492 research outputs found

    OMFP: An approach for online mass flow prediction in CFB boilers

    Get PDF
    Abstract. Fuel feeding and inhomogeneity of fuel typically cause process fluctuations in the circulating fluidized bed (CFB) boilers. If control systems fail to compensate the fluctuations, the whole plant will suffer from fluctuations that are reinforced by the closed-loop controls. Accurate estimates of fuel consumption among other factors are needed for control systems operation. In this paper we address a problem of online mass flow prediction. Particularly, we consider the problems of (1) constructing the ground truth, (2) handling noise and abrupt concept drift, and (3) learning an accurate predictor. Last but not least we emphasize the importance of having the domain knowledge concerning the considered case. We demonstrate the performance of OMPF using real data sets collected from the experimental CFB boiler.

    Solids back-mixing in the transport zone of circulating fluidized bed boilers

    Get PDF
    This work investigates the back-mixing of solids in the transport zone of large-scale circulating fluidized bed (CFB) boilers, with the aims of identifying and evaluating the governing mechanisms and providing a mathematical description based on a solid theoretical background rather than on purely empirical correlations. In addition, transient Direct Numerical Simulation (DNS) modeling is used to identify the mechanism that drives migration of the solids from the dilute up-flow in the core region to the down-flow at the furnace walls. Previously published concentration and pressure profiles are collated and analyzed through modeling of the steady-state mass balance of the dispersed solids in the transport zone. The study shows that solids back-mixing at the furnace wall layers is limited (hence governed) by the core-to-wall layer mass transfer transport mechanism rather than by the lateral movement of solids within the core region. The latter is shown by the 3-dimensional (3D) mass balance model, and the transient DNS modeling indicates that this is due to a turbophoresis mechanism. We also show that the use of Pe-numbers to describe the lateral solids dispersion is not straightforward but rather depends on the unit scale, and that Pe-numbers < 26 are needed to yield the solids back-mixing rates measured in large-scale CFB boilers. Finally, we propose a mathematical expression for the core-to-wall layer mass transfer coefficient derived from a Sherwood number (Sh)-correlation fitted to measured values of the characteristic decay constant that result from the solids back-mixing. This expression shows better agreement with the large-scale measurements than do the expressions given in the literature

    Dynamics of large-scale fluidized bed combustion plants

    Get PDF
    Fluidized bed combustion (FBC) plants are widely used in energy systems across the world for the thermochemical conversion of solid fuels, and are especially suitable for low-rank fuels (a category to which renewable solid fuels belong). FBC plants are traditionally operated for base-load electricity production and for heat production, both of which processes are characterized by steady and stable operation. As the share of variable renewable electricity (VRE) sources is expected to increase dramatically, FBC plants will have to adapt their operations to the new flexibility requirements related to the inherent variability of VRE sources. By enhancing their operational and product flexibilities, FBC plants can remain financially attractive and offer services to support the balancing of the grid. As tools for assessing the operational flexibility of thermal power plants, dynamic modeling and simulation are gaining attention from both researchers and plant operators. However, it is a common practice to assume that the dynamics of the gas side are much faster than those of the water-steam side, i.e., not accounting for the in-furnace dynamic mechanisms.This thesis aims to characterize the dynamic behaviors of commercial-scale FBC plants, accounting for both the gas and water-steam sides of bubbling and circulating fluidized bed (BFB and CFB) units. For this purpose, a dynamic semiempirical model of the gas side of FBC plants is developed and integrated into a process model of the water-steam side. The models are validated against steady-state and transient operational data measured at two commercial-scale industrial units. The model is then used to analyze the inherent dynamics of the gas and water-steam sides, to compare the transient behaviors of BFB and CFB units, and to assess the dynamic performances of FBC plants when operated under different control structures. The results of the dynamic analysis show that the stabilization times of the temperatures across the furnace differ, largely based on the local heat capacity of the region in the furnace, i.e., the amount of bulk solids. The work includes an assessment of the impact of the characteristic times of the in-furnace mechanisms (i.e., fluid dynamics, fuel conversion and heat transfer) on the computed stabilization times of key in-furnace variables at plant level, and suggests some simple mathematical relationships for predicting these times. When accounting for the water-steam side, the results show that the inherent dynamics of variables such as live steam pressure, flow and power production are in the same order of magnitude as the dynamics of the gas side, particularly for the CFB case. This highlights the importance of accounting for the gas side when attempting to model accurately the dynamics of FBC plants. Furthermore, FBC plants are found to be able to provide fast load changes when operated under control structures that manipulate the live steam valve, although this is found to trigger operational issues, such as pressure overshoots.The results of this thesis are of particular importance in terms of assessing the transient capabilities of FBC plants to operate in electricity-driven markets where fast operation is required, and they can be used to identify opportunities and challenges. Furthermore, knowledge about the transient operation of large-scale FB reactors will be crucial for the development of FB applications other than combustion, such as polygeneration or thermochemical energy storage

    Modeling, identification and control of a cold flow circulating fluidized bed

    Get PDF
    Circulating fluidized bed (CFB) is used extensively in petrochemical industries especially for fluid catalytic cracking, coal combustion or gasification and various other chemical processes. In this work, data are used to identify cold flow circulating fluidized bed\u27s (CFCFB) multiple sub models and to combine them into a single nonlinear model such that solids circulation rate can be estimated from the move air flow and riser aeration fed to the device, and the total pressure drop developed across the riser at extremely different experimental conditions.;The present work begins with a complete black box model of a state-space description arising from the system identification and converts it into a model without any fictitious variable such that the interaction among the variables under consideration can be analyzed. Furthermore, this concept separates a state into stochastic and deterministic components which gives the nature of noise acting on the measurement device and rationalizes if there exists a certain relationship between independent and dependent variable. In this thesis, the state is a solids circulation rate. Independent parameters that comprise of aerations flow rates including move air flow, riser aeration and loop seal fluidization air are used to obtain deterministic component of a measured solids circulation rate. On the other hand, easily measurable dependent variables like the pressure drops across various sections of the machine are used to predict its stochastic counterpart.;A real time pressure drop model based on the Recursive Prediction Error Method (RPEM) is built to predict the split of move air flow between the standpipe and L-valve. The split estimate is of paramount importance while simulating the phenomenological model of the standpipe or in other applications, if required. Additional aeration fed across the various sections of standpipe act as the fluidization bias and their routes determination within the component may help to maintain their required level to assist in solids movement during operation while minimizing excessive flows. The path determination is also predicted using RPEM on a discrete time pressure drop model such that the user can operate them at the desired intensity according to their operating requirements.;Generally, a PID controller is not portable , i.e., a controller designed for one plant is usually not applicable to another plant. To resolve this long-standing issue of portable controllable design, the controller scaling method can be used to control similar plants that are different only in gain and frequency scales, thus avoiding tedious control redesign. The adaptive PID control algorithm is then tested on the benchmark NETL CFCFB plant by controlling solids circulation rate according to the reference solids flow rate obtained from the Knowlton\u27s correlation utilizing average voidage in a moving bed condition and the move air flow.;The optimal control of solids circulation rate affecting the heat and mass transfer characteristics which in turn impacts the efficiency of various chemical processes is necessary in CFB units. An example might be the catalytic systems that recirculate catalyst in a reaction/recirculation cycle. In the case of such units in which the addition of catalyst is small and need not be steady, the main solids flow-control problem is to maintain balanced inventories of catalyst in and controlled flow from and to the reactor and regenerator. This flow of solids from an oxidizing atmosphere to a reducing one, or vice versa, usually necessitates stripping gases from the interstices of the solids as well as gases absorbed by the particles. Steam is usually used for this purpose. The point of removal of the solids from the fluidized bed is usually under a lower pressure than the point of feed introduction into the carrier gas. The pressure is higher at the bottom of the solids draw-off pipe due to the relative flow of gas counter to the solids flow. The gas may either be flowing downward more slowly than the solids or upward. The standpipe may be fluidized, or the solids may be in moving packed bed flow with no expansion. Gas is introduced at the bottom (best for group B) or at about 3-m intervals along the standpipe (best for group A). The increasing pressure causes gas inside and between the particles to be compressed. Unless aeration gas is added, the solids could defluidize and become a moving fixed bed with a lower pressure head than that of fluidized solids. Thus, this observation leads to the fact that the gas velocity in the standpipe might be the main parameter to control the solids circulation rate. (Abstract shortened by UMI.)

    The innovative design of air caps for improving the thermal efficiency of CFB boilers.

    Get PDF
    Air caps are an effective way of ensuring uniformity of air flow in Circulating Fluidized Bed (CFB) boilers. Published literature on the design and configuration of these air caps is severely limited. In this study, extensive theoretical as well as experimental investigations have been carried out to design novel air caps in order to improve efficiency of CFB boilers. A small-scale test bench of 220 t/h CFB boiler has been developed, integrated with novel air caps. It has been observed that inhomogeneity in air flow velocity decreases from 65.79% to 21.25%, while the pressure drop decreases by 20%. A mathematic model of air caps has been derived and its accuracy verified through cold tests. Two empirical correlations for calculating the pressure drop and the air jet penetration length of the novel air caps have been obtained and verified. Finally, in order to validate the innovative design of air caps, this methodology has been implemented to a full-scale 220 t/h CFB boiler. The hot test results depict that the thermal efficiency of the boiler has increased from 86.4% to 91.8% when tested with the novel air caps in-place, which is equivalent to a saving of 6000 tons of coal per year

    Change of existing circulating fluidized bed boilers to oxy-firing conditions for CO2 capture

    Get PDF
    This work investigates a circulating fluidized bed boiler, originally designed for air-firing, retrofitted to oxy-firing with the purpose of removing the CO2 emission from coal combustion. Previous studies have shown that the heat balance on the gas-particle side can be satisfied without changes in the boiler, but then the volume flow of gas is reduced. To retain the operation like that during air-firing, the volume flow, that is the fluidization velocity, in oxy-firing should be equal to that in air-firing. It is the main purpose of this work to determine the conditions for the transition from air to oxy-firing, while the heat transfer conditions are maintained at a constant fluidization velocity. Measures to achieve this, such as adjusting the supply of additional gas and the heat transfer surface, are analysed. The fulfilment of the furnace\u27s heat balance requires extra fuel or reduction of the heat-transfer surface in the furnace. These changes affect the performance of the back pass, which must be modified to accommodate the change in gas composition and the higher sensible heat content of the flue gas. Strategies to deal with these circumstances in CFB boilers are discussed

    Solving Inverse Heat Transfer Problems When Using CFD Modeling

    Get PDF
    The chapter presents solving steady-state inverse heat transfer problems using Computational Fluid Dynamics (CFD) software. Two examples illustrate the application of the proposed method. As the first inverse problem determining the absorbed heat flux to water walls in furnaces of steam boilers is presented in detail. Three different measurement devices (flux tubes) were designed to identify steady-state boundary conditions in water wall tubes of combustion chambers. The first meter is made of a short eccentric tube in which four thermocouples on the fire side below the inner and outer tube surfaces are installed. The fifth thermocouple is situated at the rear of the tube on the housing side of the water wall tube. The second meter has two longitudinal fins that are welded to the bare eccentric tube. In the third option of the instrument, the fins are attached to the water wall tubes but not to the flux tubes as in the second version of the flux tubes. The first instrument is used to measure the heat flux to water walls made from bare tubes, while another two heat flux tubes are designated for measuring the heat flux to membrane walls. Unlike the existing devices, the flux tube is not attached to neighboring water-wall tubes. The absorbed heat flux on the outer surface and the heat transfer coefficient at the inner surface of the flux tube are determined from temperature measurements at internal points. The thermal conductivity of the flux-tube material is a function of temperature. The nonlinear inverse problem of heat conduction (IHCP) is solved using the least-squares method. Three unknown parameters are determined using the Levenberg–Marquardt method. In each iteration, the temperature distribution in the cross section of the heat flux instrument is determined using the ANSYS/CFX software

    Solids backmixing and entrainment in the splash zone of large-scale fluidized bed boilers

    Get PDF
    This work studies the fluid dynamics of the solids in the splash zone of fluidized bed furnaces, with focus set on solids back-mixing and solids entrainment in order to enhance the understanding and prediction of the solids flow in the bottom region of the furnace. Experimental results show the establishment of a splash zone also for runs in absence of a dense bottom bed. A simple model assuming ballistic trajectories of the ejected solids is shown to satisfactorily estimate the solids back-mixing rate. The flux of non-backmixed solids, which are entrained from the bottom region, is found to be unaffected by the bottom wall configuration (tapered/vertical) for a given gas flow. Finally, an empirical expression is proposed for the solids entrainment from the bottom region which covers wide operational and unit size ranges

    Fluidized bed plants for heat and power production in future energy systems

    Get PDF
    Fluidized bed (FB) plants are used for heat and power production in several energy systems around the world, with particular importance in systems using large shares of renewable solid fuel, e.g., biomass. These FB plants are traditionally operated for base-load electricity production or for heat production, and thus characterized by relatively small and slow load changes. In parallel, as the transition towards energy systems with net-zero emissions increases the share of variable renewable energy (VRE) sources, the need for implementing variation management strategies at various timescales arises – giving heat and power plants the possibility to adapt their operations to accommodate the inherent variability of VRE sources. Following this, FB technology is envisioned for a wide range of novel applications expected to play significant roles in the decarbonization of energy systems, such as thermochemical energy storage and carbon capture and storage. In this context, research efforts are needed to investigate the technical and economic features of FB plants in energy systems with high levels of VRE.The aim of this thesis is to elucidate the capabilities of FB plants for heat and power production in net-zero emissions energy systems. For this purpose, two main pathways are explored: i) transient operation as fuel-fed plants, and ii) the potential conversion into decarbonized plants, i.e., into VRE-fed layouts providing dispatchable outputs.For fuel-fed FB plants, a dynamic model of biomass-fired FB plants has been developed, considering the two types of FB boilers (BFB and CFB) and including validation against steady-state and transient operational data collected from two commercial plants. As a novelty of this work the model describes both the gas (in-furnace) and water-steam sides such that the interactions between the two can be assessed. The results of the simulations show that i) the characteristic times for the gas side are shorter in BFB furnaces than in CFBs, albeit these times are for both furnace types not longer than those for the water-steam side; ii) the computed timescales for the dynamics of FB plants fall well within those required for offering complementing services to the grid; and iii) the use of control and operational strategies for the water-steam side can confer capabilities superior to fuel-feeding control in terms of avoiding undesirable unburnt emissions and providing temporary overload operation. The retrofit of fuel-fed FB plants into poly-generation facilities cogenerating a combustible biogenic gas is also assessed, revealing that partial combustion of this gas can be used to provide faster inherent dynamics than the original configuration.For VRE-fed FB layouts, techno-economic process modeling has been carried out for large-scale deployment of solar- and electricity-charging processes based on three different chemical systems: i) carbonation/calcination (calcium); ii) thermally reduced redox (cobalt oxides); and iii) chemically reduced redox (iron oxides). One attractive aspect of these layouts is the possibility to build part of them by retrofitting current fuel-fed FB plants. While the technical assessment for solar applications indicates that cobalt-based layouts offer the highest levels of efficiency and dispatchability, calcium-based processes present better economics owing to the use of inexpensive calcium material. The results also show that electricity-charged layouts such as iron looping can play an important role in the system providing variation management strategies to the grid while avoiding costly H2 storage. Further, the economic performances of VRE-fed FB layouts are benefitted by the generation of additional services and products (e.g., carbon capture and on-demand production of H2), and by scenarios with high volatility of the electricity prices

    Behaviour of selected South African coals in circulating fluidised bed (CFB) in comparison with Russian coal

    Get PDF
    A thesis submitted to the Faculty of Engineering and Built Environment, University of the Witwatersrand, Johannesburg, in fulfilment of the requirements for the degree of Doctor of Philosophy, Johannesburg 2017South Africa (SA) has an energy-intensive coal mining industry, where coal accounts for approximately 72% of total primary energy consumption in the country, particularly in the electricity sector, where 95% of total electricity generated is derived from coal. Pulverised coal combustion has been the preferred technology adopted for power generation in South Africa for many decades. These coal-fired power plants have no flue gas desulphurisation (FGD) equipment fitted at present. Therefore, these plants account for the majority of annual SO2, CO2, and NOx emissions, making them environmentally unsustainable for power generation. Such environmental issues add to the challenges for the power producer, who is required to meet not only energy demand, but also to compete with the export market for quality coals, and to ensure that electricity generation complies with ever-changing air quality standards. Circulating fluidised-bed combustion (CFBC), a technology for the combustion of coal, biomass, waste, has not been adequately explored or tested in South Africa previously. CFB combustion is currently under intense scrutiny amongst researchers evaluating its potential as an economic and environmentally acceptable technology, in particular for the burning of lowgrade coals. The main objective of this study is to undertake a case study using CFBC technology and to establish its potential for use in South Africa as a clean and cost-effective method in power generating for high-ash, low-grade coals. Experimental tests were conducted in a CFBC pilot plant in Finland, using two high ash coals, discarded coal from South Africa (SA) and a better quality coal from Russia for comparative purposes. A review was conducted of discard coals in South Africa in order to establish an inventory in support of their potential utilisation for power generation in circulating fluidised bed boilers. A further study established a comparison between pulverised coal (PC), and fluidised bed (FBC) technologies as a future benefit analysis. All four coals proved to have very high combustion efficiencies, despite significant quality differences in terms of petrographic composition and ash content. More specifically, the SA coals achieved combustion efficiencies of 99.6 %, 99.7 % and 99.8 %, where the Russian coal achieved 98.7 percent. The Russian coal was characterised as being low in ash and high in the reactive maceral vitrinite, the two South African coals possessed high ash content (35 to 45%), one with relatively high vitrinite, and the other very low vitrinite, whilst the South African discard possessed an ash content of 65-70% and extremely low reactive vitrinite content. All these factors lean towards the suitability of SA coals to the CFB technology. In terms of NOx emissions, all coals tested showed that their NOx and N2O emission meet the minimum requirements for small plants as set out by the European and SA standards, i.e. <300 ppm for a plant with generating capacity below 100 MW. This result is in agreement with data from the literature. The emission of SO2 depends on the sulphur content in the initial coal, which also has an impact on the Ca/S Ratio. SO2 emitted from the South African coals was higher than the national permitted standard, due to the low Ca/S ratio used. This was especially the case for South African discard. Vast reserves of discard coal containing from 2MJ/kg to 14 MJ/kg in calorific value have accumulated in South Africa since the last inventory of 2001, i.e. close to 1.5 billion tonnes are in existence. It is apparent that one of the looming challenges regarding discard coal is putting this ever-accumulating material to use. From the combustion results obtained in this research, it is proposed that such materials can be combusted in a CFBC boiler, and that it produces the same efficiency as other coals from South Africa and a clean coal from Europe. Ash distribution within the boiler was found to change in proportion of bed ash to fly ash, subject to the quality of the coal used. This is also likely to change the proportions of sulphur-absorbing sorbents in future. CO2 emissions from the coals under review were found to be very close, in the region of 12.8 to 13.8 percent.XL201
    • …
    corecore