1. If the answer is affirmative, then we can indeed take advantage of those sophisticated numerical

approaches to solving (4.1.2) mentioned above for many practical problems. This is the gist of this chapter.

Algorithm-independent analysis. The recent work of [AGH+14] proposes a randomized algorithm for

approximating SROA based on the power method of [DLDMV00]. There, an error analysis specific to the

proposed randomized algorithm (for the case p = 3) shows that the decomposition {(λi,vi)}ri=1 of T can be

approximately recovered from T̂ in polynomial time with high probability—provided that the perturbation

E is sufficiently small (roughly on the order of 1/n under a natural measure). Our present aim is to provide a

general analysis that is independent of the specific approach used to obtain rank-one approximations and it

seems to be beneficial. Our analysis shows that the general SROA scheme in fact allows for perturbations to

be of the order 1/ p−1
√
n, suggesting advantages of using more sophisticated optimization procedures and

potentially more computational resources to solve each rank-one approximation step.

As motivation, we describe a simple and typical example of latent variable models where perturbations

of SOD tensors naturally arise.

A motivating example. To illustrate why we are particularly interested in nearly SOD tensors, we now

consider the following simple probabilistic model for characterizing the topics of text documents. (We follow

the description from [AGH+14].) Let n be the number of distinct topics in the corpus, d be the number of

distinct words in the vocabulary, and t ≥ p be the number of words in each document. We identify the sets of

distinct topics and words, respectively, by [n] and [d]. The topic model posits the following generative process

for a document. The document’s topic h ∈ [n] is first randomly drawn according to a discrete probability

distribution specified by w = (w1, w2, . . . , wn) (where we assume wi > 0 for each i ∈ [n] and
∑
i∈[n] wi = 1):

P [h = i] = wi for all i ∈ [n].
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Given the topic h, each of the document’s twords is then drawn independently from the vocabulary according

to the discrete distribution specified by the probability vectorµh ∈ Rd; we assume that the probability vectors

{µi}i∈[n] are linearly independent (and, in particular, d ≥ n). The task here is to estimate these probability

vectors w and {µi}i∈[n] based on a corpus of documents.

Denote byM2 ∈ Rd×d and Mp ∈
⊗pRd, respectively, the pairs probability matrix and p-tuples probabil-

ity tensor, defined as follows: for all i1, i2, . . . , ip ∈ [d], ,

(M2)i1,i2 = P [1st word = i1, 2nd word = i2]

(Mp)i1,i2,...,ip = P [1st word = i1, 2nd word = i2, · · · , pth word = ip] .

It can be shown thatM2 and Mp can be precisely represented using w and {µi}i∈[n]:

M2 =
∑
i∈[n]

wiµiµ
>
i and Mp =

∑
i∈[n]

wiµ
⊗p
i .

SinceM2 is positive semidefinite and rank(M2) = n,M2 = UDU> is its reduced eigenvalue decom-

position. Here, U ∈ Rd×n satisfies U>U = In, andD ∈ Rn×n is a diagonal matrix with diagD � 0. Now

define

W := UD−1/2, λi := w
1−p/2
i , and vi :=

√
wiW

>µi ∈ Rn for each i ∈ [n].

Then

W>M2W = I = M2(W ,W ) =
∑
i∈[n]

wi(W>µi)(W>µi)> =
∑
i∈[n]

viv
>
i ,

which implies that {v1,v2, . . . ,vn} are orthogonal. Moreover,

T := Mp(W ,W , . . . ,W ) =
∑
i∈[n]

wi (W>µi)⊗p =
∑
i∈[n]

λiv
⊗p
i . (4.1.3)

Therefore, we can obtain {(λi,vi)}i∈[n] (and subsequently {(wi,µi)}i∈[n]
2) by computing the (unique) sym-

metric canonical decomposition of tensor T , which can be perfectly achieved by SROA [ZG01].

In order to obtain the tensor T , we needM2 and Mp, both of which can be estimated from a collection

of documents.3 However, the quantitiesM2 and Mp are only known up to sampling errors, and hence, we

are only able to construct a symmetric tensor T̂ that is, at best, only close to the one in (4.1.3). A critical

question is whether we can still use SROA (Algorithm 11) to obtain an approximate decomposition and

2After obtaining {(λi, vi)}i∈[n], it is possible to obtain {(wi,µi)}i∈[n] because for each i ∈ [n], there exists j ∈ [n] such that
wi = λ

2/(2−p)
j and µi = λj(W>)†vj , where (W>)† denotes the Moore-Penrose pseudoinverse ofW>.

3Due to their independence, all pairs (resp., p-tuples) of words in a document can be used in forming estimates ofM2 (resp., Mp).
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robustly estimate the model parameters.

Algorithm 11 Successive Rank-One Approximation (SROA)

input symmetric tensor T̂ ∈
⊗pRn.

1: initialize T̂ 0 := T̂
2: for i = 1 to n do
3: (λ̂i, v̂i) ∈ arg minλ∈R,‖v‖=1

∥∥∥T̂ i−1 − λv⊗p
∥∥∥
F
.

4: T̂ i := T̂ i−1 − λ̂iv̂⊗pi .
5: end for
6: return {(λ̂i, v̂i)}i∈[n].

Setting Following the notation in the above example, in the sequel, we denote T̂ = T + E ∈
⊗p Rn.

Here T is a symmetric tensor that is orthogonally decomposable, i.e., T =
∑n
i=1 λiv

⊗p
i with all λi 6= 0,

{v1,v2, . . . ,vn} forming an orthonormal basis of Rn, and E is a symmetric perturbation tensor with operator

norm ε := ‖E‖. Note that in some applications, we might instead have T =
∑r
i=1 λiv

⊗p
i for some r < n. Our

results nevertheless can be applied in that setting as well with little modification.

For simplicity, we also assume p is odd and treat it as a constant in big-O notations. (We discuss the even

case in Section 4.3.4). Without loss of generality, we can assume λi > 0 for all i ∈ [n], as we can always change

the sign of vi to make it hold. Moreover, line 3 in Algorithm 11 simply becomes

v̂i ∈ arg max
‖v‖=1

T̂ i−1v
⊗p, λ̂i = T̂ i−1v̂

⊗p
i .

Organization Section 4.2 analyzes the first iteration of Algorithm 11 and proves that (λ̂1, v̂1) is a robust

estimate of a pair (λi,vi) for some i ∈ [n]. A full decomposition analysis is provided in Section 4.3, in which

we establish the following property of tensors: when ‖E‖ is small enough, the approximation errors do not

accumulate as the iteration number grows; in contrast, the use of deflation is generally not advised in the

matrix setting for finding more than a handful of matrix eigenvectors due to potential instability. Numerical

experiments are also reported to confirm our theoretical results.

4.2 Rank-One Approximation

In this section, we provide an analysis of the first step of SROA (Algorithm 11), which yield a rank-one

approximation to T̂ .
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4.2.1 Review of matrix perturbation analysis

Wefirst state awell-known result about perturbations of the eigenvalue decomposition for symmetricmatrices;

this result serves as a point of comparison for our study of higher-order tensors. The result is stated just

for rank-one approximations, and in a form analogous to what we are able to show for the tensor case

(Theorem 4.2 below).

Theorem 4.1 ([Wey12, DK70]) LetM ∈ Rn×n be a symmetricmatrixwith eigenvalue decomposition
∑n
i=1 λiviv

>
i ,

where |λ1| ≥ |λ2| ≥ · · · ≥ |λn| and {v1,v2, . . . ,vn} are orthonormal. Let M̂ = M + E ∈ Rn×n for some

symmetric matrix E with ε := ‖E‖, and let

(λ̂, x̂) ∈ arg min
λ∈R,‖x‖=1

∥∥∥M̂ − λxx>
∥∥∥
F
.

The following holds.

• (Perturbation of leading eigenvalue.) |λ̂− λ1| ≤ ε.

• (Perturbation of leading eigenvector.) Suppose γ := mini 6=1 |λ1 − λi| > 0. Then 〈x̂,v1〉2 ≥ 1− (2ε/γ)2.

This implies that if 2ε/γ ≤ 1, then min{‖v1 − x̂‖ , ‖v1 + x̂‖} ≤ O(ε/γ).

For completeness, we give a proof of the eigenvector perturbation bound below since it is not directly implied

by results in [DK70] but essentially uses the same argument.

Proof Since M̂ is symmetric, it has an eigenvalue decomposition
∑n
i=1 λ̂iv̂iv̂

>
i , where |λ̂1| ≥ |λ̂2| ≥ · · · ≥ |λ̂n|

and {v̂1, v̂2, . . . , v̂n} are orthonormal. It is straightforward to obtain:

λ̂ = λ̂1 and M̂x̂ = λ̂x̂.

By Weyl’s inequality [Wey12],

|λ̂− λ1| ≤ ‖E‖ = ε.

To bound 〈x̂,v1〉2, we employ an argument very similar to one from [DK70]. Observe that

‖Mx̂− λ1x̂‖2 =
∥∥∥(λ̂− λ1)x̂−Ex̂

∥∥∥2
≤ (|λ̂− λ1| ‖x̂‖ + ‖Ex̂‖)2 ≤ 4ε2.

Moreover,

Mx̂− λ1x̂ =
n∑
i=1

(λi − λ1) 〈vi, x̂〉vi =
n∑
i=2

(λi − λ1) 〈vi, x̂〉vi,
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and therefore

‖Mx̂− λ1x̂‖2 =
n∑
i=2

(λi − λ1)2 〈vi, x̂〉2 ≥ γ2
n∑
i=2
〈vi, x̂〉2 = γ2(1− 〈v1, x̂〉2).

Combining the upper and lower bounds on ‖Mx̂− λ1x̂‖2 gives 〈x̂,v1〉2 ≥ 1− (2ε/γ)2 as claimed.

4.2.2 Single rank-one approximation

The main result of this section concerns the first step of SROA (Algorithm 11) and establishes a perturbation

result for nearly SOD tensors.

Theorem 4.2 For any odd positive integer p ≥ 3, let T̂ := T + E ∈
⊗p Rn, where T is a symmetric tensor

with orthogonal decomposition T =
∑n
i=1 λiv

⊗p
i , {v1,v2, . . . ,vn} is an orthonormal basis of Rn, λi > 0 for

all i ∈ [n], and E is a symmetric tensor with operator norm ε := ‖E‖. Let x̂ ∈ arg max‖x‖2=1 T̂ x⊗p and

λ̂ := T̂ x̂⊗p. Then there exists j ∈ [n] such that

|λ̂− λj | ≤ ε, ‖x̂− vj‖2 ≤ 10
(
ε

λj
+
(
ε

λj

)2
)
. (4.2.1)

To prove Theorem 4.2, we first establish an intermediate result. Let xi := 〈vi, x̂〉, so x̂ =
∑n
i=1 xivi and∑n

i=1 x
2
i = 1 since {v1,v2, . . . ,vn} is an orthonormal basis for Rn and ‖x̂‖ = 1. We reorder the indices [n] so

that

λ1|x1|p−2 ≥ λ2|x2|p−2 ≥ · · · ≥ λn|xn|p−2. (4.2.2)

Our intermediate result, derived by simply bounding λ̂ from both above and below, is as follows.

Lemma 4.3 In the notation from above,

λ1 ≥ λmax − 2ε, |x1| ≥ 1− 2ε/λ1, x2
1 ≥ x

p−1
1 ≥ 1− 4ε/λ1, and |λ̂− λ1| ≤ ε. (4.2.3)

where λmax = maxi∈[n] λi.

Proof To show (4.2.3), we will bound λ̂ = T̂ x̂⊗p from both above and below.

For the upper bound, we have

λ̂ = T̂ x̂⊗p = T x̂⊗p + Ex̂⊗p

=
n∑
i=1

λix
p
i + Ex̂⊗p
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≤
n∑
i=1

λi|xi|p−2x2
i + ε ≤ λ1|x1|p−2 + ε, (4.2.4)

where the last inequality follows since
∑n
i=1 x

2
i = 1.

On the other hand,

λ̂ ≥ max
i∈[n]

T vi⊗p − ‖E‖ = λmax − ε ≥ λ1 − ε. (4.2.5)

Combining (4.2.4) and (4.2.5), it can be easily verified that

λ1 ≥ λmax − 2ε, |λ1 − λ̂| ≤ ε.

and moreover,

|x1| ≥ |x1|p−2 ≥ λ1 − 2ε
λ1

= 1− 2ε
λ1

which implies that xp−1
1 = |x1|p−2 · |x1| ≥ 1− 4ε/λ1.

Remark 4.4 The higher-order requirement, p ≥ 3, is crucial in the analysis. Specifically we can bound |x1| below

by the lower bound of |x1|p−2, which can be done by bounding λ̂ = T̂ x̂⊗p from both above and below. This

essentially explains why Lemma 4.3, different from the matrix case (p = 2), does not rely on the spectral gap

condition.

The bound |λ̂− λ1| ≤ ε proved in Lemma 4.3 is comparable to the matrix counterpart in Theorem 4.1,

and is optimal in the worst case. Consider T =
∑n
i=1 λie

⊗p
i with λ1 ≥ λ2 ≥ . . . ≥ λn ≥ 0 and E = εe⊗p1 , for

some ε > 0. Then clearly λ̂ = λ1 + ε and |λ̂− λ1| = ε.

Moreover, when E vanishes, Lemma 4.3 leads directly to the following result given in [ZG01].

Corollary 4.5 ([ZG01]) Suppose E = 0 (i.e., T̂ = T =
∑n
i=1 λiv

⊗p
i is orthogonally decomposable). Then

Algorithm 11 computes {(λi,vi)}ni=1 exactly.

However, compared to Theorem 4.1, the bound |x1| ≥ 1− 2ε/λ1 appears to be suboptimal; this is because

the bound only implies ‖x̂− v1‖ = O(
√
ε/λ1). In the following, we will proceed to improve this result to

‖x̂− v1‖ = O(ε/λ1) by using the first-order optimality condition [WN99]. See [Lim05] for a discussion in

the present context.

Consider the Lagrangian function corresponding to the optimization problem max‖x‖=1 T̂ x⊗p,

L(x, λ) := 1
p

T̂ x⊗p − λ

2

(
‖x‖2 − 1

)
, (4.2.6)
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whereλ ∈ R corresponds to the (scaled) Lagrangemultiplier for the equality constraint. As x̂ ∈ arg max‖x‖2=1 T̂ x⊗p

(and the linear independent constraint qualification [WN99] can be easily verified), there exists λ̄ ∈ R such

that

∇L(x̂, λ̄) = T̂ x⊗p−1 − λ̄x = 0. (4.2.7)

Moreover, as ‖x̂‖ = 1, λ̄ = λ̄ 〈x,x〉 = T̂ x⊗p = λ̂. Thus we have λ̂x̂ = T̂ x̂⊗p−1.

We are now ready to prove Theorem 4.2. Proof [Proof of Theorem 4.2] The first inequality in (4.2.1) has

been proved in Lemma 4.3, so we are left to prove the second one.

From the first-order optimality condition above, we have

λ̂x̂ = T̂ x̂⊗p−1 = T x̂⊗p−1 + Ex̂⊗p−1 = λ1x
p−1
1 v1 +

∑
i≥2

λix
p−1
i vi + Ex̂⊗p−1.

Thus,

‖λ1(x̂− v1)‖2 =
∥∥∥(λ1 − λ̂)x̂+ (λ̂x̂− λ1v1)

∥∥∥
2

=

∥∥∥∥∥∥(λ1 − λ̂)x̂+ λ1(xp−1
1 − 1)v1 +

∑
i≥2

λix
p−1
i vi + Ex̂⊗p−1

∥∥∥∥∥∥
2

≤ |λ1 − λ̂|+ λ1|xp−1
1 − 1|+

∥∥∥∥∥∥
∑
i≥2

λix
p−1
i vi

∥∥∥∥∥∥
2

+
∥∥Ex̂⊗p−1∥∥

2 (4.2.8)

by the triangle inequality. By Lemma 4.3, we have

|λ1 − λ̂| ≤ ε, |xp−1
1 − 1| ≤ 4ε/λ1, and

∥∥Ex̂⊗p−1∥∥
2 ≤ ε. (4.2.9)

Moreover, ∥∥∥∥∥∥
∑
i≥2

λix
p−1
i vi

∥∥∥∥∥∥
2

=

∑
i≥2

λ2
ix

2p−2
i

1/2

≤ λ2|x2|p−2
√

1− x2
1

≤λ2(1− x2
1) ≤ 4ελ2

λ1
≤ 4ε(1 + 2ε/λ1), (4.2.10)

where we have used Lemma 4.3 and the fact that λ2/λ1 ≤ λmax/λ1 ≤ 1 + 2ε/λ1. Substituting (4.2.9) and

(4.2.10) back into (4.2.8), we can easily obtain

‖x̂− v1‖2 ≤ 10
(
ε

λ1
+
(
ε

λ1

)2
)
. (4.2.11)
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Remark 4.6 When p > 3, we can slightly sharpen (4.2.11) to

‖x̂− v1‖2 ≤ 8 ε

λ1
+ 4

(
ε

λ1

)2
,

by replacing (4.2.10) with

λ2(1− x2
1) ≤ λ2(1− |x1|p−2) ≤ λ2 ·

2ε
λ1
≤ 2ε(1 + 2ε/λ1).

Theorem 4.2 indicates that the first step of SROA for a nearly SOD tensor approximately recovers (λj ,vj)

for some j ∈ [n]. In particular, whenever ε is small enough relative to λ1 (e.g., ε ≤ λ1/2), there always exists

j ∈ [n] such that |λ̂− λj | ≤ ε and ‖x̂− vj‖2 ≤ 10 · (1 + 1/2)ε/λj = 15ε/λj . This is analogous to Theorem 4.1,

except that the spectral gap condition required in Theorem 4.1 is not necessary at all for the perturbation bounds

of SOD tensors.

4.2.3 Numerical verifications for Theorem 4.2

We generate nearly symmetric orthogonally decomposable tensors T̂ = T + E ∈ R10×10×10 in the following

manner. We let the underlying symmetric orthogonally decomposable tensor T be the diagonal tensor

with all diagonal entries equal to one, i.e., T =
∑10
i=1 e

⊗3
i (where ei is the i-th coordinate basis vector). The

perturbation tensor E is generated under the following three random models before symmetrization:

Binary: independent entries Ei,j,k ∈ {±σ} uniformly at random;

Uniform: independent entries Ei,j,k ∈ [−2σ, 2σ] uniformly at random;

Gaussian: independent entries Ei,j,k ∼ N (0, σ2);

where σ is varied from 0.0001 to 0.2 with increment 0.0001, and one instance is generated for each value of σ.

For every randomly generated instance, we solve the polynomial optimization problems

‖E‖ = max
‖x‖=1

Ex⊗3 and v̂1 ∈ arg max
‖x‖=1

T̂ x⊗3 (4.2.12)

using the general polynomial solver GloptiPoly 3 [HLL09], and set λ̂1 := T̂ v̂⊗3
1 . 4

In Figure 4.1, we plot the approximation error |λ̂1 − 1| and minj∈[10] ‖v̂1 − ej‖, respectively against the

value of norm ‖E‖. Each (red) point corresponds to one randomly generated instance, and the (blue) lines

are the upper bounds given in Theorem 4.2. We observe no instance violating the theoretical bounds.

4All codes used in this chapter are available on CM’s personal website https://sites.google.com/site/mucun1988/.

https://sites.google.com/site/mucun1988/
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Figure 4.1: Approximation Errors of the First Iteration. The approximation errors in λ̂1 (resp., v̂1) are plotted on the
left (resp., right) as a function of the size of the perturbation ε. Each (red) point corresponds to one randomly generated
instance, and the (blue) solid line is the upper bound from Theorem 4.2.

4.3 Full Decomposition Analysis

In the second iteration of Algorithm 11, we have

v̂2 ∈ arg max
‖x‖2=1

T̂ 1x
⊗p, λ̂2 = T̂ 1v̂

⊗p
2 ,
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where, for some j ∈ [n],

T̂ 1 = T̂ − λ̂1v̂1
⊗p =

∑
i 6=j

λiv
⊗p
i + Ê and Ê = E + (λjv⊗pj − λ̂1v̂1

⊗p).

Theorem 4.2 can be directly applied again by bounding the error norm ‖Ê‖. However, since

‖Ê‖ =
∥∥∥E + (λjv⊗pj − λ̂1v̂1

⊗p)
∥∥∥

=
∥∥∥E + (λj − λ̂1)v⊗pj + λ̂1(v⊗pj − v̂

⊗p
1 )
∥∥∥

≤ ‖E‖ + |λj − λ̂1|+ λ̂1
∥∥v⊗pj − v̂⊗p1

∥∥
≤ (2 + 10√p)ε+O(ε2/λj),

it appears that the approximation error may increase dramatically with the iteration number.

Fortunately, a more careful analysis shows that approximation error does not in fact accumulate in this

way. The high-level reason is that while the operator norm ‖λjv⊗pj − λ̂1v̂
⊗p
1 ‖ is of order ε, the relevant

quantity is essentially
(
λjv

⊗p
j − λ̂1v̂

⊗p
1

)
operating on the direction of v̂2, i.e. |(λjv⊗pj − λ̂1v̂

⊗p
1 )v̂⊗p2 |, which

only gives rise to a quantity of order ε2 because p ≥ 3. This enables us to keep the approximation errors

under control.

The main result of this section is as follows.

Theorem 4.7 Pick any odd positive integer p ≥ 3. There exists a positive constant c0 = c0(p) > 0 such that the

following holds. Let T̂ := T + E ∈
⊗p Rn, where T is a symmetric tensor with orthogonal decomposition T =∑n

i=1 λiv
⊗p
i , {v1,v2, . . . ,vn} is an orthonormal basis of Rn, λi > 0 for all i ∈ [n], and E is a symmetric tensor

with operator norm ε := ‖E‖. Assume ε ≤ c0λmin/n
1/(p−1), where λmin := mini∈[n] λi. Let {(λ̂i, v̂i)}i∈[n] be

the output of Algorithm 11 for input T̂ (where we choose λ̂i to be positive whenever possible). Then there exists a

permutation π on [n] such that

|λπ(j) − λ̂j | ≤ 2ε,
∥∥vπ(j) − v̂j

∥∥ ≤ 20ε/λπ(j), ∀j ∈ [n].

4.3.1 Deflation analysis

The proof of Theorem 4.7 is based on the following lemma, which provides a careful analysis of the er-

rors introduced in T i from steps 1, 2, . . . , i in Algorithm 11. This lemma is a generalization of a result

from [AGH+14] (which only dealt with the p = 3 case) and also more transparently reveals the sources of

errors that result from deflation.
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Lemma 4.8 Fix a subset S ⊆ [n] and assume that 0 ≤ ε̂ ≤ λi/2 for each i ∈ S. Choose any {(λ̂i, v̂i)}i∈S ⊂

R× Rn such that

|λi − λ̂i| ≤ ε̂, ‖v̂i‖ = 1, and 〈vi, v̂i〉 ≥ 1− 2(ε̂/λi)2 > 0,

and define ∆i := λiv
⊗p
i − λ̂iv̂

⊗p
i for i ∈ S. Pick any unit vector x =

∑n
i=1 xivi. Let S1 ⊆ S be the indices

i ∈ [n] such that λi|xi| ≥ 4ε̂, and let S2 := S \ S1. Then∥∥∥∥∥∑
i∈S1

∆ix
⊗p−1

∥∥∥∥∥
2

≤ 2p+1p

(∑
i∈S1

x
2(p−2)
i

)1/2
ε̂+ 2p+1

∑
i∈S1

|xi|p−1ε̂, (4.3.1)

∥∥∥∥∥∑
i∈S2

∆ix
⊗p−1

∥∥∥∥∥
2

≤ 6p
(∑
i∈S2

(
ε̂

λi

)2(p−2)
)1/2

ε̂+ 6p
∑
i∈S2

(
ε̂

λi

)p−1
ε̂. (4.3.2)

These imply that there exists positive constants c1, c2 > 0, depending only on p, such that∥∥∥∥∥∑
i∈S1

∆ix
⊗p−1

∥∥∥∥∥
2

≤ c1 ·

(∑
i∈S1

|xi|p−1ε̂

)
, (4.3.3)∥∥∥∥∥∑

i∈S2

∆ix
⊗p−1

∥∥∥∥∥
2

≤ c2 ·

(∑
i∈S2

(
ε̂

λi

)p−1
ε̂

)
, (4.3.4)∥∥∥∥∥∑

i∈S
∆ix

⊗p−1

∥∥∥∥∥
2

≤ c1 ·

(∑
i∈S
|xi|p−1ε̂

)
+ c2 ·

(
|S|
(

ε̂

mini∈S λi

)p−1
ε̂

)
. (4.3.5)

Remark 4.9 Lemma 4.8 indicates that the accumulating error
∑
i∈S ∆i much less severely affects vectors

that are incoherent with {vi : i ∈ S}. For instance,
∥∥∥∑i∈S ∆iv

⊗p−1
i

∥∥∥ = O(ε̂2) for i ∈ [n] \ S, while∥∥∥∑i∈S ∆iv
⊗p−1
i

∥∥∥ = O(ε̂) for i ∈ S. We leave the proof for 4.8 in Section 4.4.

4.3.2 Proof of main theorem

We now use Lemma 4.8 to prove the main theorem.

Proof [Proof of Theorem 4.7] It suffices to prove that the following property holds for each i ∈ [n]:

there is a permutation π on [i] s.t. for all j ∈ [i],


|λπ(j) − λ̂j | ≤ 2ε, and∥∥vπ(j) − v̂j

∥∥ ≤ 20ε
λπ(j)

.

(∗)

The proof is by induction. The base case of (∗) (where i = 1) follows directly from by Theorem 4.2.

Assume the induction hypothesis (∗) is true for some i ∈ [n − 1]. We will prove that there exists an
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l ∈ [n] \ {π(j) : j ∈ [i]} that satisfies

|λl − λ̂i+1| ≤ 2ε, ‖vl − v̂i+1‖ ≤ 20ε/λl. (4.3.6)

To simplify notation, we assume without loss of generality (by renumbering indices) that π(j) = j for each

j ∈ [i]. Let x̂ =
∑
i∈[n] xivi := v̂i+1 and λ̂ := λ̂i+1, and further assume without loss of generality (again by

renumbering indices) that

λi+1|xi+1|p−2 ≥ λi+2|xi+2|p−2 ≥ · · · ≥ λn|xn|p−2.

In the following, we will show that l = i+ 1 is an index satisfying (4.3.6). We use the assumption that

ε < min
{

1
8 ,

1
2.5 + 10c1

,
1

10(40c2n)1/(p−1)

}
· λmin (4.3.7)

(which holds with a suitable choice of c0 in the theorem statement). Here, c1 and c2 are the constants from

Lemma 4.8 when ε̂ = 10ε. It can be verified that (∗) implies that the conditions for Lemma 4.8 are satisfied

with this value of ε̂.

Recall that λ̂ = T̂ ix̂
⊗p, where

T̂ i = T̂ −
i∑

j=1
λ̂j v̂

⊗p
j =

n∑
j=i+1

λjv
⊗p
j + E +

i∑
j=1

∆j .

We now bound λ̂ from above and below. For the lower bound, we use (4.3.4) from Lemma 4.8 to obtain

λ̂ = T̂ ix̂
⊗p ≥ max

j∈[n]\[i]
T̂ ivj

⊗p ≥ λmax,i − ε− c2n
(

10ε
λmin

)p−1
ε ≥ λmax,i − 1.25ε (4.3.8)

where λmax,i := maxj∈[n]\[i] λj and λmin := minj∈[n] λj ; the final inequality uses the conditions on ε in (4.3.7).

For the upper bound, we have

λ̂ = T̂ ix̂
⊗p =

n∑
j=i+1

λix
p
i + Ex̂⊗p +

i∑
j=1

∆jx̂
⊗p

≤
n∑

j=i+1
λjx

p
j + ε+ 10c1

i∑
j=1
|xj |p−1ε+ 10c2n

(
10ε
λmin

)p−1
ε

≤ λi+1|xi+1|p−2
n∑

j=i+1
x2
j + ε+ 10c1ε

i∑
j=1

x2
j + 10c2n

(
10ε
λmin

)p−1
ε

≤ max
{
λi+1|xi+1|p−2, 10c1ε

}
+ 1.25ε. (4.3.9)

The first inequality above follows from (4.3.5) in Lemma 4.8; the third inequality uses the fact that
∑n
j=1 x

2
j =
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1 as well as the conditions on ε in (4.3.7). If the max is achieved by the second argument 10c1ε, then

combining (4.3.8) and (4.3.9) gives

(2.5 + 10c1)ε ≥ λmax,i ≥ λmin,

a contradiction of (4.3.7). Therefore the max in (4.3.9) must be achieved by λi+1|xi+1|p−2, and hence combin-

ing (4.3.8) and (4.3.9) gives

λi+1|xi+1|p−2 ≥ λmax,i − 2.5ε and |λ̂− λi+1| ≤ 1.25ε.

This in turn implies that

|xi+1| ≥ |xi+1|p−2 ≥ 1− 2.5ε
λi+1

, λi+1 ≥ λmax,i − 2.5ε, and x2
i+1 ≥ x

p−1
i+1 ≥ 1− 5ε

λi+1
. (4.3.10)

Thus, we have shown that x̂ is indeed coherent with v̂i+1. Next, we will sharpen the bound for ‖x̂− v̂i+1‖

by considering the first order optimality condition.

Since x̂ ∈ arg min‖x‖2=1 T̂ ix
⊗p, a first-order optimality condition similar to (4.2.7) implies λ̂ = T̂ ix̂

⊗p.

Thus

λ̂x̂ = T̂ ix̂
⊗p−1 =

 n∑
j=i+1

λjv
⊗p
j + E +

i∑
j=1

∆j

 x̂⊗p−1

= λi+1x
p−1
i+1 vi+1 +

n∑
j=i+2

λjx
p−1
j vj + Ex̂⊗p−1 +

i∑
j=1

∆jx̂
⊗p−1.

Therefore

‖λi+1(x̂− vi+1)‖2

=
∥∥∥(λi+1 − λ̂)x̂+ (λ̂x̂− λi+1vi+1)

∥∥∥
2

=

∥∥∥∥∥∥(λi+1 − λ̂)x̂+ λi+1(xp−1
i+1 − 1)vi+1 +

n∑
j=i+2

λjx
p−1
j vj + Ex̂⊗p−1 +

i∑
j=1

∆jx̂
⊗p−1

∥∥∥∥∥∥
2

≤ |λi+1 − λ̂|+ λi+1|xp−1
i+1 − 1|+

∥∥∥∥∥∥
n∑

j=i+2
λjx

p−1
j vj

∥∥∥∥∥∥
2

+
∥∥Ex̂⊗p−1∥∥

2 +

∥∥∥∥∥∥
i∑

j=1
∆jx̂

⊗p−1

∥∥∥∥∥∥
2

. (4.3.11)

For the third term in (4.3.11), we use the fact that |xi+2| ≤
√

1− x2
i+1, the bounds from (4.3.10) and the
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conditions on ε in (4.3.7) to obtain∥∥∥∥∥∥
n∑

j=i+2
λjx

p−1
j vj

∥∥∥∥∥∥
2

=

 n∑
j=i+2

λ2
jx

2p−2
j

1/2

≤ λi+2|xi+2|p−2
√

1− x2
i+1

≤ λi+2(1− x2
i+1)

≤ λmax,i
5ε
λi+1

≤ 5ε
1− 2.5ε/λmax,i

≤ 7.5ε. (4.3.12)

For the last term in (4.3.11), we use (4.3.5) from Lemma 4.8 and the conditions on ε in (4.3.7) to get∥∥∥∥∥∥
i∑

j=1
∆jx̂

⊗p−1

∥∥∥∥∥∥
2

≤ 10c1
n∑
j=1
|xj |p−1ε+ 10c2n

(
10ε
λmin

)p−1
ε

≤ 10c1(1− x2
i+1)ε+ 10c2n

(
10ε
λmin

)p−1
ε

≤ 50c1
λi+1

ε2 + 0.25ε

≤ 5.25ε. (4.3.13)

Therefore, substituting (4.3.10), (4.3.13) and ‖E‖ ≤ ε into (4.3.11) gives

‖λi+1(x̂− vi+1)‖2 ≤ 20ε.

4.3.3 Stability of full decomposition

Theorem 4.7 states a (perhaps unexpected) phenomenon that the approximation errors do not accumulate

with iteration number, whenever the perturbation error is small enough. In this subsection, we numerically

corroborate this fact.

We generate nearly symmetric orthogonally decomposable tensors T̂ = T + E ∈ R10×10×10 as follows.

We construct the underlying symmetric orthogonally decomposable tensor T as the diagonal tensor with

all diagonal entries equal to one, i.e., T =
∑10
i=1 e

⊗3
i (where ei is the i-th coordinate basis vector). The
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perturbation tensor E is generated under three random models with σ = 0.01 before symmetrization:

Binary: independent entries Ei,j,k ∈ {±σ} uniformly at random;

Uniform: independent entries Ei,j,k ∈ [−2σ, 2σ] uniformly at random;

Gaussian: independent entries Ei,j,k ∼ N (0, σ2).

For each random model, we generate 500 random instances, and apply Algorithm 11 to each T̂ to obtain

approximate pairs {(λ̂i, v̂i)}i∈[10]. Again, we use GloptiPoly 3 to solve the polynomial optimization problem

in Algorithm 11.

In Figure 4.2, we plot the mean and the standard deviation of the approximation errors for λ̂i and v̂i

from the 500 random instances (for each i ∈ [10]). These indeed do not appear to grow or accumulate as the

iteration number increases. This is consistent with our results in Theorem 4.7.

4.3.4 When p is even

We now briefly discuss the case where the order of the tensor is even, i.e., p ≥ 4 is an even integer.

Let T̂ := T +E ∈
⊗p Rn, whereT is a symmetric tensorwith orthogonal decompositionT =

∑n
i=1 λiv

⊗p
i ,

where {v1,v2, . . . ,vn} is an orthonormal basis of Rn, λi 6= 0 for all i ∈ [n], and E is a symmetric tensor with

operator norm ε := ‖E‖. Note that unlike the case when p is odd, we cannot assume λi > 0 for all i ∈ [n],

and correspondingly, line 3 in Algorithm 11 now becomes

v̂i ∈ arg max
‖v‖=1

∣∣∣T̂ i−1v
⊗p
∣∣∣ = arg max

‖v‖=1
max

{
T̂ i−1v

⊗p,−T̂ i−1v
⊗p
}
, λ̂i = T̂ i−1v̂

⊗p
i .

Nevertheless, the pair (λ̂i, v̂i) still satisfies the first-order optimality condition λ̂iv̂i = T̂ v̂⊗p−1
i .

Our proof for Theorem 4.7 can be easily modified and leads to the following result: there exists a positive

constant ĉ0 = ĉ0(p) > 0 such that whenever ε ≤ ĉ0
(
mini∈[n] |λi|

)
/n1/(p−1), there exists a permutation π on

[n] such that

|λπ(j) − λ̂j | ≤ 2ε, min
{∥∥vπ(j) − v̂j

∥∥ ,∥∥vπ(j) + v̂j
∥∥} ≤ 20ε/|λπ(j)|, ∀j ∈ [n].
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Figure 4.2: Approximation Errors of Algorithm 11. For each vertical bar over the iteration index i ∈ [10], the midpoint
is the mean of the approximation errors of λ̂i (left) and v̂i (right), computed over 500 randomly generated instances. The
error bars extend to two standard deviations above and below the mean.

4.4 Proof of Lemma 4.8

Proof The lemma holds trivially if ε̂ = 0. So we may assume ε̂ > 0. Therefore, for every i ∈ S1, we have

|xi| ≥ 4ε̂/λi > 0. Let ci := 〈vi, v̂i〉, wi := (v̂i − civi)/ ‖v̂i − civi‖2, and yi := 〈wi,x〉, so

v̂i = civi +
√

1− c2iwi and 〈v̂i,x〉 = cixi +
√

1− c2i yi.
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We first establish a few inequalities that will be frequently used later. Since |λi − λ̂i| ≤ ε̂ ≤ λi/2, one has

ε̂/λi ≤ 1/2, and 1/2 ≤ λ̂i/λi ≤ 3/2. Also, since ci ≥ 1− 2(ε̂/λi)2 ≥ 1/2,√
1− c2i ≤

√
1−

(
1− 2 (ε̂/λi)2

)2
=
√

4 (ε̂/λi)2
(

1− (ε̂/λi)2
)
≤ 2ε̂/λi.

For each i ∈ S,

∆ix
⊗p−1

=
(
λiv
⊗p
i − λ̂iv̂

⊗p
i

)
x⊗p−1

= λix
p−1
i vi − λ̂i 〈v̂i,x〉p−1

v̂i

= λix
p−1
i vi − λ̂i

(
cixi +

√
1− c2i yi

)p−1(
civi +

√
1− c2iwi

)
=
(
λix

p−1
i − λ̂ici

(
cixi +

√
1− c2i yi

)p−1
)
vi −

(
λ̂i

√
1− c2i

(
cixi +

√
1− c2i yi

)p−1
)
wi.

Therefore, due to the orthonormality of {vi}i∈[n] and the triangle inequality, for each j ∈ {1, 2},∥∥∥∥∥∥
∑
i∈Sj

∆ix
⊗p−1

∥∥∥∥∥∥
2

≤

∑
i∈Sj

(
λix

p−1
i − λ̂ici

(
cixi +

√
1− c2i yi

)p−1
)2
1/2

+
∑
i∈Sj

∣∣∣∣∣λ̂i√1− c2i
(
cixi +

√
1− c2i yi

)p−1
∣∣∣∣∣.

(4.4.1)

We now prove (4.3.1). For any i ∈ S1, since xi 6= 0, we may write (4.4.1) as

∥∥∥∥∥∑
i∈S1

∆ix
⊗p−1

∥∥∥∥∥
2

≤

∑
i∈S1

x2p−4
i

λixi − λ̂ixicpi
(

1 +

√
1− c2i
c2i

yi
xi

)p−12
1/2

+
∑
i∈S1

∣∣∣∣∣∣λ̂ixp−1
i cp−1

i

√
1− c2i

(
1 +

√
1− c2i
c2i

yi
xi

)p−1∣∣∣∣∣∣.
(4.4.2)

Observe that ∣∣∣∣∣
√

1− c2i
c2i

yi
xi

∣∣∣∣∣ ≤
√

1− c2i
|ci|

1
|xi|
≤ 4ε̂
λi|xi|

≤ 1

because |ci| ≥ 1/2 and
√

1− c2i ≥ 2ε̂/λi. Moreover, since 1 + (p− 1)z ≤ (1 + z)p−1 ≤ 1 + (2p−1 − 1)z for any

z ∈ [0, 1], ∣∣∣∣∣∣
(

1 +

√
1− c2i
c2i

yi
xi

)p−1

− 1

∣∣∣∣∣∣ ≤ (2p−1 − 1) 4ε̂
λi|xi|

= (2p+1 − 4) ε̂

λi|xi|
. (4.4.3)
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Therefore,∣∣∣∣∣∣λixi − λ̂ixicpi
(

1 +

√
1− c2i
c2i

yi
xi

)p−1∣∣∣∣∣∣ ≤ |λixi − λ̂ixi|+ λ̂i|xi|

∣∣∣∣∣∣1− cpi
(

1 +

√
1− c2i
c2i

yi
xi

)p−1∣∣∣∣∣∣
≤ ε̂+ λ̂i|xi|

λi

(
(2p+1 − 4) ε̂

|xi|
+ pε̂+ (2p+1 − 4) ε̂

|xi|
pε̂

λi

)
≤ ε̂+ 3

2
(
(2p+1 − 4) + p+ (2p−1 − 1)p

)
ε̂

≤ 2p+1pε̂. (4.4.4)

The second inequality above is obtained using the inequality |(1 + a)(1 + b) − 1| ≤ |a| + |b| + |ab| for any

a, b ∈ R, together with the inequality from (4.4.3) and the fact |1 − cpi | ≤ 2p(ε̂/λi)2 ≤ p(ε̂/λi). Using the

resulting inequality in (4.4.4), the first summand in (4.4.2) can be bounded as∑
i∈S1

x2p−2
i

λi − λ̂icpi
(

1 +

√
1− c2i
c2i

yi
xi

)p−12
1/2

≤ 2p+1p

(∑
i∈S1

x
2(p−2)
i

)1/2

ε̂. (4.4.5)

To bound the second summand in (4.4.2), we have

∑
i∈S1

∣∣∣∣∣∣λ̂ixp−1
i cp−1

i

√
1− c2i

(
1 +

√
1− c2i
c2i

yi
xi

)p−1∣∣∣∣∣∣ ≤
∑
i∈S1

∣∣∣∣∣∣λ̂ixp−1
i

√
1− c2i

(
1 +

√
1− c2i
ci

1
|xi|

)p−1
∣∣∣∣∣∣

≤
∑
i∈S1

∣∣∣∣∣λ̂ixp−1
i

2ε̂
λi

(
1 + 4ε̂

λi|xi|

)p−1
∣∣∣∣∣

≤ 2p+1
∑
i∈S1

|xi|p−1ε̂, . (4.4.6)

The second inequality uses the facts ci ≥ 1/2 and
√

1− c2i ≤ 2ε̂/λi; the last inequality uses the facts

λ̂i/λi ≤ 3/2 and λi|xi| ≥ 4ε̂. Combining (4.4.5) and (4.4.6) gives the claimed inequality in (4.3.1) via (4.4.2).

It remains to prove (4.3.2). For each i ∈ S2,∣∣∣∣∣λixp−1
i − λ̂ici

(
cixi +

√
1− c2i yi

)p−1
∣∣∣∣∣ ≤ λi|xi|p−1 + λ̂i

(
|xi|+

√
1− c2i

)p−1

≤ λi
(

4ε̂
λi

)p−1
+ λ̂i

(
4ε̂
λi

+ 2ε̂
λi

)p−1

≤
(

4p−1 + 3
2 · 6

p−1
)(

ε̂

λi

)p−2
ε̂

≤ 6p
(
ε̂

λi

)p−2
ε̂.

The second inequality uses the facts
√

1− c2i ≤ 2ε̂/λi and λi|xi| < 4ε̂ for all i ∈ S2; the third inequality uses
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the fact λ̂i/λi ≤ 3/2. Therefore∑
i∈S2

(
λix

p−1
i − λ̂ici

(
cixi +

√
1− c2i yi

)p−1
)2
1/2

≤ 6p
(∑
i∈S2

(
ε̂

λi

)2(p−2)
)1/2

ε̂. (4.4.7)

Moreover,

∑
i∈S2

∣∣∣∣∣λ̂i√1− c2i
(
cixi +

√
1− c2i yi

)p−1
∣∣∣∣∣ ≤∑

i∈S2

∣∣∣∣∣λ̂i√1− c2i
(
|xi|+

√
1− c2i

)p−1
∣∣∣∣∣

≤
∑
i∈S2

λ̂i
2ε̂
λi

(
4ε̂
λi

+ 2ε̂
λi

)p−1

≤ 3 · 6p−1
∑
i∈S2

(
ε̂

λi

)p−1
ε̂

≤ 6p
∑
i∈S2

(
ε̂

λi

)p−1
ε̂. (4.4.8)

Combining (4.4.7) and (4.4.8) establishes (4.3.2) via (4.4.1) (with j = 2).

4.5 Conclusion

This chapter sheds light on a problem at the intersection of numerical linear algebra and statistical estimation,

and our results draw upon and enrich the literature in both areas.

From the perspective of numerical linear algebra, SROA was previously only known to exactly recover

the symmetric canonical decomposition of an orthogonal decomposable tensor. Our results show that it can

robustly recover (approximate) orthogonal decompositions even when applied to nearly SOD tensors; this

substantially enlarges the applicability of SROA.

Previous work on statistical estimation via orthogonal tensor decompositions considered the specific

randomized power iteration algorithm of Anandkumar et al. [AGH+14], which has been successfully applied

in a number of contexts [CL13, ZHPA13, ALB13, HS13, AGHK14, DWA14]. Our results provide formal

justification for using other rank-one approximation methods in these contexts, and it seems to be quite

beneficial, in terms of sample complexity and statistical efficiency, to use more sophisticated methods.

Specifically, the perturbation error ‖E‖ that can be tolerated is relaxed from power iteration’s O(1/n) to

O(1/ p−1
√
n). In future work, we plan to empirically investigate these potential benefits in a number of

applications.

We also note that solvers for rank-one tensor approximation often lack rigorous runtime or error analyses,
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which is not surprising given the computational difficulty of the problem for general tensors [HL13]. However,

tensors that arise in applications are oftenmore structured, such as being nearly SOD. Thus, another promising

future research direction is to sidestep computational hardness barriers by developing and analyzingmethods

for such specially structured tensors (see also [AGH+14, BKS14] for ideas along this line).
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