1,447 research outputs found

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig

    A Comprehensive Survey of Deep Learning in Remote Sensing: Theories, Tools and Challenges for the Community

    Full text link
    In recent years, deep learning (DL), a re-branding of neural networks (NNs), has risen to the top in numerous areas, namely computer vision (CV), speech recognition, natural language processing, etc. Whereas remote sensing (RS) possesses a number of unique challenges, primarily related to sensors and applications, inevitably RS draws from many of the same theories as CV; e.g., statistics, fusion, and machine learning, to name a few. This means that the RS community should be aware of, if not at the leading edge of, of advancements like DL. Herein, we provide the most comprehensive survey of state-of-the-art RS DL research. We also review recent new developments in the DL field that can be used in DL for RS. Namely, we focus on theories, tools and challenges for the RS community. Specifically, we focus on unsolved challenges and opportunities as it relates to (i) inadequate data sets, (ii) human-understandable solutions for modelling physical phenomena, (iii) Big Data, (iv) non-traditional heterogeneous data sources, (v) DL architectures and learning algorithms for spectral, spatial and temporal data, (vi) transfer learning, (vii) an improved theoretical understanding of DL systems, (viii) high barriers to entry, and (ix) training and optimizing the DL.Comment: 64 pages, 411 references. To appear in Journal of Applied Remote Sensin

    PERFORMANCE EVALUATION OF MACHINE LEARNING ALGORITHMS FOR INTRUSION DETECTION SYSTEM

    Get PDF
    The escalation of hazards to safety and hijacking of digital networks are among the strongest perilous difficulties that must be addressed in the present day. Numerous safety procedures were set up to track and recognize any illicit activity on the network\u27s infrastructure. IDS are the best way to resist and recognize intrusions on internet connections and digital technologies. To classify network traffic as normal or anomalous, Machine Learning (ML) classifiers are increasingly utilized. An IDS with machine learning increases the accuracy with which security attacks are detected. This paper focuses on intrusion detection systems (IDSs) analysis using ML techniques. IDSs utilizing ML techniques are efficient and precise at identifying network assaults. In data with large dimensional spaces, however, the efficacy of these systems degrades. correspondingly, the case is essential to execute a feasible feature removal technique capable of getting rid of characteristics that have little effect on the classification process. In this paper, we analyze the KDD CUP-\u2799\u27 intrusion detection dataset used for training and validating ML models. Then, we implement ML classifiers such as “Logistic Regression, Decision Tree, K-Nearest Neighbour, Naïve Bayes, Bernoulli Naïve Bayes, Multinomial Naïve Bayes, XG-Boost Classifier, Ada-Boost, Random Forest, SVM, Rocchio classifier, Ridge, Passive-Aggressive classifier, ANN besides Perceptron (PPN), the optimal classifiers are determined by comparing the results of Stochastic Gradient Descent and back-propagation neural networks for IDS”, Conventional categorization indicators, such as accuracy, precision, recall, and the f1-measure , have been used to evaluate the performance of the ML classification algorithms

    A study of deep neural networks for human activity recognition

    Get PDF
    Human activity recognition and deep learning are two fields that have attracted attention in recent years. The former due to its relevance in many application domains, such as ambient assisted living or health monitoring, and the latter for its recent and excellent performance achievements in different domains of application such as image and speech recognition. In this article, an extensive analysis among the most suited deep learning architectures for activity recognition is conducted to compare its performance in terms of accuracy, speed, and memory requirements. In particular, convolutional neural networks (CNN), long short‐term memory networks (LSTM), bidirectional LSTM (biLSTM), gated recurrent unit networks (GRU), and deep belief networks (DBN) have been tested on a total of 10 publicly available datasets, with different sensors, sets of activities, and sampling rates. All tests have been designed under a multimodal approach to take advantage of synchronized raw sensor' signals. Results show that CNNs are efficient at capturing local temporal dependencies of activity signals, as well as at identifying correlations among sensors. Their performance in activity classification is comparable with, and in most cases better than, the performance of recurrent models. Their faster response and lower memory footprint make them the architecture of choice for wearable and IoT devices

    A Review of Findings from Neuroscience and Cognitive Psychology as Possible Inspiration for the Path to Artificial General Intelligence

    Full text link
    This review aims to contribute to the quest for artificial general intelligence by examining neuroscience and cognitive psychology methods for potential inspiration. Despite the impressive advancements achieved by deep learning models in various domains, they still have shortcomings in abstract reasoning and causal understanding. Such capabilities should be ultimately integrated into artificial intelligence systems in order to surpass data-driven limitations and support decision making in a way more similar to human intelligence. This work is a vertical review that attempts a wide-ranging exploration of brain function, spanning from lower-level biological neurons, spiking neural networks, and neuronal ensembles to higher-level concepts such as brain anatomy, vector symbolic architectures, cognitive and categorization models, and cognitive architectures. The hope is that these concepts may offer insights for solutions in artificial general intelligence.Comment: 143 pages, 49 figures, 244 reference

    Improving time efficiency of feedforward neural network learning

    Get PDF
    Feedforward neural networks have been widely studied and used in many applications in science and engineering. The training of this type of networks is mainly undertaken using the well-known backpropagation based learning algorithms. One major problem with this type of algorithms is the slow training convergence speed, which hinders their applications. In order to improve the training convergence speed of this type of algorithms, many researchers have developed different improvements and enhancements. However, the slow convergence problem has not been fully addressed. This thesis makes several contributions by proposing new backpropagation learning algorithms based on the terminal attractor concept to improve the existing backpropagation learning algorithms such as the gradient descent and Levenberg-Marquardt algorithms. These new algorithms enable fast convergence both at a distance from and in a close range of the ideal weights. In particular, a new fast convergence mechanism is proposed which is based on the fast terminal attractor concept. Comprehensive simulation studies are undertaken to demonstrate the effectiveness of the proposed backpropagataion algorithms with terminal attractors. Finally, three practical application cases of time series forecasting, character recognition and image interpolation are chosen to show the practicality and usefulness of the proposed learning algorithms with comprehensive comparative studies with existing algorithms

    Intelligent Malware Detection Using File-to-file Relations and Enhancing its Security against Adversarial Attacks

    Get PDF
    With computing devices and the Internet being indispensable in people\u27s everyday life, malware has posed serious threats to their security, making its detection of utmost concern. To protect legitimate users from the evolving malware attacks, machine learning-based systems have been successfully deployed and offer unparalleled flexibility in automatic malware detection. In most of these systems, resting on the analysis of different content-based features either statically or dynamically extracted from the file samples, various kinds of classifiers are constructed to detect malware. However, besides content-based features, file-to-file relations, such as file co-existence, can provide valuable information in malware detection and make evasion harder. To better understand the properties of file-to-file relations, we construct the file co-existence graph. Resting on the constructed graph, we investigate the semantic relatedness among files, and leverage graph inference, active learning and graph representation learning for malware detection. Comprehensive experimental results on the real sample collections from Comodo Cloud Security Center demonstrate the effectiveness of our proposed learning paradigms. As machine learning-based detection systems become more widely deployed, the incentive for defeating them increases. Therefore, we go further insight into the arms race between adversarial malware attack and defense, and aim to enhance the security of machine learning-based malware detection systems. In particular, we first explore the adversarial attacks under different scenarios (i.e., different levels of knowledge the attackers might have about the targeted learning system), and define a general attack strategy to thoroughly assess the adversarial behaviors. Then, considering different skills and capabilities of the attackers, we propose the corresponding secure-learning paradigms to counter the adversarial attacks and enhance the security of the learning systems while not compromising the detection accuracy. We conduct a series of comprehensive experimental studies based on the real sample collections from Comodo Cloud Security Center and the promising results demonstrate the effectiveness of our proposed secure-learning models, which can be readily applied to other detection tasks
    corecore