
Graduate Theses, Dissertations, and Problem Reports

2019

Intelligent Malware Detection Using File-to-file Relations and Intelligent Malware Detection Using File-to-file Relations and

Enhancing its Security against Adversarial Attacks Enhancing its Security against Adversarial Attacks

Lingwei Chen
lgchen@mix.wvu.edu

Follow this and additional works at: https://researchrepository.wvu.edu/etd

 Part of the Information Security Commons

Recommended Citation Recommended Citation
Chen, Lingwei, "Intelligent Malware Detection Using File-to-file Relations and Enhancing its Security
against Adversarial Attacks" (2019). Graduate Theses, Dissertations, and Problem Reports. 3844.
https://researchrepository.wvu.edu/etd/3844

This Dissertation is protected by copyright and/or related rights. It has been brought to you by the The Research
Repository @ WVU with permission from the rights-holder(s). You are free to use this Dissertation in any way that is
permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain
permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license
in the record and/ or on the work itself. This Dissertation has been accepted for inclusion in WVU Graduate Theses,
Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU.
For more information, please contact researchrepository@mail.wvu.edu.

https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/etd
https://researchrepository.wvu.edu/etd?utm_source=researchrepository.wvu.edu%2Fetd%2F3844&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=researchrepository.wvu.edu%2Fetd%2F3844&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/etd/3844?utm_source=researchrepository.wvu.edu%2Fetd%2F3844&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:researchrepository@mail.wvu.edu

Intelligent Malware Detection Using

File-to-file Relations and Enhancing its

Security against Adversarial Attacks

Lingwei Chen

Dissertation submitted to the
Benjamin M. Statler College of Engineering and Mineral Resources

at West Virginia University
in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy
in

Computer Science

Yanfang Ye, Ph.D., Committee Chairperson
Donald Adjeroh, Ph.D.

Elaine M. Eschen, Ph.D.
Zachariah B. Etienne, Ph.D.

Katerina Goseva-Popstojanova, Ph.D.

Lane Department of Computer Science and Electrical Engineering

Morgantown, West Virginia
2019

Keywords: Malware Detection, Machine Learning, Data Mining, File-to-file
Relations, Adversarial Attacks and Defenses

Copyright 2019 Lingwei Chen

Abstract

Intelligent Malware Detection Using File-to-file Relations and

Enhancing its Security against Adversarial Attacks

Lingwei Chen

With computing devices and the Internet being indispensable in people’s everyday

life, malware has posed serious threats to their security, making its detection of ut-

most concern. To protect legitimate users from the evolving malware attacks, machine

learning-based systems have been successfully deployed and offer unparalleled flexibility

in automatic malware detection. In most of these systems, resting on the analysis of

different content-based features either statically or dynamically extracted from the file

samples, various kinds of classifiers are constructed to detect malware. However, besides

content-based features, file-to-file relations, such as file co-existence, can provide valuable

information in malware detection and make evasion harder. To better understand the

properties of file-to-file relations, we construct the file co-existence graph. Resting on

the constructed graph, we investigate the semantic relatedness among files, and leverage

graph inference, active learning and graph representation learning for malware detection.

Comprehensive experimental results on the real sample collections from Comodo Cloud

Security Center demonstrate the effectiveness of our proposed learning paradigms.

As machine learning-based detection systems become more widely deployed, the

incentive for defeating them increases. Therefore, we go further insight into the arms

race between adversarial malware attack and defense, and aim to enhance the security

of machine learning-based malware detection systems. In particular, we first explore

the adversarial attacks under different scenarios (i.e., different levels of knowledge the

attackers might have about the targeted learning system), and define a general attack

strategy to thoroughly assess the adversarial behaviors. Then, considering different skills

and capabilities of the attackers, we propose the corresponding secure-learning paradigms

to counter the adversarial attacks and enhance the security of the learning systems

while not compromising the detection accuracy. We conduct a series of comprehensive

experimental studies based on the real sample collections from Comodo Cloud Security

Center and the promising results demonstrate the effectiveness of our proposed secure-

learning models, which can be readily applied to other detection tasks.

iii

Acknowledgments

It is never easy to finish the Ph.D. study and write this dissertation. It would not

have been possible to finish without the help of so many people in many ways.

I would first like to express my greatest gratitude to my committee chair and ad-

visor, Dr. Yanfang Ye, for her guidance and support not only for this dissertation but

throughout the time of my entire Ph.D. study. Her passion, vision, attitude, and love for

research is always an inspiration source and influence to me; her expertise, understand-

ing, generous guidance, suggestions, valuable comments and revisions make it possible

for me to work on such an exciting topic; her devotion of significant time and efforts on

mentoring my research has resulted in fourteen publications by the date of this disserta-

tion. In particular, our work on adversarial machine learning in malware detection has

resulted in several high quality publications, including the prestigious IEEE EISIC’2017

Best Paper Award and recent publicaitons in top-tier conferences (e.g., ACSAC’2017

with 19.7% acceptance rate, and ACSAC’2018 with 20.1% acceptance rate).

I would also like to thank my committee members, Dr. Donald Adjeroh, Dr. Elaine

Eschen, Dr. Katerina Goseva-Popstojanova, and Dr. Zachariah Etienne, for their time

and help for my research work; I am very fortunate to work with a cheerful group

members, including Shifu Hou, Yujie Fan, Yiming Zhang, Jian Liu, William Harday

and Aaron Saas, who exchanged ideas about cybersecurity and machine learning related

research work and provided useful suggestions on my dissertation.

I am highly thankful to be blessed by amazing and talented family members and

friends, who have made such a positive impact on my daily life, study, and research;

last but not the least, I would also like to thank the anti-malware experts of Comodo

Security Lab for data collection and helpful discussion. This work is partially supported

by the U.S. National Science Foundation under grants CNS-1618629, CNS-1814825 and

OAC-1839909, WV Higher Education Policy Commission Grant (HEPC.dsr.18.5), and

WVU Research and Scholarship Advancement Grant (R-844).

iv

Contents

Acknowledgments iii

List of Figures vi

List of Tables ix

List of Notations x

List of Acronyms xii

1 Introduction 1
1.1 Background and Motivation . 1
1.2 Research Goals . 3
1.3 Contributions of This Dissertation . 4
1.4 Organization of This Dissertation . 7

2 Development of Malware and Malware Detection Techniques 8
2.1 Development of Malware . 8

2.1.1 Definition of Malware . 8
2.1.2 Taxonomy of Malware . 9
2.1.3 History of Malware . 11

2.2 Development of Malware Detection Techniques 13
2.2.1 Signature-based Malware Detection 13
2.2.2 Heuristic-based Malware Detection 14
2.2.3 Machine Learning-based Malware Detection 15
2.2.4 Adversarial Machine Learning in Malware Detection 17

3 Intelligent Malware Detection Utilizing File-to-file Relations 20
3.1 File-to-file Relation Graph Construction 21
3.2 An Enhanced Belief Propagation Algorithm for Malware Detection 24

3.2.1 Standard Belief Propagation . 25
3.2.2 Enhanced Belief Propagation . 26
3.2.3 Experimental Results and Analysis 28

3.3 Active Learning in Malware Detection . 32
3.3.1 Gaining Insight into the Semantic Relatedness 32
3.3.2 Active Learning Framework . 38
3.3.3 Experimental Results and Analysis 40

3.4 Graph Representation Learning for Malware Detection 44

Contents v

3.4.1 Representation Learning using Long Short-term Memory 44
3.4.2 Experimental Results and Analysis 48

3.5 Summary . 50

4 Enhancing Security of Learning-based Systems in Malware Detection 52
4.1 Problem Definition . 53
4.2 Adversarial Attack . 54

4.2.1 Feature Manipulation . 56
4.2.2 Adversarial Cost . 57
4.2.3 Attack Strategy . 58

4.3 SecDefender : A Secure-learning Model against Well-crafted Attack 59
4.3.1 Feature Representation . 59
4.3.2 Well-crafted Attack Model AdvAttack 61
4.3.3 Secure-learning Model based on AdvAttack 65
4.3.4 Experimental Results and Analysis 68

4.4 SecureDroid : A Secure-learning Paradigm against Various Kinds of Attacks 73
4.4.1 Feature Representation . 74
4.4.2 Secure Classifier Construction using Novel feature Selection 76
4.4.3 Ensemble Learning to Improve Detection Accuracy 80
4.4.4 Experimental Results and Analysis 82

4.5 DroidEye: Fortifying Learning Security over Feature Space 90
4.5.1 Feature Representation . 91
4.5.2 Count Featurization . 92
4.5.3 Experimental Results and Analysis 96

4.6 Summary . 101

5 Conclusion and Future Work 104
5.1 Conclusion . 104
5.2 Future Work . 106

List of Publications 109

Bibliography 111

vi

List of Figures

1.1 File relations between a Downloader-Trojans and its related Trojans [149] 2
1.2 File relations between a benign application and its related dynamic link

files [149] . 2

2.1 (a) New malware created in the last two years, and (b) total malware
created in the last ten years [4]. 9

3.1 An example of file-to-file relation graph. 21
3.2 Visualization of file-to-file relation graphs: (a) a part of the constructed

graph; (b) an example of a malware relation graph with one-hop informa-
tion; (c) an example of a benign file relation graph with one-hop informa-
tion (Red nodes denote malware, green nodes represent benign file, and
yellow nodes are unknown file) [27]. 22

3.3 A zoom-in view of a part of the constructed file relation graph [66]. 23
3.4 Message update from node i to node j . 25
3.5 A sample dataset and its file relation graph constructed 26
3.6 Comparisons of different belief propagation algorithms 30
3.7 Comparisons of malware detection effectiveness and efficiency between

EBP Algorithm and other classification approaches. 31
3.8 Malare detection comparisons using large and real data collection. 32
3.9 Indirect influences superior than direct influences for file 1880 (yellow node) 35
3.10 The comparison of benign files and malware in IoB and IoM measures . . 35
3.11 The comparisons of “important” malware and “non-important” ones. . . . 36
3.12 Graph structure comparisons of “important” and “non-important” mal-

ware. (a) Important malware A and its neighbors; (b) Relations between
A’s neighbors; (c) Non-important malware B and its neighbors; (d) Rela-
tions between B’s neighbors [27]. 37

3.13 An example of malware detection using active learning framework. 42
3.14 Comparisons of ROC curves and detection efficiency of different methods 43
3.15 Neighborhood relationships among files. 45
3.16 Illustration of encoder-decoder LSTM architecture. 46
3.17 Parameter sensitivity evaluation. 50

4.1 Intelligent malware detection system using machine learning techniques. . 53

List of Figures vii

4.2 Different scenarios of the adversarial attacks. With the direction of the
inward arrow, the adversarial attacks are depicted with the knowledge of
(X, D̂), (X,D), and (X,D, f). 56

4.3 An overview of system architecture of SecDefender. In this system, the
collected PE files are first represented as d-dimensional binary feature
vectors. Then a well-crafted adversarial attack model AdvAttack is for-
mulated to generate the adversarial examples, which will be further used
for classifier retraining and security regularization. For a new file, based
on the extracted features, it will be predicted as either malicious or benign
based on the trained classification model. 59

4.4 Relevance score distribution of the extracted API calls for the classification
of malware and benign files . 61

4.5 The feature distribution of file samples. 68
4.6 Comparisons of AdvAttack and other adversarial attacks: Original-

Classifier (0), different adversarial attacks (Method 1 - 4) and AdvAttack
(5) . 69

4.7 FNR before and after each attack under different scenarios for all 1,000
testing file samples . 70

4.8 Comparisons of SecDefender and other classification models on ACC, F1,
FNR, and ROC curves: Original-Classifier (1), Original-Classifier under
attack (2), retrained Original-Classifier (3), and SecDefender (4) 71

4.9 An overview of system architecture of SecureDroid. In the system, the
collected app files are first represented as d-dimensional binary feature
vectors. Then SecCLS is applied to select a set of features (each feature
i is selected with probability P(i)) to construct a more secure classifier.
SecENS is later exploited to aggregate different individual classifiers built
using SecCLS to classify malicious and benign files. For a new file, based
on the extracted features, it will be predicted as either malicious or benign
based on the trained classification model. 74

4.10 The manipulation costs determined by different feature types and manip-
ulation methods. 78

4.11 Effectiveness evaluation of different attacks. 84
4.12 Security evaluations under brute-force (BF) attacks, anonymous (AN)

attacks, well-crafted (WC) attacks, and without attacks. 86
4.13 Comparisons of different defense methods. 88
4.14 Scalability and stability evaluation of SecureDroid. 89
4.15 An overview of system architecture of DroidEye. In the system, the col-

lected apps are first represented as d-dimensional binary feature vectors.
To harden the evasion, count featurization is used to transform each bi-
nary feature vector xi to a continuous feature vector x′i; then softmax
function with adversarial parameter is introduced to find the best trade-
off between security and accuracy for the classifier. For a new app, after
feature representation, it will be predicted as either benign or malicious
using the classifier. 90

4.16 Defenses in different feature spaces. 92
4.17 An example of count featurization. 94

List of Figures viii

4.18 Evaluation of DroidEye with different τ under AdvAttack with number
of manipulated features varying from 10 to 50. 98

4.19 Security evaluations of DroidEye and Original-Classifier under AdvAat-
tack, FGSM attack, ANAattack, and without attacks. 99

4.20 Comparisons of different defense methods. 101

ix

List of Tables

3.1 Graph property comparisons . 24
3.2 The edge potential design in AESOP[121] 26
3.3 The results of standard BP and EBP based on Figure 3.5 27
3.4 The edge potential design in enhanced BP 27
3.5 The evaluation measures of malware detection performance 30
3.6 Malare detection comparisons using large and real data collection 31
3.7 Evaluation of the designed graph-based features 41
3.8 Evaluation of the proposed learning framework in malware detection . . . 42
3.9 Comparisons of different detection methods 43
3.10 Comparisons of file2vec with DeepWalk in malware detection 48
3.11 Comparisons with other machine learning methods 49

4.1 List of the top ranked API calls . 62
4.2 Comparisons of different anti-malware scanners 72
4.3 Illustration of extracted features for Android apps in SecureDroid 76
4.4 Performance indices of Android malware detection 83
4.5 Comparison of SecureDroid with SecCLS and ERFS with random fea-

ture selection against well-crafted attacks (UnderAtt) and without attacks
(NonAtt). 87

4.6 Illustration of extracted features for Android apps in DroidEye 91

x

List of Notations

|.| The size of a set

ξ Lagrange multiplier

Ψ Knowledge of the learning system

τ Adversarial parameter

θ Adversarial attack

δvb Vertex v’s benign neighbors

δvm Vertex v’s malicious neighbors

A(x) Manipulation function

B API calls highly relevant to benign files

bi(vi) Belief value of node i

Ci The set of clients containing vi

C(x′,x) The adversarial cost function

con(vi, vi) The connectivity between file vi and vj

ct Cell activation vectors

D Training sample set

d Vector dimension

E The set of relations between file samples

ev Edges built by all v’s neighbors

Fvi Concatenation of Relation- and Graph-based feature of vi

f Classification function

fi→j(vi, vj) The edge potential from node i to node j

ft Forget gate at timestep t

G The file relation graph

Gvi Graph-based feature of vi

gi(vi) The node potential of node i

g(u, v) The distance between vertex u and v

List of Notations xi

H Hidden layer function

ht The hidden layer vector at timestep t

I(i) The importance of ith-feature

I(vi, vj) Indicator to denote if (vi, vj) ∈ E
I(x,+1) Feature x’s relevance score to malware

I(x,−1) Feature x’s relevance score to benign file

it Input gate at timestep t

kv Degree of the vertex v

l Walk length
−→
~M t The malicious score vector at timestep t

M API calls highly relevant to malware

M(vi) The malicious score of node vi

mi→j(vj) The message sent from node i to node j

N(i) The set of nodes neighboring node i

ot Output gate at timestep t

P(i) The probability of ith-feature being selected

Rvi Relation-based feature of vi

r Walks per nodes

S The set of file states

S The security matrix

sb Benign

sm Malicious

su Unknown

sim(Fvi , Fvj) The similarity between vi and vj over the feature space F

T (x′,x) The adversarial action function

T The adversarial action matrix

V The set of file samples

vi File sample i

vt The one-hop vector at timestep t

w(vi) The weight of the node vi

w(vi, vj) The weight of the edge between vi and vj

X The feature space

xii

List of Acronyms

ACC Accuracy - (TP+TN)/(TP+TN+FP+FN)

API Application Programming Interface

BP Belief Propagation

CC Closeness Centrality

CDF Cumulative Distribution Function

DoB Degree of Benign files

DoM Degree of Malware

DC Degree Centrality

DT Decision Tree

EBP Enhanced Belief Propagation

FGSM Fast Gradient Sign Method

FN False Negative - number of files (apps) mistakenly classified

as benign

FNR False Negative Rate - FN/(TP+FN)

F1 F1 Measure - 2×Precision×Recall/(Precision+Recall)

FP False Positive - number of files (apps) mistakenly classified

as malicious

FPR False Positive Rate - FP/(FP+TN)

IDK Ideal Knowledge Attack

IoB Influence Coefficient of Benign files

IoM Influence Coefficient of Malware

IPK Imperfect Knowledge Attack

LLC Local Clustering Coefficient

LR Logistic Regression

LSTM Long Short-Term Memory

MMC Mimicry Attack

List of Acronyms xiii

MRS Malicious Relevance Score

Mr.SPA Malicious Relevance Score Propagation Algorithm

MSIA Malicious Score Inference Algorithm

NB Näıve Bayes

NN Neural Network

PE Portable Executable file

Precision Precision - TP/(TP+FP)

Recall Recall - TP/(TP+FN)

ROC Receiver Operating Characteristic

SVM Support Vector Machine

TN True Negative - number of files (apps) correctly classified

as benign

TNR True Negative Rate - TN/(FP+TN)

TP True Positive - number of files (apps) correctly classified

as malicious

TPR True Positive Rate - TP/(TP+FN)

1

Chapter 1

Introduction

1.1 Background and Motivation

Malware (e.g., viruses, worms, trojans, backdoors, botnets, ransomware) is mal icious

software that is disseminated by attackers as a major weapon to launch a wide range

of security attacks, such as disturbing system operations, stealing personal sensitive

information without user’s permission, hijacking devices remotely to deliver massive

spam emails, or infiltrating user’s online account credentials [144]. With computing

devices and the Internet being essential in everyday life, malware poses serious and

evolving threats to their security, which present various damages and significant financial

loss to Internet users. A study conducted by Kaspersky Lab revealed that nearly half

of Internet users have encountered malicious software, in which 80% malware attacks

caused problems for the users [74]. It’s also reported that up to one billion dollars were

stolen in roughly two years from financial institutions worldwide, due to malware attacks

[73]. As a result, the detection of malware is of major concern to both the anti-malware

industry and scientific research community.

In order to combat the evolving malware attacks and protect legitimate users from

these threats, most malware detection systems in computing devices, especially anti-

malware software products (e.g., Symantec, Kaspersky, Comodo), typically use the

signature-based method [49]. A signature is a short sequence of bytes unique to each

known malware, which allows newly encountered files to be correctly identified with a

small error rate [75]. However, driven by economic benefits, today’s malware are cre-

ated at a rate of hundreds of thousands per day [149] (i.e., more than 260 million new

malware samples were created last two year [4]). Meanwhile, malware attackers easily

evade this method through techniques such as obfuscation, polymorphism, metamor-

Chapter 1. Introduction 2

phism, and encryption [119]. In order to remain effective, new and intelligent malware

detection techniques need to be investigated. As a result, many research efforts have

been conducted on applying machine learning techniques for intelligent malware detec-

tion [140, 7, 90, 139, 142, 95, 60, 39, 67, 68, 151, 131, 132, 137, 69]. In these systems,

based on different feature representations (e.g., binary n-grams [7], system call graphs

[101, 67], dynamic behaviors [49, 132], or Application Programming Interface (API) call

blocks [68]), various kinds of classification approaches, such as support vector machine

[153, 79, 44, 114], random forest [1] and deep neural network [68, 67, 60], are used for

model construction to detect malicious files, which have offered unparalleled flexibility

in intelligent malware detection.

Figure 1.1: File relations between a

Downloader-Trojans and its related Tro-

jans [149]

Figure 1.2: File relations between a be-

nign application and its related dynamic

link files [149]

Most of the existing systems using machine learning techniques merely utilize local

features either statically or dynamically extracted from the file samples to detect mal-

ware. As the moral says “man is known by the company he keeps”, in malware detection,

a file’s goodness or malice may be judged by the other files that are always associated

with it in the different ways. For example, Ye et al. [149] first proposed to utilize file

relations for malware detection: as shown in Figure 1.1, we can observe that a Trojan-

Downloader “yy(1).exe”, which can download and install multiple unwanted applications

(e.g., trojan, adware) from remote servers, is associated with many trojans which are

marked as purple color; from Figure 1.2, we can observe that a benign system diagnostic

application “everest.exe”, is associated with different benign files marked in green color.

Ignoring the relations among file samples is a significant limitation of current malware

detection methods. Recently, features beyond file content are starting to be leveraged to

curb the security threats that malware poses [149, 25, 121, 72], such as machine-to-file

relations [25] and file-to-file relations (e.g., file co-existence) [149, 121], which provide

Chapter 1. Introduction 3

invaluable insight about the properties of file samples [149]. However, much needs to

be done to take full advantage of the relationships of malware and benign files (i.e.,

malware-malware, malware-benign, benign-benign relations). To better understand the

properties of file-to-file relations, we’d like to take a further step to delve deeper into the

relationship characteristics of malware and benign files.

Meanwhile, as machine learning-based detection systems become more widely de-

ployed, the adversary incentive for defeating them increases [144]. More specifically,

machine learning itself may open the possibility for an adversary who maliciously “mis-

trains” a classifier (e.g., by changing data distribution or feature importance) in a

malware detection system. When the learning system is deployed in a real-world en-

vironment, it is of a great interest for malware attackers to actively manipulate the

data to make the classifier produce minimum true positive (i.e., maximally misclas-

sifying malware as benign), using some combination of prior knowledge, observation,

and experimentation [38]. If we look at the evolution of malware detection techniques

[49, 119, 101, 39, 25, 149, 60], malware attackers and anti-malware defenders are actu-

ally engaged in a never-ending arms race. At each round, both the malware attackers

and defenders analyze the vulnerabilities of each other, and develop their own optimal

strategies to overcome the opponents [14], which has led to considerable countermea-

sures of variability and sophistication between attackers and defenders. For example,

when signature-based methods prevailed in malware detection, attackers began to use

code obfuscation and encryption to bypass the detection and defeat attempts to analyze

their inner mechanisms [77, 67]. Currently, the issues of understanding machine learning

security in adversarial settings [152] are starting to be leveraged, from either adversarial

[87, 38, 126, 14, 13] or defensive [152, 127, 40, 11, 15] perspectives. However, the appli-

cation of adversarial machine learning into malware detection domain has been scarce.

With machine learning techniques prevailing in malware detection, such adversaries will

become even more outrageous.

1.2 Research Goals

With the above limitations and challenges addressed for intelligent malware detec-

tion, in this Ph.D. dissertation, we focus on investigating file-to-file relations to facilitate

analysis of malware detection, and exploring the adversarial machine learning to en-

hance the security of malware detection. Specifically, we describe these research goals

(RG1-RG2) in detail as follows:

Chapter 1. Introduction 4

• RG1: Intelligent malware detection utilizing file-to-file relations: To achieve our

research goals, we construct the file co-existence graphs between malware and be-

nign files, and analyze effective graph-based feature representations and relation-

ship characteristics (e.g., mutual influence and difference importances among the

files) for intelligent malware detection. Since feeding the graph-based features to

the traditional machine learning-based classifiers is an inferior fashion for malware

detection, which is incapable of depicting the file-to-file relations, a well designed

graph inference framework or graph representation learning framework should be

proposed to make the best use of graph structure, and manage to propagate the

mutual information between malware and benign files in the constructed relation-

ship graphs to promote the optimal solution for file labeling.

• RG2: Enhancing security of machine learning-based malware detection: In the

arms race between malware attackers and defenders, they utilize the vulnerabilities

of each other and implement their optimal strategies to overcome the opponents.

To be resilient against the malware attacks, we analyze the general adversarial

strategy to facilitate assessing the security of the classifier. Accordingly, we present

several secure-learning paradigms to counter adversarial attacks. To be feasible in

practical use for malware detection, in these paradigms, we formulate some models

based on the attackers’ skills and capabilities, while others are independent from the

knowledge about the structure of the data (e.g., adversarial examples) or the attack

model, which are adaptive to all potential attacks without exhibiting significant

evidence of manipulation.

1.3 Contributions of This Dissertation

In this dissertation, to address the aforementioned research problems, we conduct

feasibility studies, propose different learning methods for intelligent malware detection

and adversarial machine learning, and develop the corresponding systems that integrate

our proposed methods. The contributions can be summarized as follows:

• We utilize file-to-file relations for intelligent malware detection through construct-

ing file co-existence graph construction, designing graph-based features to charac-

terize the semantic relatedness among them, and proposing graph learning frame-

work to detect malware, which have resulted in 4 publications [31, 27, 66, 143].

Chapter 1. Introduction 5

– Deep analysis of file-to-file relation graphs: Different from file content based

detection, we analyze and utilize the relations among file samples (i.e., co-

existences of the files) collected from the user clients to construct file relation

graph for malware detection. The newly unknown malware can be detected

by its association with the known files (benign or malicious). (See Section 3.1

for details).

– Design enhanced Belief Propagation (EBP) algorithm for unknown file label-

ing: Belief Propagation (BP) algorithm is a promising method for solving

inference problems over graphs and it has also been successfully used in many

domains (e.g., computer vision, coding theory) [150]. However, in our appli-

cation, the algorithm should be greatly adapted, which is not a trivial process:

we fine tune various components used in the algorithm and carefully design the

message update and belief read-out functions for malware detection [31, 66]

(See Section 3.2 for details).

– Build effective active learning framework for malware detection: Based on

the constructed file-to-file relation graph, we design five graph-based features

to represent each file and further analyze its relationship characteristics and

have two significant findings: Finding 1: A file can greatly inherit the indirect

influences from other files. Finding 2: (1) The importance of each file is

different; (2) The neighbors of the important malware are associated through

it, while the neighbors of the non-important malicious file are inclined to be

a clique. We also use graph metrics to quantitatively validate these findings.

Accordingly, we first apply Malicious Score Inference Algorithm (MSIA) to

select the representative samples from the large unknown file collection for

labeling, and then use EBP algorithm to detect malware [27] (See Section 3.3

for details).

– Leverage Long Short-term Memory for graph representation learning: To learn

the representations of files in our constructed graph, we first generate file se-

quences based on the random walk, and then deploy Long Short-Term Memory

(LSTM) for file sequence modeling and thus learn desirable file representations

over graph, which will be fed to a Support Vector Machine (SVM) to train

the classification model, based on which the unlabeled file can be predicted if

they are malicious or not (See Section 3.4 for details).

• We explore the arms race between adversarial malware attack and defense to en-

Chapter 1. Introduction 6

hance the security of machine learning-based detection systems through analyzing

adversarial attacks, and formulating secure-learning paradigms to counter the ad-

versarial attacks. Our work on adversarial machinle learning in malware detection

has resulted in 5 publications [32, 33, 28, 29, 30].

– Analyze adversarial attacks under different scenarios: The attackers may have

different levels of knowledge of the learning system [126]. We explore the

adversarial attacks corresponding to the different scenarios, thoroughly assess

the adversary behaviors through feature manipulations, adversarial cost, and

attack goals, and accordingly present a general attack strategy for further

investigations [32, 33, 29] (See Section 4.2 for details).

– Propose secure-learning paradigms against adversarial attacks: Resting on

the learning-based classifier which is degraded by the adversarial malware at-

tacks, we propose three secure-learning models SecDefender, SecureDroid, and

DroidEye to counter these attacks. In our proposed methods, SecDefender

adopts classifier retraining technique on basis of our proposed adversarial at-

tack model AdvAttack and enhances the robustness of the classifier using the

security regularization terms; SecureDroid utilizes a novel feature selection

method to build more secure classifier by enforcing attackers to increase the

adversarial costs and maximize the manipulations, and introduces an ensem-

ble learning approach to aggregate different individual classifiers constructed

using our proposed feature selection method to improve system security while

not compromising detection accuracy; DroidEye takes advantage of gradient

masking for feature space, utilizes count featurization to transform the binary

feature space into continuous probabilities encoding the distribution in each

class (either benign or malicious) to reduce the adversarial gradient of the

learning model, and then introduces softmax function (i.e., normalized expo-

nential function) with adversarial parameter to find the best trade-off between

security and accuracy for the classifier by tuning the adversarial parameter

[32, 33, 28, 30] (See Section 4.3 for details).

• We develop practical systems integrating our proposed methods for comprehen-

sive experimental studies on real sample collections from an anti-malware industry

company. Specifically, we collect different sample sets from Comodo Cloud Secu-

rity Center; based on these real sample collections, we construct practical systems

based on our proposed methods and provide a series of comprehensive experiments

Chapter 1. Introduction 7

to empirically evaluate the performances of these methods [33, 28, 32, 31, 27, 30]

(See Section 3.2.3, 3.3.3, 4.3.4, 4.4.4, and 4.5.3 for details).

In sum, by the date of this dissertation, we have had 9 publications [31, 27, 66, 143, 32,

33, 28, 29, 30] in intelligent malware detection using file-to-file relations and adversarial

machine learning in malware detection, including the prestigious IEEE EISIC’2017 Best

Paper Award.

1.4 Organization of This Dissertation

The rest of the dissertation is organized as follows. Chapter 2 first discusses the devel-

opment of malware including its definition in Section 2.1.1, taxonomy in Section 2.1.2,

and its history in Section 2.1.3; then specifies the development of malware detection

techniques in Section 2.2. Chapter 3 describes file-to-file relation investigation and

graph construction in Section 3.1, designs an enhanced Belief Propagation algorithm

for unknown file labeling in Section 3.2, builds effective active learning framework for

malware detection in Section 3.3, and leverages Long Short-term Memory for graph rep-

resentation learning in Section 3.4. Chapter 4 presents the adversarial attacks under

different scenarios in Section 4.2, and secure-learning paradigms SecDefender in Sec-

tion 4.3, SecureDroid Section 4.4, and DroidEye in Section 4.5. Chapter 5 summarizes

this dissertation in Section 5.1 and addresses the future work in Section 5.2.

8

Chapter 2

Development of Malware and

Malware Detection Techniques

2.1 Development of Malware

2.1.1 Definition of Malware

Malware, short for mal icious software , generally refers to software programs that are

designed to deliberately fulfill different harmful intents of an attacker [12, 51, 36], such as

disturbing system operations, encrypting, stealing or deleting sensitive data, hijacking or

altering core computing functions and monitoring computer activities of users without

their permission, or even bringing down servers and critical infrastructures [106, 65].

Besides that, some other definitions have been also offered to describe malware [70]:

Grimes defined malicious code as “any software program designed to move from computer

to computer and network to network in order to intentionally modify computer systems

without the consent of the owner or operator, that includes viruses, Trojan horses, worms,

script attacks, and rogue Internet code” [56]; Vasudevan et al. described malware as a

generic term that encompasses viruses, trojans, spywares and other intrusive code [123];

Thomas et al. also described malware as a general term used by computer professionals

to mean a variety of forms of hostile, intrusive, or annoying software or program code

[122]; while Saracino et al. considered that malware hides treacherous code performing

actions in the background that threatens the user privacy, the device integrity, or even

user’s credit [113]. In a nutshell, the typical characteristics of malware can be depicted

as destructive, unauthorized, stealthy, and transmissible, and they may infiltrate the

systems through the vulnerable services over the network, the downloading process from

Chapter 2. Development of Malware and Malware Detection Techniques 9

the Internet, or being tricked by the attackers into deliberately executing malicious codes

on their machines [144, 46, 107].

Driven by economic benefits, malware industry has invented automated malware

development toolkits (e.g., Zeus, Kronos, MPack, exploit kit) to produce and mutate

hundreds of thousands of malicious codes per day using techniques, such as instruction

virtualization, packing, polymorphism, emulation, and metamorphism [119]; these mal-

ware development toolkits also lead to a massive proliferation of new malware samples

due to their wide availability [144]. As a result, malware has been rapidly gaining preva-

lence, spread and infected computing devices at an unprecedented rate around the world.

According to AV-TEST Institute’s statistics [4], as shown in Figure 2.1, over 350,000 new

malicious programs and potentially unwanted applications are currently registered ev-

eryday, while more than 800 million malware have been created in the last ten years.

This has posed serious and evolving security threats to Internet users.

Figure 2.1: (a) New malware created in the last two years, and (b) total malware created

in the last ten years [4].

2.1.2 Taxonomy of Malware

Malware comes in wide range of variations like virus, worm, backdoor, Trojan-horse,

spyware, rootkit, adware, bot, scareware, ransomware [51], which are varying in different

purposes and proliferation ways and containing unique characteristics and traits. We

would like to provide a brief overview of these most common and prevalent types of

malware as follows [144, 106, 70].

• Virus: A virus (e.g., Creeper, Elk Cloner) is a piece of code that replicates by

inserting itself into other software programs, files, or the boot sector of the hard

Chapter 2. Development of Malware and Malware Detection Techniques 10

drive. A program that a virus has inserted itself into is infected, and is referred

to as the virus’s host. Viruses cannot run independently since they need to be

activated by their host programs.

• Worm: A worm (e.g., Love Gate, SQL Slammer) is a program that can run inde-

pendently without a host program and propagate a fully working version of itself to

other machines. Worms usually spread without any human interaction or directives

from the malware authors.

• Backdoor: A backdoor (e.g., Sobig, Mydoom) is a malicious program that bypasses

authentication procedures to access and thus compromise a system via a network.

Additionally the use of a rootkit or code obfuscation makes the backdoors very

difficult to locate.

• Trojan horse: A Trojan horse (e.g., Zeus, ZeroAccess) is a software program de-

signed to appear as a legitimate program, thereby tricking a user into installing it

onto their computing devices; when embedded by its designer in an application or

system, the Trojan horses will perform malicious and unauthorized actions in the

backend. Generally Trojans are responsible for the theft or destruction of data.

• Spyware: Spyware (e.g., keyloggers, web beacons) refers to a type of malware that

has been designed to gather data and information about users and also observe

their activity without users’ knowledge and consent.

• Rootkit: A rootkit (e.g., Knark, Adore) is a form of malware that obtains

administrator-level access to the victim’s system. After the installation process, the

program provides threat actors root or privileged access to the system. Rootkits

can be used in user-mode or tamper with operating system structures as a device

driver or a kernel module.

• Adware: Adware, or malvertising (e.g., Fireball, BaiduBarz), not only presents

unwanted advertisements to the users to generate revenue, but also use authorized

online advertising to spread malicious software.

• Bot: A bot (e.g., Agobot, Sdbot) is a piece of malware that allows the bot master

to remotely control the infected system. Bots typically spread through exploiting

software vulnerabilities or employing social engineering techniques to allure unsus-

pecting users to execute malware binaries. Once a system has been infected, the

Chapter 2. Development of Malware and Malware Detection Techniques 11

bot master can transform these individual victimized systems into a vast network,

called a botnet.

• Scareware: Scareware is a form of malware that utilizes social engineering to lure a

user into buying and downloading unwanted software, such as fake antivirus soft-

ware, which has posed severe financial and privacy-related threats to the victims.

• Ransomware: Ransomware is one of the most popular malware in recent years,

which installs stealthily on a victim’s computer and executes a cryptovirology at-

tack that prevents users from accessing their system or personal files, and demands

ransom payment from the victim in order to regain access.

• Cryptocurrency mining malware: Cryptocurrency mining malware (e.g., Coinhive),

also simply called cryptojacking, refers to software programs and malware compo-

nents developed to take over a computing device’s resources and use them for

cryptocurrency mining without a user’s explicit permission [118].

• Hybrid malware: Hybrid malware combines two or more other forms of malware

into a new type to achieve more powerful attack functionalities.

2.1.3 History of Malware

The history of malware starts back in 1949 when John von Neumann began work-

ing on self-reproducing automatons through “Theory and Organization of Complicated

Automata” [125]; it seems no one attempted to implement these automatons to cause

damage to the system. The root of malware came into life around 1970 named “Creeper”,

an experimental self-replicating program written by Bob Thomas that gained access via

the ARPANET and copied itself to the remote system where the message “I’m the

creeper, catch me if you can!” was displayed [34]. The term “Virus” was first coined by

Fred Cohen in 1985 [88]. After that, a massive and outrageous malware industry was

born [105]. Kingsoft reported that the average number of infected computers per day

was between 2-5 million [76]; while cybercrime will cost the world $6 trillion annually by

2021, up from $3 trillion in 2015 [37]. In this section, we would like to take a brief look

at the development of malware and get to know how it evolved and impacted the world

as follows [105, 144, 52, 129].

• 1970–1979: Creeper, most commonly recognized as the first computer virus, was

created by Bob Thomas in 1971 as an experimental self-replicating program that

Chapter 2. Development of Malware and Malware Detection Techniques 12

corrupted DEC PDP-10 computers running the TENEX operating system; the

Wabbit (or rabbit) virus was created in 1974 that blocks up the system of a com-

puter through multiple self-replicating; PERVADE virus appeared in 1975 that

adheres to other programs and allows them to spread its copies; the term “Worm”

was also introduced by John Brunner in 1975.

• 1980–1989: Elk Cloner virus, found in Apple II systems, was written by high

school student Richard Skrenta in 1981 that resulted in one of the earliest large-

scale virus outbreak to affect personal computers; Brain virus was released in 1986

that is considered as the first virus to infect MS-DOS computers and the first IBM

PC compatible virus, while in the same year PC-Writer Trojan was created as one

of the earliest Trojans; Vienna virus appeared in 1987 that was regarded as the first

virus to infect both COM files and EXE files; Christmas Tree virus was created

in the same year that was the first widely disruptive replicating network virus;

Morris Worm was released in 1988 to infect a substantial percentage of computers

connected to ARPANET while its author (i.e., Robert Morris) became the first

malware author convicted for his crimes; AIDS Trojan was spread in 1989 that

encrypts all filenames on the system and asks for payment, which is considered as

the first known ransomware.

• 1990–1999: Chameleon viruses were developed by Mark Washburn in 1990 as the

first family of polymorphic viruses; the first Macro virus, called Concept, was

created in 1995 used to infect Microsoft Word documents; in 1996, the first virus

designed specifically for Windows 95 files - Boza, the first Excel macro virus -

Laroux, and the first Linux virus - Staog were released; in 1999, Melissa virus

was the first mass-emailing virus that utilizes Outlook address books from infected

machines, and sends the copy of itself to 50 people at a time, while ExploreZip

worm was detected to destroy Microsoft Office documents.

• 2000–2009: Starting from 2000, Internet and email worms were prevailing across

the globe, and malware toolkits drove malware to grow significantly in its number

and dissemination. In 2000, the ILOVEYOU worm, one of the most damaging

worms ever, was created by a computer science student that infected millions of

computers worldwide and costed more than $5.5 billion in damages; In 2001, differ-

ent worms were detected that targeted Microsoft systems, such as Sadmind, Sircam,

Code Red, Nimda, and Klez; SQL Slammer Worm, one of the fastest spreading

Chapter 2. Development of Malware and Malware Detection Techniques 13

worms of all time, was created in 2003 that caused massive Internet access disrup-

tions worldwide; Cabir Virus was released in 2004, which was widely acknowledged

as the first mobile phone virus; In the same year, the first internet worm - Witty,

and the first known webworm Santy were also launched; the first-ever malware

for Mac OS X, a trojan-horse known as OSX/Leap-A or OSX/Oompa-A was an-

nounced in 2006; computer worm Conficker was found in 2008 causing some of the

worst damage seen since SQL Slammer.

• 2010–present: Since 2010, the sophistication of malware has been significantly

evolving, that results in advanced malware with different evasion tactics. Stuxnet,

a malicious computer worm, was detected in 2000, which was the first worm to

attack SCADA systems and one of the most resource-intensive bits of malware

created to date; Zeus Trojan, or Zbot released in 2011 was one of the most successful

pieces of botnet software in the world, impacting millions of machines; Cryptolocker

discovered in 2013 was one of many early ransomware programs; Cerber detected

in 2016 was one of the heavy-hitters in the ransomware sphere, and one of the most

prolific crypto-malware threats; WannaCry Ransomware and its variants have been

spreading globally since 2017 by encrypting data and demanding ransom payments,

which is one of the most prevalent and diabolical malware in recent years.

2.2 Development of Malware Detection Techniques

In order to combat the evolving malware attacks and protect legitimate users from

these threats, the major defense is the software products from anti-malware compa-

nies. With more and more sophisticated malware samples emerging in the wild, both

anti-malware industry and researchers have developed various countermeasures for mal-

ware detection. In the following sections, we briefly introduce the progress of intelligent

malware detection.

2.2.1 Signature-based Malware Detection

Signature-based methods are widely used in anti-malware software products from

different companies to provide the major defense against malware, such as Comodo,

Kaspersky, Kingsoft, and Symantec [49, 48]. A signature is a short sequence of bytes,

which is often unique to each known malware, allowing newly encountered files to be

correctly identified with a small error rate [74, 92]. In addition to anti-malware software

Chapter 2. Development of Malware and Malware Detection Techniques 14

products, some early research efforts have also been conducted on signature-based mal-

ware detection. Sun et al. [119] developed a signature based malware detection system

called SAVE (Static Analyzer of Vicious Executables) which extracted the signatures

from the original malware with the hypothesis that all versions of the same malware

share a common core signature; Venugopal et al. [124] detailed a signature matching

algorithm to scan malware in mobile devices. This method is traditionally known as

time and labor consuming and less responsive to new threats as that signatures are often

manually generated, updated, and disseminated by domain experts [144]. As introduced

above, the malware industry has invented automated malware development toolkits to

create and mutate hundreds of thousands of malicious codes per day which can easily

slip through such traditional signature-based malware detection [149, 144, 61].

2.2.2 Heuristic-based Malware Detection

To address the aforementioned challenges, heuristic-based methods were proposed

as complements to signature-based methods for malware detection [20]. As opposed to

signature-based malware detection, which looks to match signatures found in files with

that of a database of known malware, heuristic-based detection uses rules and/or pat-

terns determined by experts to look for behaviors which may indicate malicious intent

and thus discriminate malware samples and benign files [144]. These rules and patterns

should be generic enough to be consistent with variants of the same malware threat,

but not falsely matched on benign files [45]. Some classic heuristic-based detection

techniques include [85, 24, 109]: neural networks(NNs) being adopted for their adapt-

ability to environmental changes and their ability of prediction [89, 24]; fuzzy logic using

approximation for logic rather than precise classical logic [91, 109]; genetic algorithm

applying principles of evolutionary biology such as inheritance, mutation, selection and

combination for deriving classification rules and selecting appropriate features or opti-

mal parameters for malware detection [17, 91]. Heuristic-based malware detection is an

effective way to identify unknown threats for the most up-to-date real-time protection,

but there are downsides: (1) the analysis of malware samples and the construction of

rules/patterns by domain experts is often error-prone, which results in high false pos-

itives; (2) this sort of scanning and analysis is time-consuming, which may slow-down

system performance [144]. Considering that the speed of malware creation is faster than

rules/pattern construction, the unknown files make the clients become more and more

overloaded.

Chapter 2. Development of Malware and Malware Detection Techniques 15

2.2.3 Machine Learning-based Malware Detection

To overcome the problem of the clients being heavy and keep the malware detection

effective and efficient, cloud-based detection [149] has been recently used by most of

the anti-malware vendors, the scheme of which can be summarized as “blocking invalid

software programs from a blacklist and authenticating valid software programs from a

white list at the client (user) side, and predicting any unknown files (i.e., the gray list) at

the cloud (server) side and quickly producing the verdict results to the clients” [149, 144].

More specifically, the signature sets on the clients are first exploited to scan the newly

received files; those files that cannot be recognized by existing signatures will be labeled

as unknown files and their information will be collected and sent to the cloud server; the

learning models constructed on the cloud side will classify the unknown files as malware

or benign files, and send back the classification results to the client side immediately.

Cloud-based detection enables an up-to-date security solution for malware detection

[144]. However, the unknown files in the gray list is constantly increasing. According

to the AV-TEST Institute’s report, over 350,000 new malware are released everyday [4].

This calls for intelligent techniques to support efficient and effective malware detection

on the cloud side.

Since the quantity, diversity and sophistication of malware have significantly in-

creased in recent years, in order to effectively and efficiently detect malware from the

real and large daily sample collection, new, intelligent malware detection systems have

been developed by applying machine learning techniques [140, 7, 90, 139, 142, 95, 60, 39,

67, 68, 151, 131, 132, 137, 69]. In these methods, malware detection is a two-step pro-

cess: feature extraction and classification/clustering. The performance of such malware

detection methods critically depend on the extracted features and the categorization

techniques. We provide a comprehensive investigation on machine learning-based mal-

ware detection techniques as follows.

• Classification: Näıve Bayes on the extracted strings and byte sequences was applied

in [114, 50], which claimed that Näıve Bayes classifier performed better than tradi-

tional signature-based method. Kolter et al. [79] focused on static analysis of the

executable files and compared Näıve Bayes, Support Vector Machine and Decision

Tree based on the n-grams. Wang et al. [128] extracted registries and activity net-

work from spyware and applied Support Vector Machine for surveillance spyware

detection. Santos et al. first used n-grams, strings, and OpCode to build Deci-

sion Tree and used dynamically extracted behaviors to formulate kNN for malware

Chapter 2. Development of Malware and Malware Detection Techniques 16

detection [111], and then they further proposed semi-supervised algorithms (i.e.,

collective classification models) on various features for unknown malware detection

[112]. Ye et al. [139, 146, 148] proposed IMDS, Hierarchical associative classifier

(HAC), and CIMDS performing associative classification on Windows API calls

extracted from executable files. Shah et al. [116] applied various feature selection

algorithms to obtain the feature sets from PE files and used Artificial Neural Net-

works to detect new and unknown malware. Kong et al. [80] extracted the function

call graph from each program, collected various types of fine-grained features at

the function level, and then applied an ensemble of weighted classifiers for malware

detection. Cesare et al. [23] explored string similarity metrics for malware detec-

tion based on k-subgraphs and q-grams of structured control flow graphs, while

Anderson et al. [2] used similarity metrics on instruction traces to differentiate

malware and benign files.

• Clustering: Hou et al. [65] developed the intelligent malware detection system

using cluster-oriented ensemble classifiers resting on the analysis of Windows API

calls. Most of these existing researches are built on shallow learning architectures,

which only made use of the files with class labels (either malicious or benign) during

the training phase, while ignoring the important information from the large num-

ber of unlabeled file samples, which leave a large room for improvement. Bailey et

al. [8] proposed a hierarchical clustering technique that describes malware behav-

ior in terms of system state changes and automatically categorized these profiles

of malware into groups that reflect similar classes of behaviors and demonstrated

how behavior-based clustering provides a more direct and effective way of classi-

fying and analyzing Internet malware. Ye et al. [145] presented an Automatic

Malware Categorization System (AMCS) on function-based instruction sequences

and instruction frequency that groups malware samples into families sharing some

common characteristics using a cluster ensemble by aggregating the clustering so-

lutions generated by different base clustering algorithms.

• Deep learning: Due to its superior ability in feature learning through multilayer

deep architecture [62], deep learning is feasible to learn higher level concepts

based on the local feature representations [98]. As a result, researchers have paid

much attention to deep learning methods in the domains of malware detection

[60, 84, 98, 71, 142]. Ouellette et al. [98] extracted control flow graphs to present

malware samples, and used a deep probabilistic model (sum-product network) to

Chapter 2. Development of Malware and Malware Detection Techniques 17

compare the similarities between the unknown file samples and those of represen-

tative sample features from known classes of malware. Jung et al. [71] used the

features of header, tags, bytecode and API calls and utilized an ensemble learner

consisting of different deep learning networks (e.g., deep feed-forward neural net-

work, deep recurrent neural network) to classify the Adobe Flash file samples. Li

et al. [84] proposed a hybrid malicious code detection approach on the basis of Au-

toEncoder and Deep Belief Network, where AutoEncoder was used to reduce the

dimensionality of data, and a Deep Belief Network was applied to detect malicious

code. Hardy et al. [60] and Ye et al. [142] both exploited API calls as inputs;

the difference is that Hardy et al. developed Stacked AutoEncoders (SAEs) while

Ye et al. formulated a heterogeneous deep learning framework composed of an

AutoEncoder stacked up with multilayer restricted Boltzmann machines (RBMs)

for malware detection.

• File relations: Besides those features stated above (e.g., strings and byte sequences,

n-grams, API calls, function call graph, control flow graphs, etc.) extracted from

file contents, file-to-machine relation graphs [25] and file-to-file relation graphs

[149, 121] were also used as the features for malware detection. Chau et al. [25]

and Tamersoy et al. [121] explored standard Belief Propagation (BP) algorithm

to implement semi-supervised learning for malware detection. Ye et al. [149]

proposed a semi-parametric classification model for combining file content and file

relations together for malware detection. Karampatziakis et al. [72] built regression

classifiers based on graphs induced by file relationships for malware detection. They

showed that the system’s detection accuracy could be significantly improved using

the proposed method. File relation graphs have been starting to be leveraged

to solve malware detection problems, but all these existing works merely take

advantage of the graph structure while not going further to analyze the critical

information about their properties and characteristics of the relationships among

different file samples.

2.2.4 Adversarial Machine Learning in Malware Detection

Machine learning techniques offer unparalleled flexibility in automatic malware detec-

tion. However, machine learning itself can be a target of attack by a malicious adversary

[87, 126, 14, 13, 127, 40, 11, 15]. In some cybersecurity domains, there are ample ev-

idences that show adversaries can actively manipulate the data to evade the detection

Chapter 2. Development of Malware and Malware Detection Techniques 18

[38, 152, 87, 18, 14]. For example, in the domain of spam email detection, Dalvi et al.

[38] examined the cost for measuring each feature of the dataset using Näıve Bayes clas-

sifier, and proposed an optimal strategy for the adversary to play against the classifier.

Zhang et al. [152] took gradient steps to find the closest evasion point x′ to the mali-

cious sample x. The Adversarial Classifier Reverse Engineering (ACRE) framework [87]

was introduced to study how an adversary can learn sufficient information to construct

adversarial attacks using minimal adversarial cost. Brückner et al. [18] presented the

interaction between the learner and the data generator as a static game, and explored

the adversarial conditions and properties to find the equilibrial prediction model in the

context of spam email filtering. All these adversarial attacks prompt increasing research

efforts to improve the security of machine learning.

Specifically, the defense methods can be generally divided into four categories: Stack-

elberg game theories [19, 58, 18, 127], feature operations [152, 82, 53], retraining frame-

works [54, 133, 83], and ensemble classifier systems [16, 40, 78]. To apply Stackelberg

game theories, Bruckner et al. [18] first presented the interaction between the learner

and the adversary as a static game, and explored the adversarial properties to find the

equilibrium prediction model; they then further simulated the interaction as a Stackel-

berg competition, and derived an optimization problem to determine the solution of this

game [19]. Wang et al. [127] modeled the adversary action as it controlling a vector

α to modify the training data set X, and transformed the classifier into a convex op-

timization problem. More recently, feature operation methods have also been proposed

to counter some kinds of adversarial data manipulations, such as feature deletion [53],

feature clustering [82], feature reduction [152], etc. In addition, retraining frameworks

are becoming more and more widely applied to boost the resilience of learning algorithms

through: (1) adding adversarial samples to the training data that evade the previously

computed classifier [83, 54], and (2) manipulating the training data distribution that

its distribution is matched to the test data [133]. To improve the security of machine

learning under generic settings, some research efforts have been devoted to multiple clas-

sifier systems. Kolcz et al. [78] applied averaging method resting on random subsets

of reweighted features to produce a linear ensemble classifier. Biggio et al. [16] built a

multiple-classifier system to improve the robustness of the classifier through bagging, and

the random subspace method. Debarr et al. [40] explored randomization to generalize

learning model by randomly choosing dataset or features, and estimated parameters that

fit the data best. In these ensemble learning systems, randomization is the main method

Chapter 2. Development of Malware and Malware Detection Techniques 19

for feature selection. Though these theories and approaches are promising, the appli-

cation of adversarial machine learning into malware detection domain has been scarce

with the exception that Šrndic et al. [126], Xu et al. [135], and Demontis et al. [41] all

exploited PDF malware or Android malware as a case study to evaluate the security of

learning-based classifiers (e.g., PDFrate, Hidost, and Drebin). With the popularity of

machine learning based detections, such adversaries will become even more violent.

20

Chapter 3

Intelligent Malware Detection

Utilizing File-to-file Relations

File-to-file relations, such as file-co-existence, can provide invaluable information in

malware detection and make evasion harder [149, 25, 121, 72]. To better understand

the properties of file-to-file relations (i.e., malware-malware, malware-benign, benign-

benign relations), we’d like to take a further step to delve deeper into the relationship

characteristics of malware and benign files. It is of interest to know:

• How can we construct the file-to-file relation graph between malware and benign

files?

• What graph-based features, relationship characteristics, and representations can be

employed for malware detection?

• Instead of traditional machine learning-based classification methods, how can we

build effective learning frameworks over graph for malware detection?

More specifically, we analyze and utilize the relations among file samples to construct file

relation graph. Resting on the constructed file-to-file relation graph, we first present our

enhanced Belief Propagation (EBP) algorithm for malware detection; then, we design

several new and robust graph-based features to represent each file and further investigate

the relationship characteristics of relation graph, on the basis of which, we propose an

active learning framework that applies Malicious Score Inference Algorithm (MSIA) to

select the representative samples from the large unknown file collection for labeling and

then uses EBP algorithm to detect malware; afterwards, we learn representations for files

over graph using Long Short-term Memory (LSTM), which will be fed to SVM to train

Chapter 3. Intelligent Malware Detection Utilizing File-to-file Relations 21

the classification model and predict if the unlabeled files are malicious or not. To the best

of our knowledge, this is the first work of investigating the relationship characteristics

of the file-to-file relations in malware detection using social network analysis.

3.1 File-to-file Relation Graph Construction

In this section, we (1) first introduce the file relation graph construction, and (2)

then provide deep analysis of malware’s social relation network.

File Relation Graph Construction. Based on the collected data, we construct a

file-to-file relation graph to describe the relations among file samples. Generally, two

files are related if they are shared by many clients (or equivalently, file lists). The file

relation graph is defined as G = (V,E), where V is the set of file samples and E denotes

the relations between file samples, which is shown in Figure 3.1.

Figure 3.1: An example of file-to-file relation graph.

Given two file samples vi and vj , let Ci be the set of clients containing vi and Cj be

the set of clients containing vj . |.| represents the size of a set. The connectivity between

vi and vj is computed as

con(vi, vj) =
|Ci
⋂
Cj |

|Ci
⋃
Cj | .

(3.1)

If the connectivity between a pair of file samples is greater than the specified threshold

(e.g., 0.5), then there is an edge between them. Each file is in a state S ∈ {sm, sb, su}
(sm: malicious, sb: benign, su: unknown). Assume that vi is in state si and vj is with

state sj , the weight of the edge between vi and vj which infers the probability that node

Chapter 3. Intelligent Malware Detection Utilizing File-to-file Relations 22

i and node j can be connected together is defined as

w(vi, vj) =

∣∣Esi,sj ∣∣
|E| ,

(3.2)

where
∣∣Esi,sj ∣∣ is the number of the edges between all the files with states si and sj , and

|E| is the number of all the edges. The weight of node vi which denotes its popularity

can be defined as

w(vi) =
|Ci|
|C| ,

(3.3)

where C is the set of all the clients.

To visualize the file-to-file relation graph, we analyze the dataset obtained from

Comodo Cloud Security Center, which contains the relationships between 60, 724 files

(9,893 malware, 19,402 benign files and 31,429 unknown files) on 7, 093 clients. For the

file relations collected from 7, 093 clients, we construct the graph consisting of 60, 724

nodes and 3, 471, 288 edges. Figure 3.2(a) shows a part of the constructed graph, while

Figure 3.2(b) and (c) give examples of a malware relation graph and a benign file relation

graph with one-hop information respectively.

(a) File-to-file Relation Graph (b) Malware Relation Graph (c) Benign File Relation Graph

Figure 3.2: Visualization of file-to-file relation graphs: (a) a part of the constructed

graph; (b) an example of a malware relation graph with one-hop information; (c) an

example of a benign file relation graph with one-hop information (Red nodes denote

malware, green nodes represent benign file, and yellow nodes are unknown file) [27].

Graph Property Overview. To gain an overview about the property of file relation

graph, we used a subset of our data collection includes the file lists from 1000 clients

which describe file co-existence relations between 1,540 malware, 7,687 benign files, and

2,250 unknown files. Figure 3.3 shows a zoom-in view of a part of the constructed file

Chapter 3. Intelligent Malware Detection Utilizing File-to-file Relations 23

relation graph. From Figure 3.3, we can see that many of the red nodes are associated

with other red nodes and form some clusters, while the green nodes are also related to

other green nodes and form their clusters. The nodes within the same cluster have strong

relations with each other: (1) the red clusters may be the variants of malware families

(e.g., family of online-game trojans); (2) the green clusters may be the related files of

same applications (e.g., Acrobat installation archive and its related files).

Figure 3.3: A zoom-in view of a part of the constructed file relation graph [66].

Based on the dataset described above, we also use fourteen measures in Table 3.1

to see the differences between benign file relation graph, ordinary malware (i.e., 1,220

malware whose the existence frequency is < 100) file relation graph and popular mal-

ware (i.e., 320 malware whose existence frequency is ≥ 100) file relation graph. In

Table 3.1, from the comparisons of G1 and G2, we can see that the measures of compo-

nents, component ratio, connectedness and fragmentation are different between benign

file relation graph and ordinary malware file relation graph; while from the comparisons

of G2 and G3, we can see that the measures of avg degree, centralization and density

are different between ordinary malware file relation graph and top popular malware file

relation graph. The different properties between benign file relation graph and malware

Chapter 3. Intelligent Malware Detection Utilizing File-to-file Relations 24

file relation graph enable us to discriminate malware and benign files, while the differ-

ent properties between ordinary malware file relation graph and popular malware file

relation graph may allow us to predict the trend of malware prevalence.

Table 3.1: Graph property comparisons

NO. Measures G1 G2 G3

1 H-Index 129 125 125

2 Avg Degree 49.842 40.677 12.098

3 Centralization 0.340 0.344 0.081

4 Density 0.018 0.014 0.001

5 Components 103 11 2

6 Component Ratio 0.036 0.004 0.000

7 Connectedness 0.964 0.996 1.000

8 Fragmentation 0.036 0.004 0.000

9 Closure 0.081 0.091 0.047

10 Avg Distance 2.744 3.056 3.408

11 SD Distance 0.631 0.836 0.717

12 Diameter 5 7 4

13 Breadth 0.625 0.645 0.689

14 Compactness 0.375 0.355 0.311

“G1”: graph constructed based on 7,687 benign files and files co-exist

with them, “G2”: graph constructed based on 1,220 ordinary malware

and files co-exist with them, “G3”: graph constructed based on 320

popular malware and files co-exist with them.

3.2 An Enhanced Belief Propagation Algorithm for Mal-

ware Detection

In this section, we first introduce the preliminaries of BP, and analyze the reason

why the standard BP fails for our application, then propose an enhanced BP for malware

detection based on our constructed file relation graphs: we fine tune various components

used in the algorithm and well design the message update and belief read-out functions

for malware detection.

Chapter 3. Intelligent Malware Detection Utilizing File-to-file Relations 25

3.2.1 Standard Belief Propagation

Belief Propagation (BP) is a promising method for solving inference problems over

graphs and it has also been successfully used in many domains (e.g., computer vision,

coding theory) [150]. It was first proposed by Judea Pearl [102] to calculate marginal

distribution in Markov Random Fields and Bayes Nets. Nodes of the graph perform as a

local summation operation by iterations using the prior knowledge from their neighbors

and then pass the information to all the neighbors in the form of messages [97]. By

definition, the message is the neighbor node’s opinion for the current node’s probability

of being in the designated status. The passing operation should cover every pair of

connected nodes.

The key idea of BP is to update each node’s message until the sum of messages

converge or the iterations reach the designated number. Once the final messages are

defined, the belief value of each node will be read out from all its neighbor nodes. The

belief is the final result employed for inference. Figure 3.4 illustrates the message update

of node j from its neighbor node i considering all the messages flowing into node i (except

message from node j).

Figure 3.4: Message update from node i to node j

Mathematically, the message update equation in standard BP is

mi→j(vj) =
∑
vi∈S

fi→j(vi, vj)gi(vi)
∏

k∈N(i)/j

mk→i(vi) (3.4)

where mi→j(vj) is the message sent from node i to node j, node i’s belief that node j

is in the state vj ; both gi(vi) and fi→j(vi, vj) are typically called as energy functions, in

which, gi(vi) is the node potential, meaning the prior probability of node i being in the

state vi, while fi→j(vi, vj) is the edge potential, referring the probability of node i being

in the state vi and node j being in the state vj ; S is the set of states; N(i)/j is the set

of nodes neighboring node i (not including node j). BP algorithm stops when message

updates converge or a maximum number of iterations has finished. Then we calculate

Chapter 3. Intelligent Malware Detection Utilizing File-to-file Relations 26

the belief value of each node as follow

bi(vi) = gi(vi)
∏

k∈N(i)

mk→i(vi) (3.5)

In general, we always normalize both message mi→j(vi) and belief bi(vi), preventing val-

ues from underflow or overflow. The standard BP is commonly called sum-product (from

its message-update equation). A simple variant, called max-sum, is used to estimate the

state configuration with maximum probability.

3.2.2 Enhanced Belief Propagation

To tailor BP algorithm to our problem, the energy function designs as well as message

update and belief read-out are the key points. Unfortunately, the energy function designs

based on the standard BP in AESOP [121] fail in our application. To put this into

perspective, we use the example in Figure 3.5 for further illustration, in which “M”

denotes malware, “B” denotes benign file, and “G” is unknown file. Figure 3.5(b) is the

constructed file relation graph based on the sample dataset (note that the weights of the

nodes and edges are different).

(a) A sample datase (b) file relation graph

Figure 3.5: A sample dataset and its file relation graph constructed

Table 3.2: The edge potential design in AESOP[121]

fi→j(xi, xj) xi: Malicious xj : Benign

xi: Malicious 0.99 0.01

xj : Benign 0.01 0.99

We employ the same energy functions designed in AESOP [121]: (1) the prior prob-

ability is 0.99 when the file is benign, 0.01 when the file is malicious, and 0.5 when the

Chapter 3. Intelligent Malware Detection Utilizing File-to-file Relations 27

file is unknown; (2) the edge potential design is shown in Table 3.2. When the mes-

sage updates converge (within threshold 10−3), the belief values of the data nodes (i.e.,

BP Belief) are shown in Table 3.3. From the results (i.e., BP Class) in Table 3.3, we

can see that file B3 and file G6 are misclassified.

Table 3.3: The results of standard BP and EBP based on Figure 3.5

Nodes BP Belief BP Class EBP Belief EBP Class

M1 0.000000 M 0.022937 M

M2 0.260410 M 0.046170 M

B3 0.000000 M 0.135394 B

B4 0.645915 B 0.381034 B

B5 0.489330 B 0.317528 B

G6 0.169901 M 0.157791 B

In order to solve the problem above and make BP tailor to our application, we fine

tune various components in BP and carefully design the message update and belief read-

out functions. Before doing that, we first analyze the meaning of each energy function

in our case for malware detection. In Equation 3.4, mi→j(vj), fi→j(vi, vj), and gi(vi)

represent message from node i to node j, edge potential, and node potential respectively.

For malware detection problem, accordingly, mi→j(vj) means the probability of node i

believes that the neighbor node j being a benign file; fi→j(vi, vj) is the probability that

node i and node j can be connected together; and gi(vi) is the prior probability of node

i being a benign file.

As described in Equation 3.2, the weight of edge between a pair of nodes is the

probability of node i being in the state vi and node j being in the state vj , which is the

edge potential fi→j(vi, vj) in BP. Therefore, we use the weight of edge w(vi, vj) (defined

in Equation 3.2) between node i and j as the edge potential in our malware detection

application, which is further illustrated in Table 3.4.

Table 3.4: The edge potential design in enhanced BP

fi→j(xi, xj) xi: Malicious xj : Benign

xi: Malicious |Esm,sm | / |E| |Esm,sb | / |E|
xj : Benign |Esb,sm | / |E| |Esb,sb | / |E|

For node potential, gi(vi) is the prior probability of node i being a benign file. We

Chapter 3. Intelligent Malware Detection Utilizing File-to-file Relations 28

consider both its state and weight. Equation 3.6 shows our design of node potential in

malware detection problem.

gi(vi) =


0.5 + 0.5 ∗ w(vi) if state(vi) = sb

0.5 if state(xi) = sg

0.5− 0.5 ∗ w(vi) if state(vi) = sm,

(3.6)

where w(xi) is the weight of node i which can be calculated by Equation 3.3.

Instead of using sum-product, we redesign the message update equation as below:

mi→j(vj) =
1

β

∑
vi∈S

fi→j(vi, vj)gi(vi)

∑
k∈N(i)/jmk→i(vi)

p
, (3.7)

where p equals to the number of the neighbors of node i (excluded node j) and β is a

normalizing constant. In our application, we also initialize all the messages to 1. The

belief read-out equation is designed as follow

bi(vi) =
1

γ
gi(vi)

∑
k∈N(i)mk→i(vi)

p
, (3.8)

where γ is an adjustable constant.

Based on our enhanced BP (EBP) with the new energy functions as well as fine tuned

message update and belief read-out equations above, using the same sample dataset in

Figure 3.5, the belief value of each node (i.e., EBP Belief) is shown in Table 3.3. From

the results (i.e., EBP Class) in Table 3.3, we can see that file B3 and file G6 are correctly

identified as benign files; our adjusted BP algorithm performs well in malware detection

problem. The implementation of EBP is given in Algorithm 1.

3.2.3 Experimental Results and Analysis

In this section, we conduct three sets of experiments to empirically evaluate our

proposed EBP: (1) In the first set of experiments, we evaluate the effectiveness of our

proposed EBP based on the file relation graphs for malware detection by comparing

it with BP with sum-product, max-sum and AESOP in [121]. (2) In the second set

of experiments, we evaluate our proposed algorithm compared with SVM and Decision

Tree. (3) In the last set of experiments, we evaluate our proposed EBP algorithm in real

industry application for malware detection.

Experimental Setup

We measure the malware detection performance of different methods using the eval-

uation measures shown in Table 3.5. All the experiments are conducted under the

Chapter 3. Intelligent Malware Detection Utilizing File-to-file Relations 29

Algorithm 1: EBP - An enhanced Belief Propagation algorithm based

on file relation graphs for malware detection

Input: G = (V,E): undirected weighted file relation graph(s), w(xi, xj):

the edge weights for file pairs xi and xj , w(vi): the node weights

for files vi

Output: class label of each file

Initialize (file states, messages): 0.99 when the file is benign, 0.01 when the

file is malicious, and 0.5 when the file is unknown;

Calculate node potential gi(vi) for each file vi;

Calculate edge potential fi→j(xi, xj) for each pair of associated files xi and

xj ;

while messages haven’t converged or iteration hasn’t reached do

for each file in graph(s) do

Message Update: mnew ← mold;

end

Normalization;

end

Calculate belief value of each file using its neighbors’ messages;

Define the threshold using the training data set;

Infer the status of each file according to the probability: benign when the

probability is greater than the threshold; otherwise, malware

environment of 64 Bit Windows 7 operating system with 4th Generation Intel Core i7

Processor (Quad Core, 8MB Cache, up to 4.0GHz w/ Turbo Boost) plus 16G of RAM

using Apache Pig, MySQL and C++.

Comparisons of Different Belief Propagation Algorithms

In this section, we conduct the experiments to evaluate our proposed EBP for mal-

ware detection based on the first dataset containing 4,675 files: 260 are malware, 2,583

are benign files and 1,832 are unknown (with the analysis by human experts, 1,627 of

them are marked as benign and 14 are malicious). We also compare our proposed algo-

rithm with standard BP in sum-product, max-sum, and AESOP in [121]. The results

in Figure 3.6 show that our proposed EBP algorithm obtains the highest TPR and the

lowest FPR that result in the best F1 measure and ACC, performing better than other

Chapter 3. Intelligent Malware Detection Utilizing File-to-file Relations 30

Table 3.5: The evaluation measures of malware detection performance

Measures Specification

TP Number of files correctly classified as malicious

TN Number of files correctly classified as benign

FP Number of files mistakenly classified as malicious

FN Number of files mistakenly classified as benign

FPR FP/(FP + TN)

Precision TP/(TP + FP)

Recall/TPR TP/(TP + FN)

ACC (TP + TN)/(TP + TN + FP + FN)

F1 2× Precision× Recall/(Precision + Recall)

three, due to our well designed energy functions and tuned message update as well as

belief read-out.

Figure 3.6: Comparisons of different belief propagation algorithms

Comparisons of Enhanced Belief Propagation Algorithm with Other Classi-

fication Approaches

In this section, we compare the malware detection effectiveness and efficiency of our

proposed EBP algorithm and other classification approaches (Support Vector Machine

(SVM) and Decision Tree (DT)) based on the same dataset in the previous section.

Figure 3.7(a) show that the our proposed EBP algorithm outperforms the other two

classifiers in malware detection effectiveness with the highest TPR and the lowest FPR.

Figure 3.7(b) also shows that the EBP performs better than the other two classifiers in

Chapter 3. Intelligent Malware Detection Utilizing File-to-file Relations 31

malware detection efficiency with detection time of less than 4 second. The computation

complexity of the EBP is O(n2), where n is the number of the file samples.

(a) Detection effectiveness (b) Detection Efficiency

Figure 3.7: Comparisons of malware detection effectiveness and efficiency between EBP

Algorithm and other classification approaches.

Enhanced Belief Propagation Algorithm Applied in Real Industry

In this section, we further evaluate the detection performance of our proposed EBP

based on the large and real data collection from Comodo Cloud Security Center that

includes 69,165 files: 2,883 malware, 19,142 benign files, and 47,140 unknown files. Here,

we use the file labels of the unknown files available two weeks later with the analysis by

the anti-malware experts of Comodo Security Lab for evaluation. 3,653 of the unknown

files are labeled manually: 212 are malware and 3,441 are benign files. Since the sum-

product and AESOP in [121] completely fail in our case, we compare our proposed EBP

with max-sum BP, SVM and DT in this section. The results in Table 3.6, Figure 3.8

demonstrate that our proposed EBP algorithm outperforms others in malware detection

based on the large and real data collection.

Table 3.6: Malare detection comparisons using large and real data collection

Predicting TP FP TN FN ACC

EBP 51 119 2,803 130 0.9197

Max-sum 36 1,698 1,137 117 0.3926

SVM 59 429 3,012 153 0.8407

DT 38 512 2,929 174 0.8019

Remark: we use threshold gap to remove some indistinguishable samples, so TP+FN,

FP+TN are not equal to 212, 3441; these numbers vary in different algorithms either

Chapter 3. Intelligent Malware Detection Utilizing File-to-file Relations 32

(a) Detection comparisons (b) Detection ROC

Figure 3.8: Malare detection comparisons using large and real data collection.

3.3 Active Learning in Malware Detection

In this section, we further gain deeper insight into the file relation graph, which

includes designing its graph-based features, and revealing its relationship characteristics,

and then based on our findings, we propose an active learning framework for malware

detection that applies MSIA to select the representative samples from the unknown files

for labeling and then uses EBP to detect the remaining malware.

3.3.1 Gaining Insight into the Semantic Relatedness

Designing Graph-based Features

To counter malware’s evasion tactics, after the construction of the file-to-file relation

graph, we further investigate several robust graph-based features for malware detection.

Ideal features are either difficult or costly to evade, even when malware is obfuscated.

In this section, on the basis of special characteristics of the file relationships between

malware and benign files, we design five robust and representative graph-based features

for malware detection, which are described in details in the followings.

Vertex degree. The degree of a vertex in a graph is the number of edges incident

to the vertex, which can specifically represent the association between the vertex and

its neighbors [42]. In the file relation graph, we use the degree of malware (DoM) and

degree of benign files (DoB) to capture the association between the file and its neighbors.

These two metrics can be calculated as

DoM(v) = |δvm|, DoB(v) = |δvb |, (3.9)

Chapter 3. Intelligent Malware Detection Utilizing File-to-file Relations 33

where |δvm| is the total number of vertex v’s malicious neighbors, and |δvb | is the total

number of vertex v’s benign neighbors. As the moral says that “ man is known by the

company he keeps”, it’s easy to understand that malware is more likely to have a larger

DoM than DoB, and vice versa. To further support this point, we calculate the degree

for each file in the collected dataset described above: 53.75% of malware have larger

DoM than DoB; while only 3.10% of benign files have larger DoM than DoB.

Influence coefficient. For spammer detection, in [26], the authors used reposting

and commenting coefficients to indicate the ability that a user affects others to repost

or comment. In malware detection, we define the influence coefficient of malware and

benign files by Equation 3.10 and Equation 3.11.

IoM(v) =

∑N
i=1 log(Malware Count(vi) + 1)

N
, (3.10)

IoB(v) =

∑N
i=1 log(Benign Count(vi) + 1)

N
, (3.11)

where N denotes the number of vertex v’s neighbors and vi denotes the ith neighbor of v.

Malware Count(vi) and Benign Count(vi) represent the number of the malware and

benign files directly connected to vi respectively. A file can directly or indirectly inherit

the goodness or malice from other files. Compared with vertex degree, which considers

the information one-hop away from the node, the feature of influence coefficient takes

the indirect influence from other files into consideration.

Local clustering coefficient. The local clustering coefficient of a vertex in a graph

specifies how close vertices in its neighborhood are to being a clique [138]. For each vertex

in the constructed file relation graph, its local clustering coefficient can be calculated as

[138]

LCC(v) =
2|ev|

kv(kv − 1)
, (3.12)

where |ev| is the total number of edges built by all v’s neighbors, and kv is the degree

of the vertex v. For benign files, different users may install different sets of applications

according to their occupations, ages, etc. And these applications are unnecessary to have

associations with each other. However, for malware, just specified groups of users would

be infected by malware. When infected, not only one malicious software would appear

in the client, but also its related files would be released or downloaded. For example,

variants of trojans will always come together with trojan-downloader and co-exist in the

clients. Therefore, malware will have a larger local clustering coefficient than benign

files. To quantitatively validate this, we calculate the local clustering coefficient for each

Chapter 3. Intelligent Malware Detection Utilizing File-to-file Relations 34

file in the collected dataset described above: the average LLC for malware is 0.9387,

while the average LLC for benign files is 0.7573.

Degree centrality. Degree centrality of a vertex is determined by the number of

vertices adjacent to it. The larger the degree, the more important the vertex is [115].

In malware detection, degree centrality can be used to quantify the importance of a file,

which can be computed as [115]

DC(v) =
δ(v)

n− 1
, (3.13)

where δ(v) is the degree of the vertex v, and n is the number of vertices in the graph.

Closeness centrality. Closeness centrality measures the significance of vertices by

quantifying their centrality. Central vertices tend to reach the whole graph more quickly

than non-central vertices [115]. Closeness centrality factors in how close a vertex is to

other vertices, which is computed as [115]

CC(v) =
1

n− 1

n∑
u6=v

g(u, v), (3.14)

where g(u, v) is the distance between the vertex u and vertex v, and n is the number of

vertices in the graph. Malware attackers always use a shotgun approach to find victims

and allure them to download variants of malicious files (e.g., trojans, adware). These files

in the victim clients are always connected through the downloaders. Thus, the closeness

centrality of those downloaders will be high.

Characterization of the Semantic Relatedness

After visualizing the constructed file-to-file relations and designing the graph-based

features, we further analyze its relationship characteristics, and give the following obser-

vations.

Finding 1: A file can greatly inherit the indirect influences from other files

in the file-to-file relations. Again, as the moral says “man is known by the company

he keeps”, in malware detection, a file’s goodness or malice can be judged by the other

files that always co-exist with it in the clients. However, sometimes, a file can not

only be directly influenced by its neighbors, but also greatly inherit the influences from

other files (e.g., its neighbors’ neighbors). Figure 3.9 shows an example that the indirect

influences is superior than the direct influences for file 1880 (marked in yellow node).

To quantitatively validate this finding, we use the features of influence of benign files

Chapter 3. Intelligent Malware Detection Utilizing File-to-file Relations 35

(IoB) and influence of malware (IoM) designed in the above section for measure. For

file 1880, its IoB is 1.6290, while its IoM is just 0.6931, which means this file is more

likely to be influenced by benign files, even though all the files it directly connects with

are malware.

(a) The direct influences from its neighbors (b) The indirect influences from other files

Figure 3.9: Indirect influences superior than direct influences for file 1880 (yellow node)

To further illustrate, based on the collected dataset described in Section 3.1, we

measure the indirect influences from other files for each node. Figure 3.10 displays the

Cumulative Distribution Function (CDF) of IoB and IoM for both malware and benign

files, which shows that both benign files and malware can greatly inherit the goodness

and malice indirectly from other files.

(a) Benign files (b) Malware

Figure 3.10: The comparison of benign files and malware in IoB and IoM measures

Possible Factor: To disseminate the malicious files, it is not uncommon for mal-

ware to be packaged into a software product (especially when it is free and open source)

by the attackers. This would cause such kind of benign software to be closely related

to malicious files, however, their neighbors of neighbors would not necessarily be. On

Chapter 3. Intelligent Malware Detection Utilizing File-to-file Relations 36

the other hand, variants of online game trojans may have indirect associations through

the same kind of online game applications, since they target on stealing specific kind

of online game accounts’ information, but they are unnecessary to co-exist in the same

clients.

From the observation above, we can see that a file’s goodness or malice not only

depends on its neighbors, but also greatly inherit the indirect influences from other files

(e.g., its neighbors’ neighbors). Furthermore, we are also interested to know: (1) Is each

malware of equal importance? (2) If not, what are the differences between the important

malware and non-important ones?

Finding 2: In the file-to-file relations, (1) the importance of each file is

different; (2) the neighbors of the important malware are associated through

it, while the neighbors of the non-important malicious file are inclined to be

a clique.

To initially evaluate the importance of each node, we use degree centrality for measure

(i.e., the importance is to evaluate if the file has high degree in the constructed file

relation graph). Based on the collected dataset described in Section 3.1, we calculate

the degree centrality of each file: about 2% of the malware have the degree centrality

over 0.01, which are 10 – 1000 times larger than the remaining 98% ones. From this

analysis, we can see that the importance of each malware is different: the larger the

degree, the more important the vertex is[115]. Note that there is another interesting

observation that those malware with larger degrees also have higher node weight values

in the graph, which means the “important” malware are always with higher popularity.

We mark those 2% malicious files with higher degree centrality as “important” malware,

compared with the remaining 98% ones. Figure 3.11 (a) displays the CDF of degree

centrality for the important malware and non-important ones.

(a) Degree Centrality (b) Closeness Centrality (c) Clustering Coefficient

Figure 3.11: The comparisons of “important” malware and “non-important” ones.

Chapter 3. Intelligent Malware Detection Utilizing File-to-file Relations 37

To further analyze the different characteristics of the important and non-important

malware, we take insights to their graph structures. Figure 3.12 (a) illustrates an example

of the relationship between an important malware A and its neighbors, while Figure 3.12

(b) shows the relations between its neighbors. From Figure 3.12 (a) and (c), we can see

that both important and non-important malicious nodes with one-hop information have

the star-structures, but the degree centralities of them are different. From Figure 3.12 (b)

and (d), we can see that, the neighbors of the important malware are associated through

it (the closeness centrality of the important malware A is 0.25), while the neighbors of the

non-important malicious file are inclined to be a clique (the local clustering coefficient

LLC of it is equal to 1). Figure 3.11 (b) and (c) display the CDF of local clustering

coefficient and closeness centrality for the important malware and non-important ones

respectively, which also validate the Finding 2.

(a) (b)

(c) (d)

Figure 3.12: Graph structure comparisons of “important” and “non-important” malware.

(a) Important malware A and its neighbors; (b) Relations between A’s neighbors; (c)

Non-important malware B and its neighbors; (d) Relations between B’s neighbors [27].

Possible Factor: The importance of each malware is different, since the impacts

different malicious files play are different. For example, a popular trojan or adware

Chapter 3. Intelligent Malware Detection Utilizing File-to-file Relations 38

downloader will infect more clients, compared with the specific kind of trojan or ad-

ware variants. The files co-exist with the popular downloader in different clients are

unnecessary to have a close relationship among them, but are associated through the

downloader; while the files co-exist with the variants of same trojan or adware are prone

to be a clique, since they tend to be the same or similar kind of applications those trojans

or adware target on.

3.3.2 Active Learning Framework

Via empirical analysis for the file-to-file relations, each node vi (i.e., a file sample)

in the constructed graph can be represented by its relations with other nodes and its

graph-based features designed in Section 3.3.1, denoted as Fvi = 〈Rvi, Gvi〉. Rvi can be

defined as

Rvi = 〈v1i, v2i, ..., vni〉, (3.15)

where vji = {0, 1} (i.e., if (vj , vi) ∈ E, vji = 1; otherwise, vji = 0). Gvi can be defined

as

Gvi = 〈DoM(vi), DoB(vi), IoM(vi), IoB(vi), LCC(vi), DC(vi), CC(vi)〉. (3.16)

Representative sample selection from the unknown file collection. To leverage

the feedback from domain experts and thus to further improve the detection accuracy,

selecting representative sample(s) from large unknown file collection for labeling is very

important. For example, before being detected, the newly released Trojan-Downloader

and its related trojans are collected from the user clients and may be marked as un-

known. If we can recognize the Trojan-Downloader and have it labeled, then based

on the constructed file relation graph, using the graph inference algorithm (e.g., EBP

proposed above), its related trojans could be easily detected.

Active learning, as an effective paradigm to address the data scarcity problem, op-

timize the learning benefit from domain experts’ feedback, and reduce the cost of ac-

quiring labeled examples for supervised learning, has been intensively studied in recent

years [93, 94]. In particular, with the abundance of graph and networked data in various

application areas, active learning on graphs has received a lot of research attention [22].

For graph node classification, a general and powerful assumption is that connected nodes

tend to be clustered into the same category, which means they will have the same class

label. This assumption motivated the development of many classification techniques in

Chapter 3. Intelligent Malware Detection Utilizing File-to-file Relations 39

real-world networked data. In our application, Finding 2 demonstrates that the impor-

tance of each file is different and the neighbors of the important malware are associated

through them; therefore, selecting those important and representative malware from the

large unknown file collection for labeling is significantly reasonable to further improve

the detection performance.

In spammer detection, Yang et al. [136] proposed a Malicious Relevance Score Prop-

agation Algorithm (Mr.SPA) to extract criminal supporters, which assigns a malicious

relevance score (MRS) to each Twitter account to quantify how closely this account

follows criminal accounts. In this section, we propose a Malicious Score Inference Algo-

rithm (MSIA), which adapts and improves Mr.SPA [136] to assign a malicious score for

each file to quantify its representativeness.

Given a constructed file relation graph G = (V,E), let n be the number of nodes

(files) in the graph, and I(vi, vj) be the indicator to denote whether (vi, vj) ∈ E (i.e., if

(vi, vj) ∈ E, I(vi, vj) = 1; otherwise, I(vi, vj) = 0). At each step, for each node vi, its

malicious score M(vi) can be calculated as [136]

M(vi) = α ·
n∑
j=1

I(vi, vj)W (vi, vj)M(vj), (3.17)

where α is an adjustable factor, and W (vi, vj) is the weight between vi and vj which

reflects the coordination between each pair of nodes. For each node vi, we calculate the

similarity between itself and each of its neighbors vj based on their presented features

described above, denoted as sim(Fvi, Fvj). Then, the weight W (vi, vj) between node vi

and vj is computed as

W (vi, vj) =
sim(Fvi, Fvj)∑

evkvj∈E
sim(Fvk, Fvj)

. (3.18)

In our application, we initialize M0(vi) = {0, 1} (i.e., if vi is malicious, M0(vi) = 1;

otherwise, M0(vi) = 0). Through this malicious score propagation, (1) a file should sum

up the weighted malicious scores inherited from the neighbors, and (2) the malicious

score that a file receives from others should be dampened by the adjustable factor α

[136].

With the consideration of the historical score record for each node, at each step

t(t ≥ 1), an initial score bias (1 − α) ·M0
i is added to its malicious score. Thus the

malicious score vector
−→
~M t for all nodes at step t(t ≥ 1) can be computed as [136]

−→
~M t = α ·

−−−−−→
~I · ~M t−1 + (1− α) ·

−→
~M0. (3.19)

Chapter 3. Intelligent Malware Detection Utilizing File-to-file Relations 40

The algorithm MSIA stops when the updates of malicious score vector converge or a

maximum number of the iterations has finished, and then we can obtain final malicious

scores for all files. A threshold will be accordingly specified to determine the important

and representative malware. The higher the malicious score it has, the more important

the file is.

Belief propagation for malware detection. After we recognize the important and

representative malware from the unknown file collection, based on Finding 1 which states

a file’s goodness or malice not only depends on its neighbors, but also indirectly on other

files (e.g., its neighbors’ neighbors), we further apply our proposed EBP algorithm to

detect the remaining malware, since EBP algorithm can propagate the indirect influences

from other files for each node. The implementation of our proposed active learning

framework is illustrated in Algorithm 2.

Algorithm 2: MSIA+EBP - An active learning framework for mal-

ware detection
Input: G = (V,E): undirected weighted file relation graph(s), α:

adjustable factor

Output: class label of each file

Initialize (file states, malicious score
−→
~M0, t = 1): if vi is malicious,

M0(vi) = 1; otherwise, M0(vi) = 0;

Calculate the similarity sim(Fvi, Fvj) for each pair of nodes vi and vj ;

Calculate the weights W s for each pair of nodes in G;

while malicious scores haven’t converged or iteration hasn’t finished do

Calculate
−→
~M t;

t = t+ 1

end

Label k files with the highest malicious scores (> threshold) as malware;

Use EBP (Algorithm 1) to label the remaining files;

3.3.3 Experimental Results and Analysis

In this section, we conduct three sets of experiments based on the collected dataset

obtained from Comodo Cloud Security Center: (1) In the first set of experiments, we

use MSIA to evaluate the effectiveness of the designed features; (2) In the second set

Chapter 3. Intelligent Malware Detection Utilizing File-to-file Relations 41

of experiments, we further evaluate our proposed active learning framework in malware

detection; (3) In the last set of experiments, we compare our proposed framework with

other classification methods (i.e., SVM, Decision Tree, and Näıve Bayes). We measure

the malware detection performance of different methods using the evaluation measures

shown in Table 3.5. All the experiments are conducted under the environment of 64

Bit Windows 7 operating system with 4th Generation Intel Core i7 Processor (Quad

Core, 8MB Cache, up to 4.0GHz w/ Turbo Boost) plus 16G of RAM using Apache Pig,

MySQL and C++.

Evaluation of the Designed Features

For each sample in the constructed file-to-file relations, we extract its relations with

other samples described in Section 3.1 and its graph-based features designed in Sec-

tion 3.3.1 for representation. In this section, we conduct the experiments using MSIA

to evaluate the effectiveness of the designed features. The collected dataset from Co-

modo Cloud Security Center contains 60,724 files: 9,893 are malware, 19,402 are benign

files, and 31,429 are unknown (with the analysis by anti-malware experts of Comodo

Security Lab, 470 of them are labeled as malware and 1,273 of them are benign files).

Those 9,893 malware and 19,402 benign files are used for training, while 470 malware

and 1,273 benign files from the unknown file collection which are labeled by anti-malware

experts are used for testing. The results in Table 3.7 demonstrate the effectiveness of the

designed features in malware detection: though the graph-based features (GF) perform

worse than the relations formulated by neighborhood (RF), the concatenation of these

two types of features can significantly improve the detection performance.

Table 3.7: Evaluation of the designed graph-based features

Training TP FP TN FN ACC

MSIA(RF) 7,392 1,301 18,101 2,501 0.8702

MSIA(GF) 6,960 2,410 16,992 2,933 0.8176

MSIA(RF +GF) 7,890 1,371 18,031 2,003 0.8848

Testing TP FP TN FN ACC

MSIA(RF) 293 78 1,195 177 0.8537

MSIA(GF) 179 122 1,151 291 0.7631

MSIA(RF +GF) 315 78 1,195 155 0.8663

RF denotes the file relation features of the samples, while GF denotes the graph-based features of the samples.

Chapter 3. Intelligent Malware Detection Utilizing File-to-file Relations 42

Evaluation of the Proposed Learning Framework

In this section, we further evaluate our proposed active learning framework in mal-

ware detection: (1) Based on the training and testing sets described in the previous

section, we compare the performance of MSIA and EBP in malware detection; (2) To

further improve the detection accuracy, we first apply MSIA for representative samples

selection (193 samples are selected from the unknown file collection for labeling), and

then use EBP for detection. The results in Table 3.8 show that our proposed framework

composed of MSIA and EBP (MSIA+EBP) can greatly improve the accuracy in malware

detection, compared with using MSIA and EBP respectively, or EBP after randomly se-

lecting 193 samples from the unknown file collection for labeling (Random+EBP).

Table 3.8: Evaluation of the proposed learning framework in malware detection

Training TP FP TN FN ACC

MSIA 7,890 1,371 18,031 2,003 0.8848

EBP 9,881 866 18,536 12 0.9700

Random+EBP 10,059 870 18,545 14 0.9701

MSIA+EBP 10,060 851 18,564 13 0.9707

Testing TP FP TN FN ACC

MSIA 315 78 1,195 155 0.8663

EBP 411 119 1,154 59 0.8979

Random+EBP 462 204 1,069 8 0.8784

MSIA+EBP 437 100 1,173 33 0.9236

The example shown in Figure 3.13 further illustrates that, with three representative

samples (orange ones in Figure 3.13(a)) selected, the related unknown files (yellow ones

in Figure 3.13(a)) are correctly classified. Figure 3.13(b) shows the final detection results.

(a) (b)

Figure 3.13: An example of malware detection using active learning framework.

Chapter 3. Intelligent Malware Detection Utilizing File-to-file Relations 43

Comparisons with Other Alternative Detection Methods

In this section, we further compare our proposed framework with other classifica-

tion methods (Support Vector Machine (SVM), Decision Tree (DT), and Näıve Bayes

(NB)) resting upon the same testing dataset described in the previous section. The

results in Table 3.9 and the ROC curves for the cross-validation experiments based on

the testing set in Figure 3.14(a) demonstrate that our proposed framework composed

of MSIA and EBP (MSIA+EBP) is superior to SVM, DT, and NB in malware de-

tection. Figure 3.14(b) shows that the detection efficiency of our proposed algorithms

outperform other classification methods. The success of MSIA+EBP lies in the proper

consideration and accommodation of the property of active learning, and the advantage

of semi-supervised framework that makes use of labeled and unlabeled data for training.

Table 3.9: Comparisons of different detection methods

Training TP FP TN FN ACC

SVM 8,661 797 18,618 1,412 0.9251

DT 8,308 1,761 17,654 1,765 0.8804

NB 5,288 502 18,913 4,785 0.8207

MSIA+EBP 10,060 851 18,564 13 0.9707

Testing TP FP TN FN ACC

SVM 452 172 1,101 18 0.8910

DT 412 241 1,032 58 0.8285

NB 159 31 1,242 311 0.8037

MSIA+EBP 437 100 1,173 33 0.9236

(a) ROC curves (b) Detection Efficiency

Figure 3.14: Comparisons of ROC curves and detection efficiency of different methods

Chapter 3. Intelligent Malware Detection Utilizing File-to-file Relations 44

3.4 Graph Representation Learning for Malware Detection

Despite the BP algorithm can propagate the indirect influence from other files, it

merely preserves the graph structure information by considering short and fixed neigh-

borhood information, i.e., the first and second order proximities, which cannot capture

long-range structure over file-to-file relation graph. To address this issue, in this section,

we present a sequence modeling method file2vec to learn representations for files over

graph to capture more meaningful proximity: given a set of file sequences generated

using random walk, a seq2seq model [120] Long Short-term Memory (LSTM) [120, 6, 35]

is introduced to read the input file sequence to obtain a fixed-length summary vector

from which another LSTM is employed to generate the output sequence (i.e., encoding

and decoding the file sequences), through which the fixed-dimensional representation for

each file will be learned.

3.4.1 Representation Learning using Long Short-term Memory

Given a graph G = (V,E), the graph representation learning task is to learn

a function f : V → Rd that maps each node v ∈ V to a vector in a d -dimensional

space Rd, d � |V | that is capable to preserve the structural relations among them.

In our application, the files in the constructed file relation graph can be connected

through different number of nodes (i.e., files) and edges (i.e., co-occurrence relations).

For example, as shown in Figure 3.15, file B4 can be connected to file B5 through Seq2,

and connected to file M2 through Seq4 as well. It’s recalled that Belief Propagation

updates a node’s message from its neighbor node considering all the messages flowing

into its neighbor node; this method only takes consideration of the first and second order

neighbors while fails to directly learn the long-range relatedness between files like B4 and

M2, and B5 and M2. To fully capture the graph structure information to represent each

file over graph, this calls for a new method for representation learning.

Since the graph structure information is preserved by file sequences (e.g., Seq1 -

Seq4 in Figure 3.15), the sequence modeling method can seamlessly fuse the long-range

graph structure information into the final learned representations [86]. The sequence to

sequence models (seq2seq) have been successfully applied to machine translation [6, 35],

and Natural Language Processing (NLP) problems [55] in recent years. The rationale

using seq2seq for representation learning is to deploy a Long Short-term Memory (LSTM)

to read the input sequence, one at each timestep, to obtain an overall sequence vector

representation, and then deploy another LSTM to extract the output sequence from

Chapter 3. Intelligent Malware Detection Utilizing File-to-file Relations 45

Figure 3.15: Neighborhood relationships among files.

that vector [86]. The structure information is seamlessly incorporated into the latent

vectors of hidden layers, which can be effectively used as the representations of nodes.

In the following, we will introduce how to use file2vec for representation learning of files

over graph. We will first present file sequence generation using random walk, and then

leverage LSTM for the generated file sequence modeling.

File sequence generation using random walk. Given a source node vj in a graph,

the random walk is a stochastic process with random variables v1
j , v

2
j , ..., v

k
j such that vk+1

j

is a node chosen at random from the neighbors of node vk. The transition probability

p(vi+1
j |vij) at step i is the normalized probability distributed over the neighbors of vij ,

which can be denoted as:

p(vi+1
j |v

i
j) =

1

|N(vij)|
, (3.20)

where N(vij) denotes the neighborhood of node vij . The walk paths (i.e., sequences)

generated by the above strategy are able to preserve structural relations between different

nodes in the graph, and thus will facilitate the representation learning using LSTM.

File sequence modeling using LSTM. A LSTM is an architecture designed for

recurrent neural network to address the vanishing/exploding gradient issue [120, 64].

In general, LSTM learns a mapping from an input sequence (i.e., (x1, ...,xT), where

xt ∈ Rn is a vector at timestep t) to an output sequence. As intermediate output,

LSTM generates a vector ht ∈ Rd for each timestep. By furthering pooling all the ht’s,

we can output the embedding vectors. In our application, given an input file sequence

(v1,v2, ...,vk) where vt ∈ R|V | is a |V |-dimensional one-hop vector at timestep t, we

will employ an encoder-decoder LSTM architecture [35] (as illustrated in Figure 3.16)

Chapter 3. Intelligent Malware Detection Utilizing File-to-file Relations 46

for file sequence modeling, in which hidden layer vectors are elaborately extracted as

the representations for the corresponding files to improve the quality of representation

learning.

Figure 3.16: Illustration of encoder-decoder LSTM architecture.

Encoder: The LSTM encodes the input file sequence (v1,v2, ...,vk) through the

hidden layer function H so that each hidden layer vector het at timestep t can be denoted

as

het = H(vt,h
e
t−1), (3.21)

where H is implemented using purpose-built memory cells to store information, which

can be formulated as the following composite functions [55]:

it = σ(Wxivt + Whih
e
t−1 + Wcict−1 + bi) (3.22)

ft = σ(Wxfvt + Whfh
e
t−1 + Wcfct−1 + bf) (3.23)

ct = ft ◦ ct−1 + it ◦ tanh(Wxcvt + Whch
e
t−1 + bc) (3.24)

ot = σ(Wxovt + Whoh
e
t−1 + Wcoct−1 + bo) (3.25)

het = ot ◦ tanh(ct) (3.26)

where σ is the logistic sigmoid function, it, ft, ot, ct are the input gate, forget gate,

output gate, and cell activation vectors respectively, Ws are the weight matrices, bs are

the bias vectors, and ◦ is the point-wise product between two vectors. After reading vk,

the hidden state hek is used as the summary vector s of the whole input sequence.

Decoder: The summary vector s is fed back into the LSTM’s first hidden layer so

that hd0 = s, and then each hidden layer vector hdt at timestep t can be calculated as

hdt = H(0,hdt−1), (3.27)

where 0 is an all-zero vector. Accordingly, the output vector yt ∈ R|V | can be formulated

as follows [55]:

yt = σ(Whyh
d
t + by). (3.28)

Chapter 3. Intelligent Malware Detection Utilizing File-to-file Relations 47

yt is capable to predict the real file vt through a softmax layer. The sequence loss L is

adopted to measure the correctness of decoding, which is computed as

L = −
k∑
t=1

log p(vt|yt)

= −
k∑
t=1

log
exp(yvtt)∑|V |
i=1 exp(yvit)

.

(3.29)

The weights can be efficiently calculated with backpropagation through time [130, 55],

and the LSTM model can then be trained using Adam optimization algorithm.

For the generated file sequences, each file may appear in multiple sequences. Suppose

that file vi exists in |vi| sequences, by doing concatenation of max and avg pooling over

all hej ’s for file vi, ∀j = 1, 2, ..., |vi|, we obtain an embedding h for each file:

h = maxavgPooling({hej : j = 1, ..., |vi|}). (3.30)

Using file2vec, the mapped feature vectors of files, encoding the informaiton of graph

structure, can be fed to a classifier to train the classification model, based on which the

unlabeled files can be predicted if they are malicious or not. The implementation of

file2vec is illustrated in Algorithm 3.

Algorithm 3: file2vec - A graph representation learning model for

malware detection
Input: G = (V,E), walks per node r, length l, and vector dimension d,

training data set Dt, testing data set De

Output: class label of each file

for i = 1→ |V | do

for j = 1→ r do

get l-length random walk path using Eq. 3.20;

end

Use LSTM to model paths generated and output he ∈ Rd;

end

h = maxavgPooling({hej : j = 1, ..., |vi|}) for each file;

Train SVM using hDt ;

for n = 1→ |De| do

Generate the label using trained SVM;

end

Chapter 3. Intelligent Malware Detection Utilizing File-to-file Relations 48

3.4.2 Experimental Results and Analysis

In this section, we conduct three sets of experimental studies using the same data

collected from Comodo Cloud Security used in Section 3.3.3 to fully evaluate the per-

formance of our proposed representation learning method file2vec in malware detection.

We use the same performance indices shown in Table 3.5.

Evaluation of file2vec

In this set of experiments, we evaluate our proposed method file2vec by comparisons

with another popular representation learning method DeepWalk [104] using random walk

and skip-gram. The parameter settings used for file2vec are in line with typical values

used for the baseline: vector dimension d = 200, walks per node r = 15, and walk

length l = 50. To facilitate the comparisons, we randomly select a portion of labeled

files (ranging in {10%, 30%, 50%, 70%, 90%}) from 9,893 malware and 19,402 benign

files for training and the remaining ones for testing to evaluate their performances. The

SVM is used as the classification model for both DeepWalk and file2vec.

Table 3.10 illustrates the detection results of different representation learning meth-

ods. From Table 3.10, we can see that DeepWalk performs slightly better than file2vec

when the portion of training data is 10% and 50%, but the difference is not statistically

significant; when the training data reaches to 70%, and 90%, file2vec performs better for

malware detection in terms of ACC and F1. That is to say, file2vec learns significantly

better file representation than current state-of-the-art method. The success of file2vec

stems from the sophisticated sequence modeling, which leverages the advantage of long-

range graph structure. More importantly, DeepWalk assigns each file a static embedding

vector based on all sequences, while LSTM reads the whole input sequence to further

generate the output sequence, and its learned representations tend to be context-aware

to different sequences it interacts with.

Table 3.10: Comparisons of file2vec with DeepWalk in malware detection

Metric Method 10% 30% 50% 70% 90%

ACC
DeepWalk 0.7482 0.8029 0.8541 0.9121 0.9267

file2vec 0.7380 0.8101 0.8424 0.9221 0.9438

F1
DeepWalk 0.5701 0.6710 0.7606 0.8646 0.8890

file2vec 0.5500 0.6864 0.7395 0.8829 0.9167

Chapter 3. Intelligent Malware Detection Utilizing File-to-file Relations 49

Comparisons with Other Alternative Methods

In this set of experiments, based on the dataset used in Section 3.3.3, we compare

file2vec with other alternative machine learning methods. For these methods, we con-

struct three types of features: f–1 : relation-based features (i.e., file co-occurrence used in

Section 3.2); f–2 : concatenation of relation-based features and graph-based features (i.e.,

Fv introduced in Section 3.1); f–3 : representations learned by file2vec. Based on these

features, we consider five classification models, i.e., NB on f–1 and f–2, SVM on f–1 and

f–2, EBP on f–1, MSIA+EBP on f–2, and file2vec on f–3. The experimental results are

illustrated in Table 3.11. From the results we can observe that feature engineering (f-2 :

concatenation of relation- and graph- based features) helps the performance of machine

learning, and active learning also facilitates malware detection, but file2vec that encodes

the graph structure and the long-range influence among files learned from LSTM signif-

icantly outperforms other baselines. This again demonstrates that, to detect malware,

file2vec using sequence modeling is able to achieve better detection performance.

Table 3.11: Comparisons with other machine learning methods

Metric
NB SVM

EBP MSIA+EBP file2vec

f-1 f-2 f-1 f-2

ACC 0.8037 0.8101 0.8909 0.8967 0.8978 0.9236 0.9454

F1 0.4818 0.5052 0.8263 0.8348 0.8220 0.8679 0.9023

Evaluation of Parameter Sensitivity

In this set of experiments, based on the dataset used in Section 3.3.3, we conduct

the sensitivity analysis of how different choices of parameters (i.e., walks per node r,

walk length l, and vector dimension d) will affect the performance of file2vec in malware

detection. From the results shown in Figure 3.17(a) and 3.17(b), we can observe that

the balance between computational cost (number of walks per node r and walk length

l in x-axis) and efficacy (F1 in y-axis) can be achieved when r = 15 and l = 60 for

malware detection. We also examine how vector dimensions (d) affect the performance.

As shown in Figure 3.17(c) we can find that the performance inclines to be stable when

d increases to around 300. Overall, file2vec is not strictly sensitive to these parameters,

and is able to reach high performance under a cost-effective parameter choice.

Chapter 3. Intelligent Malware Detection Utilizing File-to-file Relations 50

Figure 3.17: Parameter sensitivity evaluation.

3.5 Summary

In this chapter, we provide deep analysis of file-to-file relations between malware

and benign files and study how the file co-existence relation graphs can be constructed.

Resting on the constructed file-to-file relation graphs, we first design an enhanced Belief

Propagation algorithm for unknown file labeling that fine tunes various components used

in the algorithm and formulates the new message and belief read-out functions; then

we investigate several new and robust graph-based features for malware detection and

reveal the characteristics of file relations, based on which we propose an effective active

learning framework (MSIA+EBP) for malware detection; last, we leverage a sequence

modeling method Long Short-term Memory to learn the representations of files in our

constructed graph which captures the long-range structural information. To the best of

our knowledge, this is the first investigation of the relationship characteristics for the file-

to-file relations in malware detection using social network analysis. Due to the difficulty

in thoroughly obtaining the social interactions and motivations of malware, we recognize

that the validations on some proposed explanations are not entirely rigorous. However,

we believe that our novel analysis of those phenomena still yields great value and unveils

a new avenue for better understanding malware’s file relation ecosystem. The research

work conducted in this chapter have been also published in the following papers:

• Lingwei Chen, William Hardy, Yanfang Ye �, Tao Li. “Analyzing File-to-File

Relation Network in Malware Detection”, International Conference on Web Infor-

mation Systems Engineering (WISE), 415–430, 2015.

• Lingwei Chen, Tao Li, Melih Abdulhayoglu, Yanfang Ye �. “Intelligent Malware

Detection Based on File Relation Graphs”, IEEE International Conference on Se-

Chapter 3. Intelligent Malware Detection Utilizing File-to-file Relations 51

matic Computing (ICSC), 85–92, 2015.

• Shifu Hou, Lingwei Chen, Yanfang Ye �, Lifei Chen. “Deep Analysis and Uti-

lization of Malware’s Social Relation Network for Its Detection”, Asia-Pacific Web

(APWeb) and Web-Age Information Management (WAIM) Joint Conference on

Web and Big Data, 31–42, 2017.

• Yanfang Ye �, Shifu Hou, Lingwei Chen, Jingwei Lei, Wenqiang Wan, Jiabin Wang,

Qi Xiong, Fudong Shao. “AiDroid: When Heterogeneous Information Network

Marries Deep Neural Network for Real-time Android Malware Detection”, arXiv

preprint arXiv:1811.01027, 2018.

52

Chapter 4

Enhancing Security of

Learning-based Systems in

Malware Detection

The existing works [149, 69, 47] and the work in the previous section have demon-

strated that relation-based features integrated with file contents are more resilient against

malware attacks compared to content-based only representations. However, as machine

learning-based detection systems become more widely deployed, the adversary incen-

tive for defeating them increases. Therefore, we go further insight into the arms race

between adversarial malware attack and defense, and aim to enhance the security of

machine learning-based detection systems. In this chapter, we focus on the studies on

the following research questions:

• How can we define adversarial malware attack?

• In response to the adversary’s strategy, how can we design an adversary-aware

learning model based on the skills and capacities of the attackers to enhance the

security of machine Learning-based malware detection?

• Since it is computationally expensive and almost impossible to find all adversarial

models, can we design defensive learning models whose action space is practically

independent from the attacks?

On the basis of a learning-based classifier with the input of different feature representa-

tions extracted from the Portable Executable (PE) files and Android application (app)

files respectively, we investigate the adversarial malware attacks and aim to enhance

Chapter 4. Enhancing Security of Learning-based Systems in Malware Detection 53

security of machine learning-based detection against such attacks. In particular, we first

explore the adversarial attacks corresponding to the different scenarios, thoroughly as-

sess the adversary behaviors through feature manipulations, adversarial cost, and attack

goals, and accordingly present a general attack strategy. Resting on the learning-based

classifier which is degraded by the adversarial malware attacks, we propose three secure-

learning paradigms SecDefender, SecureDroid, and Droideye, either depending on or

independent from the skills and capabilities of the attackers, to counter these adversarial

attacks, and thus enhance the security of the classifier while not compromising its detec-

tion accuracy. The proposed methods can be readily applied in other malware detection

tasks.

4.1 Problem Definition

Machine Learning-based Classifier for Malware Detection. A malware detec-

tion system using machine learning techniques attempts to identify variants of known

malware or zero-day malware through building a classification model based on the la-

beled training samples and predefined feature representations, which is illustrated in

Figure 4.1. More specifically, the problem of machine learning-based malware detection

Figure 4.1: Intelligent malware detection system using machine learning techniques.

can be stated in the form of: f : X → Y which assigns a label y ∈ Y (i.e., −1 or +1) to an

input file sample x ∈ X through the learning function f . A general linear classification

model for malware detection can be thereby denoted as:

f = sign(f(X)) = sign(XTw + b), (4.1)

Chapter 4. Enhancing Security of Learning-based Systems in Malware Detection 54

where f is a vector, each of whose elements is the label (i.e., malicious or benign) of a file

to be predicted, each column of matrix X is the feature vector of a file, w is the weight

vector and b is the biases. Typically, a machine learning system on the basis of a linear

classifier can be formalized as an optimization problem [149]:

argmin
f ,w,b;ξ

1

2
||y − f ||2 +

1

2β
wTw +

1

2γ
bTb + ξT (f −XTw − b), (4.2)

subject to Eq. (4.1), where y is the labeled information vector, ξ is Lagrange multiplier

which is a strategy for finding the local minima of 1
2 ||y− f ||2 subject to f−XTw−b = 0,

β and γ are the regularization parameters, and 1
2βwTw and 1

2γhTh are regularization

terms to deal with the overfitting problem in the learning model. Note that Eq. (4.2)

is a general linear classifier (denoted as Original-Classifier throughout the chapter) con-

sisting of specific loss function and regularization terms. Without loss of generality, the

equation can be transformed into different linear models depending on the choices of loss

function and regularization terms, such as Logistic Regression (LR) and Support Vector

Machine (SVM).

Security Violation. In malware detection, the learner’s purpose is to classify malware

and prevent them from interfering users’ computers. In contrast, adversaries would like

to violate the security context by either (a) allowing malicious files to be misclassified as

false negatives (an integrity attack) or (b) creating a denial of service in which benign

files are incorrectly classified as false positives (an availability attack). In other words,

there are two types of security violations the adversaries cause [10, 11]: (1) Evasion

attack (also called integrity attack) manipulates malicious samples at test time to have

them misclassified as benign without having influence over the training data; (2) Poi-

soning attack (also called availability attack) injects poisoning samples into the training

data to create a denial of service that disables benign files being normally executed. In

this dissertation, we focus on the former attack. We call evasion attack as adversarial

attack throughout the dissertation. Security violation can be targeted or indiscrimi-

nate, depending on whether the attacker is interested in having some specific malware

misclassified, or if any misclassified malware sample meets his/her goal [41].

4.2 Adversarial Attack

Adversarial attacks can generally be modeled as an optimization problem: given

an original malicious file x ∈ X+, the adversarial attacks attempt to manipulate its

Chapter 4. Enhancing Security of Learning-based Systems in Malware Detection 55

features to be detected as benign (i.e., x′ ∈ X−), with the minimal adversarial cost. In

this section, we present how attackers can achieve such attacks.

Considering that the attacker may have different levels of knowledge of the targeted

learning system [126], he may know completely, partially, or do not have any informa-

tion about: (i) the feature extraction method, (ii) the training sample set, and (iii) the

learning algorithm. We characterize the attacker’s knowledge in terms of a space Ψ that

encodes knowledge of the feature space X, the training sample set D, and the classifi-

cation function f . In the traditional detection evasions, we mainly discuss the scenario

that the attackers using techniques such as encryption, obfuscation, and polymorphism

to probe the classifier without any knowledge of the learning system (i.e., Ψ = ()). In this

section, we wish to follow the common practice in cyber security research of erring on

the side of overestimating the attackers’ capabilities rather than underestimating them.

Therefore, based on the different scenarios, we present three well-defined adversarial

attacks to facilitate security analysis of the classifier as below.

Mimicry Attacks In this scenario, the attackers are assumed to know the feature

space and be able to obtain a collection of malware samples and benign files to imitate

the original training dataset. In other words, Ψ = (X, D̂). In such attack, the strategy

of the attackers is to manipulate a set of features (e.g., Windows API calls) to probe

the learning system. The effectiveness of this adversarial attack mainly depends on the

similarity of distribution between the original training dataset and mimic dataset. It’s

more likely that the attackers may evade the detection if the file samples drawn from

surrogate dataset are distributed closely as the training sample set.

Imperfect-knowledge Attacks Further than the previous scenario, we assume that

both the feature space and the original training sample set can be fully controlled by

the attackers, i.e., Ψ = (X,D). Compared with mimicry attacks, the knowledge of

the malware and benign files in the original training dataset definitely leverage clearer

insight for the attackers to conduct the adversarial attacks to evade the learning system’s

detection, although they may have no knowledge of the learning algorithm.

Ideal-knowledge Attacks This is the worst case where the learning algorithm is

also known to the attackers, i.e., Ψ = (X,D, f). Although many settings do impose

significant restrictions on getting the ideal knowledge by the attackers, including the

feature space, the training sample set and the classification function, we would like

Chapter 4. Enhancing Security of Learning-based Systems in Malware Detection 56

to overestimate the attackers’ capabilities rather than underestimate them. When the

attackers can perfectly access to the learning system, they can thoroughly analyze the

malware and benign files in the training dataset, investigate the vulnerability of the

classification algorithm, and accurately manipulate the features to evade the detection.

All these advantages contribute to an effective adversarial attack, which has the strongest

probability of evading the targeted learning system. Since this worst case provides a

potential upper bound on the performance degradation suffered by the learning system

under the adversarial attacks, it can be used as reference to evaluate the effectiveness of

the learning system under the other simulated attack scenarios.

Figure 4.2 depicts the aforementioned adversarial attacks according to different levels

of knowledge the attackers may have.

Figure 4.2: Different scenarios of the adversarial attacks. With the direction of the

inward arrow, the adversarial attacks are depicted with the knowledge of (X, D̂), (X,D),

and (X,D, f).

4.2.1 Feature Manipulation

To conduct an adversarial attack, attackers would manipulate the features of a ma-

licious file to evade the detection. Feature manipulation defines how malware samples

can be modified, according to program-specific constraints [41]; these constraints can be

encoded in terms of distances in feature space, computed between the source malware

data and its manipulated versions, which will be discussed in the next section. Given a

file, after feature extraction, it can be represented by a binary feature vector. Then a

typical manipulation can be either adding or eliminating a binary in the vector.

• Feature Addition. In this scenario, attackers can autonomously inject a feature

in the file (i.e., set 0 to 1). For example, they can add API calls in a file without

Chapter 4. Enhancing Security of Learning-based Systems in Malware Detection 57

influence on other existing functionalities; they can also inject API calls in a dead

code or methods which will be never called by any invoke instructions in a file.

• Feature Elimination. In this setting, attackers may hide or remove a feature

from the file (i.e., set 1 to 0) while not affecting the intrusive functionality they

want to execute. For example, attackers can hide the information stored as strings

by encryption and decrypting it at runtime.

Either feature addition or elimination, both settings should retain the semantics

and intrusive functionality of the original file after manipulations. In such case, feature

addition is easier and safer when the injection is not directly executed by the file (as

examples shown above). However, if attackers want to inject a suspicious API call to the

file being executed by the program, it will be more sophisticated and may influence the

semantics of the file. Feature elimination is usually more complicated, such as, removing

API calls from a file is not always practical since it may limit the functionalities of the file.

Therefore, conducting an adversarial attack that needs to manipulate a lot of features

while not compromising the malicious functionalities may not always be feasible. In this

respect, attackers may need to implement a well-crafted attack by taking consideration

of the adversarial cost.

4.2.2 Adversarial Cost

The adversarial cost can be defined in terms of distances in feature space between the

original malware and its manipulated version; simply, it can be decided by the number

of binaries that are changed from x to x′ by attackers, which is denoted as

C(x′,x) = ||cT (x′ − x)||pp, (4.3)

where c is a vector whose element denotes the corresponding cost of changing a feature,

and p is a real number. The adversarial cost function can be considered as `1-norm or

`2-norm depending on the feature space. For attackers, the manipulation cost ci for each

feature is different. For example, some specific Windows API calls may affect the struc-

ture for intrusive functionality, which are more expensive to be modified. Therefore, the

manipulation cost ci for each feature is practically significant, which is determined by the

feature type and manipulation method. Furthermore, for the reasons aforementioned,

it’s impractical for attackers to modify a malware into benign at any cost (i.e., manip-

ulating a large number of features). For instance, an adware will automatically display

Chapter 4. Enhancing Security of Learning-based Systems in Malware Detection 58

or download advertisements when the victim is online. The attacker will not modify its

related API calls to make the adware being benign and loss its malicious functionalities.

Thus, there is an upper limit of the maximum manipulations that can be made to the

original malware x. That is, the manipulation function A(x) can be formulated as

A(x) =

x′ sign(f(x′)) = −1 and C(x′,x) ≤ δmax

x otherwise
, (4.4)

where the malware is manipulated to be misclassified as benign only if the adversarial

cost is less than or equal to a maximum cost δmax.

4.2.3 Attack Strategy

In practice, though attackers may know differently about the targeted learning sys-

tem [126], they always have the following two competing objectives: (1) maximize the

number of malicious files being classified as benign, and (2) minimize the adversarial cost

for optimal attacks over the learning-based classifier [83]. Specifically, the adversarial

attack strategy can be formulated as:

argmin
x′∈X−

min{f(x′), 0}+ C(x′,x), (4.5)

subject to C(x′,x) ≤ δmax.

Given an original malware, an effective adversarial attack generally modifies a small

portion of features with the low adversarial cost. Let Eq. (4.5) return an optimal solution

x∗ with sign(f(x∗)) = −1, and a suboptimal solution x̃ with sign(f(x̃)) = −1, we

characterize the relationship between x∗ and x̃, and have

min{f(x∗), 0} = min{f(x̃), 0} = −1.

The difference between x∗ and x̃ can be simplified as the comparison between their

adversarial costs, i.e., argmin C(x′,x). According to the definition of the adversarial

cost in Eq. (4.3), C(x′,x) ≥ 0. C(x′,x) = 0 iff x′ = x. C(·) is then strictly convex in x′

and has a unique solution for this optimization problem. Therefore, C(x∗,x) < C(x̃,x),

since x∗ is an optimal attack. The adversarial cost varies resting on the different levels

of knowledge the attackers have about the targeted learning system. We formalize this

relationship between x∗ and x̃ in the following lemma.

Lemma 4.1 Suppose x∗ is the optimal adversarial attack to Eq. (4.5), while x̃ is sub-

optimal attack, s.t., f(x∗) < 0 and f(x̃) < 0. Then C(x∗,x) < C(x̃,x). That is, the

Chapter 4. Enhancing Security of Learning-based Systems in Malware Detection 59

optimal adversarial attack can access to the learning-based system with minimum adver-

sarial cost.

According to this lemma, to perform an optimal adversarial attack, attacker may

want to select the features that are easy to be manipulated (e.g., addition is generally

easier than elimination) and to choose the features that have higher contributions to

the classification problem. This inspires us to design secure defenses to combat the

adversarial attack strategy.

4.3 SecDefender : A Secure-learning Model against Well-

crafted Attack

In this section, on the basis of Windows API calls extracted from the PE files, we

first present a well-crafted adversarial attack model (named AdvAttack) to thoroughly

assess the security of the classifier by considering different contributions of the API calls

to the classification problem. To effectively counter such adversarial attacks, we further

propose a resilient yet elegant secure-learning model (named SecDefender) based on

AdvAttack for malware detection. The system architecture of SecDefender is shown in

Figure 4.3.

Figure 4.3: An overview of system architecture of SecDefender. In this system, the

collected PE files are first represented as d-dimensional binary feature vectors. Then a

well-crafted adversarial attack model AdvAttack is formulated to generate the adversarial

examples, which will be further used for classifier retraining and security regularization.

For a new file, based on the extracted features, it will be predicted as either malicious

or benign based on the trained classification model.

4.3.1 Feature Representation

PE is designed as a common file format for all flavors of Windows operating system,

and malicious PE files are in the majority of the malware in recent years [140]. Based

on the collected PE file sample set, without loss of generality, in this section, we extract

Chapter 4. Enhancing Security of Learning-based Systems in Malware Detection 60

Windows API calls as the features to represent the file samples, since they can effectively

reflect the behaviors of program codes [140]. For example, the API “GetFileType” in

“KERNEL32.DLL” can be used to retrieve the file type of the specified file, while the API

“GetDlgItemText” in “USER32.DLL” is utilized to obtain the title or text associated

with a control in a dialog box. Before feature extraction, if a PE file is previously

compressed by a third party binary compress tool such as UPX and ASPack Shell or

embedded a homemade packer, it will be decompressed at first and we use the dissembler

CMDsm developed by Comodo Anti-malware Lab to dissemble the PE code and output

the assembly instructions as the input for the Windows API call extraction.

In this section, we perform static analysis on the collected file samples and extract

the above features (i.e., Windows API calls) to represent the files. Though static anal-

ysis has unequivocal limitations, since it is not feasible to analyze malicious code that

is thoroughly obfuscated or decrypted at runtime. For this reason, considering such at-

tacks would be irrelevant for the scope of our work. Our focus is rather to understand

and to enhance the security properties of learning-based system against a wide class of

adversarial attacks. The above features are exploited as a case study which facilitate the

understanding of our further proposed approach, while other feature extractions, such

as binary n-gram, dynamic system calls, and dynamic behaviors, are also applicable in

our further investigation.

To represent each collected PE file, we first extract the features and convert them into

a vector space, so that it can be fed to the classifier either for training or testing. Based

on the extracted features, we denote our dataset D to be of the form D = {xi, yi}ni=1

of n file samples, where xi is the set of features extracted from file i, and yi is the class

label of file i, where yi ∈ {+1,−1, 0} (+1 denotes malicious, −1 denotes benign, and 0

denotes unknown). Let d be the number of all extracted features in the dataset D. Each

of the PE file can be represented by a binary feature vector:

xi =



0

1

. . .

1

0


→

KERNEL32.DLL,VirtualQuery;

KERNEL32.DLL,Sleep;

. . .

USER32.DLL,DestroyIcon;

KERNEL32.DLL,SetEvent


Windows API calls (4.6)

where xi ∈ Rd, and xij = {0, 1} (i.e., if file i includes feature j, then xij = 1; otherwise,

xij = 0).

Chapter 4. Enhancing Security of Learning-based Systems in Malware Detection 61

4.3.2 Well-crafted Attack Model AdvAttack

Characteristics of the Feature Set

Since it’s the most important for the attackers to choose a relevant subset of features

applied for addition and elimination, to well implement the attack, we take deep insight

into the property of the feature set. As different features (i.e., API calls in our applica-

tion) differently contribute to the classification of malware and benign files, it’s worth

to investigate the importance of each feature. We analyze the sample set obtained from

Comodo Cloud Security Center, which contains 10,000 labeled files with 3, 503 extracted

API calls. There are various methods for assessing feature relevance (e.g., information

gain, χ2 contingency table statistic, etc.) in classification, each of which has its own

pros and cons [59]. Here we use Max-Relevance algorithm [103], which is one of the

popular approaches to define dependency of variables and has also been successfully ap-

plied in malware detection [147], to calculate the relevance score of each API call for the

classification of malware and benign file respectively. Given x representing an API call,

and the file label y, their mutual information is defined in terms of their frequencies of

appearances P (x), P (y), and p(x, y) as follows [147]:

I(x, y) =

∫ ∫
p(x, y) log

p(x, y)

P (x)P (y)
dxdy. (4.7)

Figure 4.4 shows the distribution of the relevance scores of the extracted API calls for

the classification of malware and benign files, from which we can see that for those

with high relevance scores, some are explicitly relevant to malware, while some have

high influence on the classification of benign files. Note that API calls with extremely

low relevance scores (about 85% lower than 0.0005) have limited or no contributions

in malware detection (e.g., SetLocalTime in KERNEL32.DLL), thus they will not be

considered for the further investigated adversarial attacks.

Figure 4.4: Relevance score distribution of the extracted API calls for the classification

of malware and benign files

To further analyze the different importances of API calls for the classification of

Chapter 4. Enhancing Security of Learning-based Systems in Malware Detection 62

malware and benign files, we take insights into their specific functionalities. Table 4.1

shows the top ranked API calls related to malware and benign files respectively.

Table 4.1: List of the top ranked API calls

ID API Contributing to Malware Classification Rel. Score

178 KERNEL32.DLL,VirtualQuery; 0.0568

124 KERNEL32.DLL,ExitProcess; 0.0459

615 KERNEL32.DLL,CreateFileW; 0.0406

607 KERNEL32.DLL,CompareStringA; 0.0381

8 USER32.DLL,RegisterClassA; 0.0355

1637 USER32.DLL,DestroyIcon; 0.0318

1606 USER32.DLL,TrackPopupMenu; 0.0317

207 KERNEL32.DLL,IsBadCodePtr; 0.0235

1601 USER32.DLL,CreatePopupMenu; 0.0213

235 USER32.DLL,DestroyWindow; 0.0205

ID API Contributing to Benign File Classification Rel. Score

80 KERNEL32.DLL,FreeLibrary; 0.1035

57 ADVAPI32.DLL,RegCloseKey; 0.0972

578 ADVAPI32.DLL,RegOpenKeyExW; 0.0964

20 KERNEL32.DLL,lstrlenW; 0.0846

111 KERNEL32.DLL,GetCurrentThreadId; 0.0825

22 KERNEL32.DLL,Sleep; 0.0756

37 KERNEL32.DLL,LocalFree; 0.0756

102 KERNEL32.DLL,GetTickCount; 0.0673

36 KERNEL32.DLL,GetLastError; 0.0538

506 KERNEL32.DLL,SetEvent; 0.0532

The most important activity in malware is file management [9], which enables them

to create, or copy files (themselves or other files) multiple times to spread malware

distribution, control the targeted computers, and destroy the integrity of the system (e.g.,

CreateFileW in KERNEL32.DLL, DestroyIcon in USER32.DLL, CreatePopupMenu in

USER32.DLL, DestroyWindow in USER32.DLL, etc.). To achieve the malicious goals,

they also have their own methods to deal with process and registry, which heavily use

VirtualQuery in KERNEL32.DLL to get the virtual address space of the calling process

that is intent to hide from or affect. Compared with malware, benign files act normally

Chapter 4. Enhancing Security of Learning-based Systems in Malware Detection 63

in file, memory, process, and registry operations.

Based on the general statistical properties observed from the real sample collection,

intuitively, to evade the detection with lower adversarial cost, the attackers may manip-

ulate the API calls by the way of injecting the ones most relevant to benign files while

removing the ones with higher relevance scores to malware. To stimulate the attacks,

we rank each API call and group them into two sets: M (i.e., API calls highly relevant

to malware) and B (i.e., API calls highly relevant to benign files) in the descent order of

I(x,+1) and I(x,−1) respectively, whereM is utilized for elimination, while B is applied

for addition. It is worth noting that the observed sample files are either surrogate or

originally used by the target system depending on different attack scenarios.

Adversarial Attack Model

To implement the adversarial attack, we further define a function g(A(X)) to repre-

sent the capability of an attacker:

g(A(X)) = ||y − f ′||2, (4.8)

where f ′ = sign(f(A(X))), and g(A(X)) implies the number of malware misclassified

as benign files. The underlying idea is thus to manipulate a subset of features with

minimum adversarial cost while maximize the total loss of classification (as specified

in Equation 4.8). In principle, a brute-force method can be applied to select features

for manipulation. However, search by exhaustion is extremely expensive for the large-

dimensional feature set. To achieve the optimal attack, here we adopt the wrapper

method [152] which greedily selects features based on the capability of the attack. Dif-

ferent from the work in [152], we conduct bi-directional feature selection, that is, forward

feature addition performed on B and backward feature elimination performed onM. At

each iteration, an API call will be selected for addition or elimination depending on the

fact how it influences the value of g(A(X)). The adversarial attack θ = {θ+,θ−} will

be drawn from the iterations, where θ+ ∈ {0, 1}d (if APIi is selected for elimination,

then θ+
i = 1; otherwise, θ+

i = 0), and θ− ∈ {0, 1}d (if APIi is selected for addition,

then θ−i = 1; otherwise, θ−i = 0). The iterations will terminate at the point where the

adversarial cost reaches to maximum (δmax) or the features available for addition and

elimination are all manipulated. The implementation of the proposed adversarial attack

(AdvAttack) is given in Algorithm 4.

The proposed AdvAttack enables the adversary to fully take advantage of the prop-

erty of the feature set, and get a better chance of evading the targeted classifier. M

Chapter 4. Enhancing Security of Learning-based Systems in Malware Detection 64

and B significantly decrease the number of searches, and thereby reduce the computa-

tional complexity. Given m = max(|M|, |B|), the proposed attack AdvAttack requires

O(ntm(µ+ + µ−)) queries, in which nt is the number of testing malware samples, µ+

and µ− are the numbers of selected features for elimination and addition respectively.

Note that, this algorithm is applicable to the attackers of different skills and capabilities

resting on the feature space, the training data set, and the learning algorithm either

surrogate or originally used by the targeted system.

Algorithm 4: AdvAttack - A well-crafted adversarial attack model

for the attackers with different skills and capabilities

Input: Training set D = {xi, yi}ni=1, testing set Dt = {xi, yi}nt
i=1; af : cost of

changing feature f ; c+, c−: cost of eliminating and adding features in a

file; S+, S−: features selected; µ+, µ−: number of features selected for

elimination and addition.

Output: Adversarial attack θ = {θ+,θ−}.
Train a classifier f(X) using n training file samples;

S+ ← ∅, S− ← ∅, θ+i = 0, θ−j = 0, (i, j ∈ (0, 1, ..., d));

while (c+ + c− ≤ δmax) and (µ+ < d or µ− < d) do

X← X/S+, X← X
⋃
S−;

for each feature x+i ∈M do

Xx+ ← X/{x+i }: eliminate x+i from nt testing file samples;

Calculate g(Xx+);

end

for each feature x−j ∈ B do

Xx− ← X
⋃
{x−j }: add x−j to nt testing file samples; Calculate g(Xx−);

end

xmax = argmax {g(Xx+), g(Xx−)};
if xmax ∈M and µ+ < d then

S+ ← S+
⋃
{x+i }

c+ = c+ + ax+
i

, µ+ = µ+ + 1;

end

if xmax ∈ B and µ− < d then

S− ← S−
⋃
{x−j }

c− = c− + ax−
j

,µ− = µ− + 1;

end

end

Set θ+i = 1 for x+i ∈ S+, θ−j = 1 for x−j ∈ S−;

return θ = {θ+,θ−};

Chapter 4. Enhancing Security of Learning-based Systems in Malware Detection 65

4.3.3 Secure-learning Model based on AdvAttack

A defender usually reacts to the adversarial attacks by analyzing the attack and

retraining the classifier on the new collected file samples, or modifying features of the

training dataset to counter the adversary’s strategy [108]. However, retraining with ad-

versarial data typically suffers from a limitation: the retrained model modifies the train-

ing data distribution approximate to the testing space through the attack model. After

modifying a large number of features and malicious files, the model tends to produce a

distribution that is very close to that of the benign files. In this case, the retrained model

may not be able to differentiate benign and malicious files accurately. To this end, we

perform our security analysis of the learning-based classifier resting on the application

setting that the defender draws the well-crafted AdvAttack from the observed sample

space, since the attack is modeled as optimization under generic framework. Therefore,

in our proposed secure-learning model (SecDefender), we exploit the AdvAttack θ to

retrain the classifier in a progressive way and apply adversarial cost c to regularize the

optimization problem.

Classifier Retraining. Incorporating the adversarial attack θ into the learning

algorithm can enables us to provide a significant connection between training and the

adversarial action. Instead of manipulating the feature spaces for all the malicious train-

ing dataset, we start with the original training data X and iteratively computing a

classifier by injecting the adversarial samples tainted by θ into the training data that

evade the previously computed classifier [83]. The new dataset X′ can be formalized as

follows:

X′ = X

nm⋃
i=1

(xi + θ), (4.9)

s.t. f(xi + θ) < 0, (4.10)

where nm is the total number of malware samples added during the retraining iteration.

The iterations converge when there are no new adversarial samples generated through the

retrained classifier or the specified number of iterations reaches. Compared to updating

all the malicious training dataset, this progressive classifier retraining method effectively

increases the importance of malware in training process, and can therefore significantly

keep the detection system in a more accurate level.

Security Regularization. Resting on the retrained classifier, in our proposed

model, we further enhance the security of the classifier by using a security regularization

term over the adversarial cost. Our empirical studies demonstrate that even retrained

Chapter 4. Enhancing Security of Learning-based Systems in Malware Detection 66

by the updated training dataset, the classifiers are still degraded to some extent. It’s

recalled that an optimal adversarial attack aims to manipulate a subset of features with

minimum adversarial cost while maximize the total loss of classification. In contrast, to

secure the classifier in malware detection, we would like to maximize the adversarial cost

for the attacks [152]: from the analysis of the adversary problem [13, 78], we can find

that the larger the adversarial cost, the more manipulations need to be performed, and

the more difficult the attack is. If a larger number of features has to be manipulated

to evade detection, it may be infeasible to perform such attack. Therefore, to be more

resilient against the adversarial attack, an ideal secure-learning model is to maximize

the adversarial cost for the attackers. Accordingly, the adversary action of the learning

classifier can be defined as:

T (A(x),x) =
1

C(A(x),x)
, (4.11)

subject to Equation 4.3. If A(xi) = xi which represents that the file is not manipulated

by the adversary, T (A(xi),xi) = 0. We then define an adversary action matrix denoted

as T ∈ Rn×n, where the element Tij = T (A(xi),xj). Based on the adjacency adversary

action matrix T, and the idea drawn from the Laplacian matrix [5], the security matrix

can be defined as S = D − T, where D is the diagonal matrix with Dii =
∑

k Tik

while the remain elements are 0. Resting on the concept of label smoothness [138]

and assumption for the optimization learning [110] (i.e., data points tend to reserve the

initial labels over the classification), we can secure the classifier with the constraint as

1
2

∑n
i,j=1 Tij(f

′
i − yj)2 = 1

2 f ′TSy.

Since the learning-based malware detection can be formalized as an optimization

problem denoted by Equation 4.2, we can then bring a regularization term to enhance

its security. This constraint penalizes parameter choices, smooths the effects the attack

may cause, and in turn helps to promote the optimal solution for the local minima

in the optimization problem. Therefore, to minimize classifier sensitivity to feature

manipulation, we can minimize the security regularization term. Based on Equation 4.2,

we can formulate a secure-learning model against the adversarial attack as:

argmin
f ′,w,b;ξ

L(f ′,w,b; ξ) = argmin
f ′,w,b;ξ

1

2
||y − f ′||2 +

α

2
f ′TSy+

1

2β
wTw +

1

2γ
bTb + ξT (f ′ −X′Tw − b). (4.12)

where α is the regularization parameter for the security constraint. As ∂L
∂w = 0, ∂L

∂b = 0,

Chapter 4. Enhancing Security of Learning-based Systems in Malware Detection 67

∂L
∂ξ = 0, ∂L

∂f ′ = 0, we have

w = βX′ξ, (4.13)

h = γξ, (4.14)

f ′ = X′Tw + h, (4.15)

f ′ = y − α

2
Sy − ξ. (4.16)

Based on the derivation from Equation 4.13, Equation 4.14, and Equation 4.15, we have

ξ = (βX′TX′ + γI)−1f ′. (4.17)

We substitute Equation 4.17 to Equation 4.16, then we get the final secure-learning

problem as:

((βX′TX′ + γI) + I)f ′ = (I− α

2
S)(βX′TX′ + γI)y. (4.18)

Since the size of X′ is d× n, the computational complexity for Equation 4.18 is O(n3).

To solve the secure-learning problem (Equation 4.18), we use conjugate gradient descent

method and the implementation of SecDefender is shown in Algorithm 5.

Algorithm 5: SecDefender - A secure-learning model against well-

crafted attack
Input: Training data set D = {xi, yi}ni=1 and testing set Dt = {xi, yi}nt

i=1;

Evasion attack θ.

Output: f ′: the labels of the input files.

Iteratively train classifier f(X
⋃
i(xi + θ)) to get X′;

f ′0 = 0;

A = (βX′TX′ + γI) + I;

r0 = (I− α
2 S)(βX′TX′ + γI)y −Af ′0;

p0 = r0;

k = 0;

while ||rk|| > ε do

λk = (rTk rk)/(pTkApk);

f ′k+1 = f ′k + λkpk;

rk+1 = rk − λkApk;

ζk = (rTk+1rk+1)/(rTk rk);

pk+1 = rk+1 + ζkpk;

k = k + 1;

end

return f ′k;

Chapter 4. Enhancing Security of Learning-based Systems in Malware Detection 68

4.3.4 Experimental Results and Analysis

In this section, to empirically validate the proposed secure-learning model SecDe-

fender, we present four sets of experiments: (1) In the first set of experiments, we

compare the attack model AdvAttack with other feature manipulation methods; (2) In

the second set of experiments, we evaluate the attack model AdvAttack under different

scenarios; (3) In the second set of experiments, we then evaluate the effectiveness of

our proposed secure-learning model SecDefender against the adversarial attack; (4) In

the last set of experiments, we compare the performance of SecDefender against the

adversarial attack with other widely used anti-malware products. We use the same

performance indices shown in Table 3.5.

Experimental Setup

The real sample collection obtained from Comodo Cloud Security Center contains

10, 000 file samples with 3, 503 extracted API calls, where 5, 000 are malware, 5, 000 are

benign files. In our experiments, we randomly select 90% of the samples for training,

while the remaining 10% is used for testing. Since not all of the API calls will contribute

to the classification as analyzed in Section 4.3.2, those API calls whose relevance scores

are lower than the empirical threshold (i.e., 0.0005 in our application) will be excluded

for feature manipulations. Therefore, |M| = 810, |B| = 1, 183, and all the file samples

can be represented as binary feature vectors with 1, 993-dimensions. For simplicity, we

assume ci = 1 for each feature to conduct our experiments.

Figure 4.5: The feature distribution of file samples.

According to the Cumulative Distribution Function (CDF) for the number of API

calls the file samples include shown in Figure 4.5, we exploit the average number of

API calls that each file possesses, which is 109, to define the maximum manipulation

Chapter 4. Enhancing Security of Learning-based Systems in Malware Detection 69

cost δmax. We run our evaluation of the proposed adversarial attacks with δmax varies

in {5%, 10%, 15%, 20%, 50%} of 109, which is {5, 11, 16, 22, 55}. We also use the

performance measures shown in Table 3.5 to quantitatively validate the effectiveness of

the proposed methods.

Comparisons of AdvAttack and Other Attacks

We first compare our proposed adversarial attack AdvAttack with other attack meth-

ods using different feature manipulation approaches including: (1) only manipulating

API calls from B for addition; (2) only manipulating API calls from M for elimination;

(3) sequentially selecting (1/2 × δmax) API calls from B for addition and (1/2 × δmax)

API calls from M for elimination; (4) simulating anonymous attack by randomly ma-

nipulating API calls for addition and elimination.

(a) FNR with different δmax (b) FNR with δmax = 22 (c) F1 measures with δmax = 22

Figure 4.6: Comparisons of AdvAttack and other adversarial attacks: Original-Classifier

(0), different adversarial attacks (Method 1 - 4) and AdvAttack (5)

The experimental results are shown in Figure 4.6. Note that, Since we just manip-

ulate the features on the testing malicious files (i.e., benign files remain unchanged), all

FPs and TN s after attacks in the experiments keep the same as before attack (i.e., FP

is 21, and TN is 423). The experimental results illustrate that the attack performances

vary when using different feature manipulation methods with certain adversarial costs

δmax: (1) the manipulation of only feature elimination performs worst with FNR; (2) the

manipulation which sequentially selecting features for addition and elimination performs

better than the methods only using feature addition or elimination, and the anonymous

attack, due to its bi-directional feature manipulation over B and M; (3) AdvAttack can

greatly improve the FNR to 0.6978 while degrade the detection F1 measure of the clas-

sifier to 0.4384, when δmax = 22; the attackers can achieve ideal attack using AdvAttack

(i.e., FNR almost reaches to 1, which means almost malware samples are misclassified),

Chapter 4. Enhancing Security of Learning-based Systems in Malware Detection 70

when δmax = 55. Due to its well-crafted attack strategy, AdvAttack outperforms other

adversarial attack methods with different feature manipulation approaches.

Evaluations of AdvAttack under Different Scenarios

We further implement and evaluate our proposed attack AdvAttack under different

scenarios described in Section 4.2: (1) In mimicry (MMC) attack (Ψ = (X, D̂)), the

attackers are assumed to know the feature space and be able to obtain a file collection to

imitate the original training dataset. In our experiment, we randomly select 1, 000 file

samples (500 benign and 500 malicious) from the 9, 000 training set as our mimic dataset

and exploit commonly used linear SVM as the surrogate classifier to train these 1, 000

mimic file samples. (2) In imperfect-knowledge (IPK) attack (Ψ = (X,D)), we assume

that both the feature space and the original training sample set can be fully controlled by

the attackers. Therefore, we perform the IPK attack conformably as MMC attack where

the only difference is that we apply 9, 000 samples to train SVM. (3) In Ideal-knowledge

(IDK) attack (Ψ = (X,D, f)), the attackers can perfectly access to the classifier system.

The previous experiments of AdvAttack are conducted based on such assumption. To be

comparable, AdvAttack is applied to all these scenarios resting on the same cost settings.

Figure 4.7: FNR before and after each attack under different scenarios for all 1,000

testing file samples

The experimental results are shown in Figure 4.7, in which red bar denotes the

FNR of the classifier before attack (NonAtt) and different attacks with the adversarial

cost δmax = 22. The FNR values float up or down depending on the adversarial cost.

The experimental results demonstrate that the available knowledge for the attackers

significantly contributes to the performance of the attack. With perfect knowledge, the

IDK attack can well evade the detection (e.g., 69.78% of the testing malware samples

are misclassified as benign when δmax = 22). Our proposed attack AdvAttack can be

Chapter 4. Enhancing Security of Learning-based Systems in Malware Detection 71

applied as a representative attack model with general attack characteristics.

Evaluation of SecDefender against Adversarial Attacks

In response to well-crafted attacks, we’d like to assess the effectiveness of our pro-

posed secure-learning model SecDefender based on AdvAttack. We use AdvAttack to

taint the malware in the testing sample set, and validate the classification performance

in different ways: (1) the Original-Classifier before attack (NonAtt); (2) the classifier

under attack (UnderAtt); (3) the classifier retrained using the updated training dataset

(i.e., x+θ) (Retrained); (4) our secure-learning model SecDefender. The comparisons of

the effectiveness of these classifiers are shown in Figure 4.8(a) (accuracy values against

attacks with different adversarial costs) and Figure 4.8(b),(c) (FNR, F1, and ROC curves

for the classifiers against the attack with δmax = 22).

(a) ACC with different δmax (b) FNR and F1 with δmax = 22 (c) ROC curves

Figure 4.8: Comparisons of SecDefender and other classification models on ACC, F1,

FNR, and ROC curves: Original-Classifier (1), Original-Classifier under attack (2),

retrained Original-Classifier (3), and SecDefender (4)

It can be observed that the retrained classifier ideally applying the adversarial attack

θ to transform the malware in the training dataset from x to x + θ can somehow be

resilient to the attacks, but the accuracy still remain unsatisfied. In contrast, SecDe-

fender with progressive retraining technique, can well improve the TPR and accuracy,

and bring the malware detection system back up to the desired performance level, the

detection F1 measure of which is 0.9561 (δmax = 22), approaching the detection results

before the attack (i.e., 0.9613).

It may also be interesting to know how robust that our learning systems can combat

the anonymous attacks. We conduct the anonymous attack by randomly selecting the

features for addition or elimination as described in Experiment 4.3.4, which does not

exploit any knowledge of the target system. Under the anonymous attack, SecDefender

Chapter 4. Enhancing Security of Learning-based Systems in Malware Detection 72

has zero knowledge of what the attack is. Even in such case, SecDefender still improves

the detection F1 measure from 0.7304 to 0.8830. Based on these properties, SecDefender

can be a resilient solution in malware detection against well-crafted attacks even the

attackers have perfect knowledge of the learning system.

Comparisons with Different Anti-malware Scanners

In this set of experiments, we evaluate the performance of SecDefender against the

adversarial attack in comparison with some other popular commercial anti-malware scan-

ners such as Kaspersky (K), McAfee (M), Symantec (S), and TrendMicro (T). For the

comparisons, we use all the latest versions of the security products. We use 556 mal-

ware samples from the testing dataset described in Section 4.3.4 for evaluation. The

testing malware are first tainted by AdvAttack, and then scanned by these anti-malware

products. The detection results are illustrated in Table 4.2. Compared with these typi-

cal anti-malware scanners, SecDefender can effectively sustain the TPR to 0.9335, and

performs the best accurate detection.

Table 4.2: Comparisons of different anti-malware scanners

Malware K M S T SecDefender

1 ×
√

× ×
√

2
√

×
√

× ×
3 × × × ×

√

4 ×
√

× ×
√

5 × × × ×
√

6 × × ×
√ √

7 × × × ×
√

8 × × × × ×
9

√
×

√
×

√

10
√

× × ×
√

...
...

...
...

...
...

556 ×
√ √ √ √

TP 508 503 511 498 519

TPR 0.9136 0.9046 0.9190 0.8957 0.9335

Chapter 4. Enhancing Security of Learning-based Systems in Malware Detection 73

4.4 SecureDroid : A Secure-learning Paradigm against

Various Kinds of Attacks

Though SecDefender is promising, it makes strong assumptions about the structure

of the data (e.g., adversarial samples) and the attack model that are likely impractical

for malware detection problems. The effectiveness for these methods depends on the

adversarial attacks similar to the one used by the adversary, which is non-adaptive to

the unknown attacks. In this section, we aim to enhance security of machine learning-

based malware detection against various kinds of adversarial attacks, whose action space

is practically independent from the skills and capabilities of the attackers.

According to Lemma 4.1, in the adversarial point of view, to conduct a practical

attack, attackers intend to find the features which are easy to be manipulated (i.e., fea-

tures with low costs being manipulated) and minimize the manipulations (i.e., modify

the features as less as possible) to bypass the detection. For example, to evade the de-

tection, attackers may manipulate the spy Trojan “Trojan-Spy.Win32.Zbot” by injecting

the Windows API calls of “KERNEL32.DLL,FreeLibrary;” which is frequently used in

benign files instead of removing suspicious API call of “MAPI32.MAPIReadMail”, since

feature addition is usually cost-effective and safer than feature elimination to bypass the

detection while preserves the semantics and intrusive functionality of the original ma-

licious file. In contrast, to be resilient against the adversarial attacks, an ideal defense

should make the attackers cost-expensive and maximize their manipulations to evade the

detection.

In this section, resting on the analysis of a set of features (i.e., permissions, filtered

intents, API calls, and new-instances) extracted from the Android app files, we take

a further step to explore the security of machine learning in malware detection. To

make the classifier harder to be evaded, we first present a novel feature selection method

(named SecCLS) to build the classifier, by taking consideration of different importances

of the features associated with their contributions to the classification problem as well

as their manipulation costs. To improve the system security while not compromising

the detection accuracy, we further propose an ensemble learning approach (named Se-

cENS) by aggregating the individual classifiers that are constructed using the proposed

feature selection method SecCLS. Accordingly, we develop a system called SecureDroid

which integrates both SecCLS and SecENS to secure machine learning-based malware

detection. The system architecture of SecureDroid is shown in Figure 4.9.

Chapter 4. Enhancing Security of Learning-based Systems in Malware Detection 74

Figure 4.9: An overview of system architecture of SecureDroid. In the system, the

collected app files are first represented as d-dimensional binary feature vectors. Then

SecCLS is applied to select a set of features (each feature i is selected with probabil-

ity P(i)) to construct a more secure classifier. SecENS is later exploited to aggregate

different individual classifiers built using SecCLS to classify malicious and benign files.

For a new file, based on the extracted features, it will be predicted as either malicious

or benign based on the trained classification model.

4.4.1 Feature Representation

Since we use Android apps as a case study to investigate the secure-learning paradigm

SecureDroid, we would like to introduce feature representations of Android apps with

preliminaries. Unlike traditional PE file, Android app is compiled and packaged in a

single archive file (with an .apk suffix) that contains the manifest file, Dalvid executable

(dex) file, resources, and assets.

Manifest file. Android defines a component-based framework for developing mobile

apps, which is composed of four different types of components [67]: Activities provide

Graphical User Interface (GUI) functionality to enable user interactivity; Services are

background communication processes that pass messages between the components of the

app and communicate with other apps; Broadcast Receivers are background processes

that respond to system-wide broadcast messages as necessary; and Content Providers

act as database management systems that manage the app data. Android app must

declare its components in the manifest file which retains information about its structure.

Before the Android system can start an app component, the system must know that the

component exists by reading the app’s manifest file. The manifest file actually works as

a road map to ensure that each app can function properly in the Android system. The

actions of each component are further specified through filtered intents which declare

the types of intents that an activity, service, or broadcast receiver can respond to [3].

For example, through filtered intents, an activity can initiate a phone call or a broadcast

receiver can monitor SMS message. The manifest file also contains a list of permissions

Chapter 4. Enhancing Security of Learning-based Systems in Malware Detection 75

requested by the app to perform functions (e.g., access Internet). Since permissions and

filtered intents can reflect the interaction between an app and other apps or operation

system, we extract them from manifest file as features to represent Android apps.

Dalvid executable (dex). Android apps are usually developed with Java. Devel-

opment environments (e.g., Eclipse) convert the Java source codes into Dalvik executable

(dex) files which can be run on the Dalvik Virtual Machine (DalvikVM)1 in Android.

Dex is a file format that contains compiled code written for Android and can be inter-

preted by the DalvikVM, which includes all the user-implemented methods and classes.

Dex file always contains API calls that are used by the Android apps in order to access

operating system functionality and resources, and new-instances which can be used to

create new instances of classes from operating system classes. Therefore, both API calls

and new-instances in the dex file can be used to represent the behaviors of an Android

app. To extract them from a dex file, since dex file is unreadable, we (1) first use the

reverse engineering tool APKTool2 to decompile the dex file into smali code (i.e., the

intermediate but interpreted code between Java and DalvikVM); and (2) then parse the

converted smali code to extract these two kinds of features.

We refer the readers to Section 4.3 for a statement on why we perform static analysis

and what the scope of our work is. The above Android apps and their features are

exploited as a case study which facilitate the understanding of our further proposed

approach, while other types of files and feature extractions are also applicable in our

further investigation.

Similar to the feature representation in Section 4.3.1, to represent each collected

Android app, we first extract the features and convert them into a vector space, which

can be fed to the classifier either for training or testing. For the collected apps, we extract

four sets of features (S1 – S4) to represent them (shown in Table 4.3): permissions (S1)

and filtered intents (S2) from manifest files, API calls (S3) and new-instances (S4) from

dex files.

Resting on the above extracted features, we denote our dataset D to be of the form

D = {xi, yi}ni=1 of n apps, where xi is the features extracted from app i, and yi is the

class label of app i (yi ∈ {+1,−1, 0}, +1: malicious, −1: benign, and 0: unknown). Let

d be the number of all extracted features in S1 – S4 in dataset D. Each app can then

1https://source.android.com/devices/tech/dalvik/.
2http://ibotpeaches.github.io/Apktool/

Chapter 4. Enhancing Security of Learning-based Systems in Malware Detection 76

Table 4.3: Illustration of extracted features for Android apps in SecureDroid

Features Examples

Manifest

S1: Permissions
READ PHONE STATE

INTERNET

S2: Filtered Intents
intent.action.MAIN

vending.INSALL REFERER

Dex

S3: API calls
getSimSerialNumber

containsHeader

S4: New-Instances
Ljave/util/HashMap

Landroid/app/ProgressDialog

be represented by a binary feature vector:

xi =



0

. . .

1

1

. . .

0

1

. . .

0

1

. . .

1



→

READ PHONE STATE

. . .

INTERNET

S1: Permissions

intent.action.MAIN

. . .

vending.INSALL REFERER

S2: Filtered Intents

getSimSerialNumber

. . .

containsHeader

S3: API calls

Ljave/util/HashMap

. . .

Landroid/app/ProgressDialog

S4: New-Instances

where xi ∈ Rd, and xij = {0, 1} (i.e., if app i includes feature j, then xij = 1; otherwise,

xij = 0).

4.4.2 Secure Classifier Construction using Novel feature Selection

In adversarial settings, the importance of a feature from an attacker’s perspective is:

(i) its contribution to the classification problem, which is corresponding to the weight

w trained by the classifier based on the training data, and (ii) its complexity being

manipulated, that is, the manipulation cost c decided by feature type (e.g., permission

Chapter 4. Enhancing Security of Learning-based Systems in Malware Detection 77

vs. API call) and manipulation method (e.g., addition vs. elimination). Given ith-

feature (1 ≤ i ≤ d) extracted from the dataset D, its importance can be defined as

follow:

I(i) ∝ |wi|
ci
, (4.19)

which implies that the larger the weight of the feature trained by the classifier and the

lower the cost of the feature being manipulated, the more important the feature to the

attackers. Clearly, the importance of a feature represents the possibility that an attacker

may manipulate it in an adversarial attack.

The rationale to construct a more secure classifier against the adversarial attacks is to

reduce the possibility of those important features being selected for model construction.

In other words, those features the attackers tend to manipulate (i.e., features with higher

values of I(i)) may not present together in the learning model, which will intuitively force

attackers to manipulate a larger number of other less important features (i.e., features

with lower values of I(i)) to evade the detection. In this way, the probability of each

feature being selected for constructing a classification model is inversely proportional to

its importance, that is, the more important the feature is to attackers, the less possible

it will be selected to train the classifier. We formalize P(i), the probability of ith-feature

being selected, as:

P(i) ∝ λ

I(i)
, (4.20)

where λ is an adjustable parameter which can be empirically decided based on the

training data. When substituting Eq. (4.19) into Eq. (4.20), the length of the probability

is actually arbitrary long (e.g., |wi| = 0). To normalize P(i), we further define P(i) as:

P(i) = λci(1− ρ|wi|), (4.21)

where ρ (0 < ρ < 1) is a rescaling parameter to keep P(i) in the range of (0, 1].

For the weight wi of ith-feature, it can be calculated by the learning-based classifier

in Eq. (4.2) trained on the dataset D. Provided that Eq. (4.2) is an optimization prob-

lem, based on the derivation and substitution, the weight vector for all features can be

calculated as:

w = βXξ, (4.22)

s.t. ξ = (βXTX + γI)−1f , (4.23)

where f can be solved through Eq. (4.2) using conjugate gradient descent method. We

then further normalize each weight |wi| using min-max normalization [59] to the range

of [0, 1].

Chapter 4. Enhancing Security of Learning-based Systems in Malware Detection 78

For the manipulation cost ci of ith-feature, as discussed in Section 4.2.2, it can be

estimated with respect to its feature type and the manipulation method. Considering

that (1) feature addition is usually easier than elimination, and (2) compared with per-

missions and filtered intents in the manifest file, API calls and new-instances in dex file

are relatively easier to be manipulated, Figure 4.10 illustrates different costs empirically

decided for manipulating different kinds of features in our application.

Figure 4.10: The manipulation costs determined by different feature types and manipu-

lation methods.

Attacker may know completely, partially, or do not have any information of the

targeted learning system about: (i) the feature space, (ii) the training data set, and (iii)

the learning algorithm [126]. We would like to overestimate attackers’ capabilities rather

than underestimate them. Since this worst case provides a potential upper bound on the

performance degradation suffered by the learning system under the adversarial attacks,

it can be used as reference to evaluate the effectiveness of the learning system under the

other limited attack scenarios. To conduct a well-crafted attack, we assume that attackers

are capable to access the targeted learning system and may have perfect knowledge

regarding the system. Therefore, they can use the methods such as information gain [59]

or max-relevance [103] to calculate the information of each feature for the classification

of malicious and benign apps respectively. Then they will be able to utilize those features

that significantly contribute to benign apps classification for additions, and apply those

ones that significantly contribute to malicious apps classification for eliminations.

As the above presentation, we can see that P(i) ∈ (0, 1], where the minimum is

attained when the feature is most informative for the classification task or easy to be

manipulated, and the maximum is attained when the feature has least contribution to the

classification problem or is too costly to be manipulated. We then form the probability

Chapter 4. Enhancing Security of Learning-based Systems in Malware Detection 79

set for selecting features to construct a more secure classifier as:

P = {P(1),P(2), ...,P(d)}. (4.24)

Given a pseudo random function R(.) ∈ (0, 1), the original feature vector of a given

app xi will be represented by an updated binary feature vector x̄i:

x̄i =< x̄i1, x̄i2, x̄i3, ..., x̄id >,

where

x̄ij =

xij R(.) ≤ P(j)

0 otherwise
. (4.25)

The proposed feature selection method for classifier construction is named SecCLS,

whose implementation is given in Algorithm 6. Note that when P(i) (1 ≤ i ≤ d) is with

the same value for each feature, i.e., feature importances are evenly distributed, our

proposed feature selection method SecCLS is approximate to random selection. Thus

we can say, random feature selection method [63, 16] is a lower bound of SecCLS. Our

proposed feature selection method SecCLS reduces the possibility of those features that

attackers tend to manipulate, which will accordingly force attackers to manipulate a

larger number of other features and thus be more resilient against their attacks. For

computational complexity of SecCLS, to get weight vector w from Eq. (4.2) requires

O(d3) queries, while to form cost vector c and calculate P both need O(d). Since we

formalize n apps as X, each column of which is the d-dimensional feature vector, to get

an updated training set X̄ from X requires O(nd) updates.

By using SecCLS, after feature selection, the learning-based classifier in Eq. (4.2)

can be updated as:

argmin
f̄ ,w,b;ξ

1

2
||y − f̄ ||2 +

1

2β
wTw +

1

2γ
bTb + ξT (f̄ − X̄Tw − b), (4.26)

subject to f̄ = sign(f(X̄)), where f̄ is the predicted label vector based on a feature set

X̄. To solve the problem in Eq. (4.26), let

L(f̄ ,w,b; ξ) =
1

2
||y − f̄ ||2 +

1

2β
wTw +

1

2γ
bTb + ξT (f̄ − X̄Tw − b). (4.27)

Based on the substitution and derivation from ∂L
∂w = 0, ∂L

∂b = 0, ∂L
∂ξ = 0, ∂L

∂ f̄
= 0, we can

get the more secure classifier as:

[I + (βX̄T X̄ + γI)−1]f̄ = y. (4.28)

Chapter 4. Enhancing Security of Learning-based Systems in Malware Detection 80

Algorithm 6: SecCLS – A novel feature selection method to con-

struct more secure classifier.
Input: Training data set D = {xi, yi}ni=1.

Output: X̄: updated training set based on the selected features.

Get weight vector w by the learning-based classifier in Eq. (4.2) trained on D;

Get manipulation cost vector c;

Calculate P = {P(1),P(2), ...,P(d)} using Eq. (4.21);

k = 1;

for k ≤ d do

Get a pseudo random number from R(.);

if R(.) ≤ P(k) then

X̄k. = Xk.

else

X̄k. = 0

end

k + +;

end

return X̄;

4.4.3 Ensemble Learning to Improve Detection Accuracy

In the previous section, a novel feature selection method SecCLS is presented for

constructing a more secure classifier against the adversarial attacks. To improve the

system security while not compromising the detection accuracy, in this section, we further

propose an ensemble learning approach called SecENS to aggregate a set of classifiers

built using SecCLS to generate the final output for the detection.

Ensemble methods are a popular way to overcome instability and increase perfor-

mance in many machine learning tasks [147], such as classification, clustering and rank-

ing. An ensemble of classifiers is a set of classifiers whose individual decisions are com-

bined in some way (e.g., by weighted or unweighted voting) to classify new samples,

which is shown to be much more accurate than the individual classifiers that make them

up [141]. Typically, an ensemble can be decomposed into two cascaded components: the

first component is to create base classifiers with necessary accuracy and diversity; the

second one is to aggregate all of the outputs of base classifiers into a numeric value as the

final output of the ensemble. In general, base classifiers are generated by subsampling

training set or input features (as done in boosting or bagging), manipulating the output

targets, or injecting randomness in the learning algorithm [43].

Chapter 4. Enhancing Security of Learning-based Systems in Malware Detection 81

In this paper, with certain accuracy of each individual classifier, we aim to diversify

the classifiers that form the ensemble while also consider the integration of whole feature

space. More specifically, the set of classifiers in the ensemble should follow two criteria:

(1) the feature set used for building each classifier should differentiate from each other

(i.e., feature differentiation), and (2) the ensemble should cover as many features as pos-

sible to assure the integration of whole feature space (i.e., feature integration). Therefore,

Algorithm 7: SecENS – An ensemble learning approach to improve

the detection accuracy.
Input: Training data set D = {xi, yi}ni=1; W: weights of training files; ε: error rate for

each classifier; ζ: importance of each classifier; ηd: specified threshold of fD; ηf :

specified threshold of fI ; ηa: specified threshold of training accuracy.

Output: f : the labels for the files.

Initialize: W1(i) = 1
n

for i = 1, 2, ..., n; t = 0;

Get training set X̄1 and selected feature set F1 on D using SecCLS ;

while 1 do

t+ +;

Train a base classifier using X̄t;

Get weak hypothesis ft: X̄t → {−1, 1};
Calculate error rate of ft:

εt ←
∑n
i=1Wt(i)[yi 6= ft(x̄

t
i)];

Set ζt = 1
2

ln(1−εt
εt

) ;

Update Wt+1(i) = Wt(i) exp(−ζtȳift(x̄i))∑n
i=1Wt(i) exp(−ζtȳift(x̄i))

for i = 1, 2, ..., n;

Calculate fI(F);

Calculate the training accuracy (acc) of the ensemble based on

f = sign(
∑t
i=1 ζifi(X));

if fI(F) ≥ ηf and acc ≥ ηa then

break;

end

Get X̄t+1 and Ft+1 on D using SecCLS ;

Calculate fD(Ft+1,Fj) for j = 1, 2, ..., t;

while min{fD(Ft+1,Fj) | j = 1, 2, ..., t} < ηd do

Get X̄t+1 and Ft+1 on D using SecCLS ;

Calculate fD(Ft+1,Fj) for j = 1, 2, ..., t;

end

end

return f = sign(
∑t
i=1 ζifi(X));

we first construct each individual classifier using the proposed feature selection method

SecCLS described in Section 4.4.2; then we follow the above two criteria and propose

Chapter 4. Enhancing Security of Learning-based Systems in Malware Detection 82

SecENS to aggregate a set of the constructed classifiers to generate the final output for

the detection. We present SecENS with the definitions of the above two criteria.

Feature Differentiation (denoted as fD). Given two feature sets Fa ∈ Rd and

Fb ∈ Rd, which are selected using the proposed method SecCLS respectively, the differ-

entiation between them can be defined as:

fD(Fa,Fb) = 1− J(Fa,Fb) =
|Fa ∪ Fb| − |Fa ∩ Fb|

|Fa ∪ Fb|
. (4.29)

Feature Integration (denoted as fI). The feature integration of an ensemble is the

percentage of features that are included in at least one of the base classifiers, which can

be defined as follow:

fI(F) =
|
⋃K
k=1 Fk|
d

, (4.30)

where the feature set F ∈ Rd in the ensemble is aggregated by the feature sets Fk

(k = 1, 2, ...,K) from base classifiers.

In SecENS, we employ boosting [43] during the training phase. Boosting works by

sequentially applying a base classifier to train the updated weighted samples and aggre-

gating all the outputs generated from the individual classifiers into the final prediction.

At each iteration, the misclassified samples are assigned higher weights, so that at the

next iteration, the classifier will focus more on learning those samples [57]. With the use

of boosting, our proposed ensemble learning approach SecENS builds the ensemble by

integrating both feature differentiation (fD) and feature integration (fI) to diversify the

classifiers while preserve a significant integration of whole feature space. Algorithm 7

illustrates the implementation of the proposed SecENS in detail.

4.4.4 Experimental Results and Analysis

In this section, to empirically validate our developed system SecureDroid, we present

four sets of experimental studies using real sample collections obtained from Comodo

Cloud Security Center: (1) In the first set of experiments, we evaluate the effectiveness

of SecureDroid against different kinds of adversarial attacks; (2) In the second set of

experiments, we assess the security of our proposed feature selection method SecCLS ap-

plied in the system SecureDroid ; (3) In the third set of experiments, we further compare

SecureDroid with other alternative defense methods; (4) In the last set of experiments,

we evaluate the scalability of SecureDroid based on a larger sample collection.

Experimental Setup

Chapter 4. Enhancing Security of Learning-based Systems in Malware Detection 83

Data collection The real sample collections we obtained from Comodo Cloud Security

Center contain two sets: (1) The first sample set includes 8, 046 apps (4, 729 are benign

apps, while the remaining 3, 317 apps are malware including the families of Geinimi,

GinMaster, DriodKungfu, Hongtoutou, FakePlayer, etc.). The extracted features from

this sample set is with 926 dimensions, which include 104 permissions, 204 filtered intents,

330 API calls, and 288 new-instances. (2) The second dataset has larger sample collection

containing 72, 891 Android apps (40, 448 benign apps and 32, 443 malicious apps).

Evaluation Measures To quantitatively validate the effectiveness of different meth-

ods in Android malware detection, we use the performance indices shown in Table 4.4.

Table 4.4: Performance indices of Android malware detection

Indices Description

TP Number of apps correctly classified as malicious

TN Number of apps correctly classified as benign

FP Number of apps mistakenly classified as malicious

FN Number of apps mistakenly classified as benign

Precision TP/(TP + FP)

Recall/TPR TP/(TP + FN)

ACC (TP + TN)/(TP + TN + FP + FN)

F1 2× Precision× Recall/(Precision + Recall)

Implementation of different adversarial attacks To thoroughly assess the security

and detection accuracy of our developed system SecureDroid against a wide class of

attacks, we define and implement three kinds of representative adversarial attacks [87,

152, 83] considering different skills and capabilities of attackers, which are presented as

followings.

Brute-force (BF) attack. To implement such kind of attack, for each malicious app

(i.e., x+) we would like to manipulate, we first use Jaccard similarity [59] to find its most

similar benign app (i.e., x−) from the sample set. Given these two apps, the procedure

begins with x+ and modifies features one at a time to match those of x−, until the

malicious app is classified as benign or the adversarial cost reaches to δmax.

Anonymous (AN) attack. To simulate anonymous attack in which the defenders may

have zero knowledge of what the attack is, we randomly manipulate some features for

Chapter 4. Enhancing Security of Learning-based Systems in Malware Detection 84

addition and some for elimination with the adversarial cost of δmax.

Well-crafted (WC) attack. In this adversarial setting, we use the wrapper-based

approach [152, 83] to iteratively select a feature and greedily update this feature to

incrementally increase the classification errors of the targeted learning system. Specifi-

cally, we first rank the features using methods such as information gain [59] to calculate

their contributions to the classification problem. Then we conduct bi-directional feature

selection, i.e., forward feature addition and backward feature elimination, to manipulate

the malicious apps. At each iteration, using the attack model formulated in Eq. 4.5 (in

Section 4.2.3) which encodes two competing objectives (i.e., maximizing the classifica-

tion error while minimizing the adversarial cost for optimal attacks), a feature will be

either added or eliminated.

(a) Manipulated features No. vs. δmax (b) Manipulated features No. (under 50% TPR)

Figure 4.11: Effectiveness evaluation of different attacks.

To estimate the effectiveness of different attacks, we implement the above three kinds

of attacks to access the Original-Classifier described in Section 4.1 and make its TPRs

drop from 90% to 50%. For each attack, Figure 4.11(a) shows the relations between

the numbers of manipulated features and the corresponding adversarial costs which also

consider the complexity of different feature manipulations. Among these attacks, the

WC attack is the most effective strategy, since the adversarial cost of this attack (also

the number of features manipulated by this attack) is minimum when compromising the

learning classifier into the same level, which can be seen in Figure 4.11(b).

Evaluation of SecureDroid against Different Adversarial Attacks

In this set of experiments, based on the first sample set described in Section 4.4.4, we

validate the effectiveness of SecureDroid against above mentioned adversarial attacks.

Chapter 4. Enhancing Security of Learning-based Systems in Malware Detection 85

To estimate the reasonable adversarial cost for attackers to perform the adversarial at-

tacks, based on the first sample set, we explore the average number of features that

each app possesses, which is 98. In general, 50% of the average number of features is

considered as an extreme for the adversary to perform the attack. Based on these obser-

vations, we implement the above three kinds of attacks to access both SecureDroid and

Original-Classifier with the manipulated features varying in {10%, 20%, 30%, 40%, 50%}
of the average number of features (i.e., 98), whose corresponding adversarial costs un-

der different kinds of attacks are shown in Figure 4.12.(a)–(c) (X-axis). We randomly

select 90% of the samples for training, while the remaining 10% is used for testing. We

use these attacks to taint the malicious apps in the testing set respectively, and then

assess the security of SecureDroid under different attacks with different adversarial costs

by comparison with the Original-Classifier. To implement SecureDroid, empirically we

found that the parameters of λ = 0.7 and ρ = 0.8 in Eq. 4.21 are the best, and apply

them to our problem throughout the experiments. To validate the detection performance

of SecureDroid without attacks, we also perform 10-fold cross validations for evaluation.

The experimental results are shown in Figure 4.12.

Under attacks. From Figure 4.12(a)–(c), we can see that SecureDroid can signifi-

cantly enhance security compared to the Original-Classifier, as its performance decreases

more elegantly against increasing adversarial costs, especially in the scenarios of BF at-

tack and WC attack. In the BF attack, the TPR of Original-Classifier drops to 5.99%

with adversarial cost δmax of 23.4 (i.e., modifying 50 features), while SecureDroid retains

the TPR at 70.06% with the same adversarial cost. In the WC attack, the performance

of Original-Classifier is compromised to a great extent with TPR of 13.62% under the

adversarial cost of 25.2; instead, SecureDroid can significantly bring the detection sys-

tem back up to the desired performance level: the TPRs of SecureDroid are actually

never lower than 80.00% even with increasing adversarial costs. This demonstrates that

SecureDroid which integrates our proposed methods is resilient against the most effective

attack strategy (i.e., WC attack) among the three representative adversarial attacks. In

the AN attack, which is simulated under defenders have zero knowledge of what the

attack is and by randomly injecting or removing features from the malicious apps, Se-

cureDroid also outperforms the Original-Classifier, which can retain the average TPR

at 85.16% with different adversarial costs.

Without attacks. Figure 4.12(d) shows the ROC curves of the 10-fold cross valida-

tions for Original-Classifier and SecureDroid without any attacks. From Figure 4.12(d),

Chapter 4. Enhancing Security of Learning-based Systems in Malware Detection 86

we can see that, though SecureDroid is designed to be resilient against different kinds

of adversarial attacks, its detection performance is as good as the Original-Classifier in

the absence of attacks.

The experimental results and above analysis demonstrate that SecureDroid can effec-

tively enhance security of the learning-based classifier without compromising the detec-

tion accuracy, even attackers may have different knowledge about the targeted learning

system. Based on these properties, SecureDroid can be a resilient solution in Andriod

malware detection.

(a) Under brute-force (BF) attacks (b) Under anonymous (AN) attacks

(c) Under well-crafted (WC) attacks (d) ROC curves without attacks

Figure 4.12: Security evaluations under brute-force (BF) attacks, anonymous (AN) at-

tacks, well-crafted (WC) attacks, and without attacks.

Evaluation of SecCLS Applied in SecureDroid

In this section, based on the same training and testing datasets in the previous

section, we further validate the effectiveness and significance of our proposed feature

Chapter 4. Enhancing Security of Learning-based Systems in Malware Detection 87

selection method SecCLS in building a more secure classifier. We compare SecureDroid

which applies SecCLS to select features for each base classifier with ensemble of random

feature selection (denoted as ERFS) that uses random feature selection method to con-

struct base classifiers [16, 63], in the settings of under attacks and without attacks. As

illustrated in Section 4.4.4, since well-crafted (WC) attack is the most effective attack

strategy among those three, we evaluate the SecureDroid and ERFS under such kind of

attacks. The experimental results are shown in Table 4.5.

Table 4.5: Comparison of SecureDroid with SecCLS and ERFS with random feature

selection against well-crafted attacks (UnderAtt) and without attacks (NonAtt).

NonAtt
UnderAtt [δmax (features modified)]

4.8(10) 9.0(20) 13.5(30) 19.2(40) 25.2(50)

ERFS

TPR 0.9072 0.8563 0.5045 0.4326 0.2934 0.1647

ACC 0.9230 0.9354 0.7888 0.7559 0.6981 0.6509

F1 0.9072 0.9167 0.6647 0.5953 0.4465 0.2813

SecureDroid

TPR 0.9566 0.9177 0.8323 0.8563 0.8308 0.8069

ACC 0.9634 0.9168 0.8665 0.8621 0.8019 0.8106

F1 0.9559 0.9015 0.8380 0.8375 0.7768 0.7795

From Table 4.5, we can observe that, (1) Under attacks: ERFS can somehow be

resilient against the attack (with TPR of 85.63%) when the adversarial cost is small

(δmax = 4.8, modifying 10 features). However, with the increasing adversarial costs, the

detection performance of ERFS drops drastically (e.g., its TPR drops to 16.47% when

the adversarial cost δmax is 25.2 corresponding to manipulating 50 features). In contrast,

SecureDroid using SecCLS for feature selection can significantly enhance security, as

its performance decreases more elegantly against increasing adversarial costs and its

TPRs are actually never lower than 80.00% with different adversarial costs. The reason

behind this is that SecCLS integrated in SecureDroid reduces the possibility of selecting

those features attackers tend to manipulate, i.e., to achieve same attack utility, SecCLS

will force attackers to modify larger number of features compared with random feature

selection method. (2) Without attacks: SecureDroid also performs better than ERFS

in the absence of attacks (i.e., about 4-5% higher detection accuracy). This is because,

compared with ERFS which randomly assigns equal probability for each feature being

selected, SecureDroid applying SecCLS is capable to retain majority of the features for

Chapter 4. Enhancing Security of Learning-based Systems in Malware Detection 88

each individual classifier and thus assure its detection accuracy without attacks.

Comparisons of SecureDroid with Other Defense Methods

In this set of experiments, we further examine the effectiveness of SecureDroid against

the adversarial attacks (i.e., well-crafted attack as it shows most effective) by compar-

isons with other popular defense methods, including (1) feature evenness (denoted

as Defense1) which enables the Original-Classifier to learn more evenly-distributed

feature weights using the method proposed in [78]; (2) classifier retraining (denoted

as Defense2) which follows Stackelberg game theories [19, 58, 18, 127] and models the

attack as a vector θ to modify the training data set X where the Original-Classifier is re-

trained [127, 133]; (3) classifier built on reduced feature set (denoted as Defense3)

which carefully selects a subset of features based on the generalization capability of the

Original-Classifier and its security against data manipulation applying the method pro-

posed in [152]. The experimental results are reported in Figure 4.13.

(a) TPRs under attacks (b) F1 measures under attacks

Figure 4.13: Comparisons of different defense methods.

From Figure 4.13, we can see that SecureDroid significantly outperforms the other

defense models (i.e., Defense1–3) against the well-crafted attacks. Although Defense2

(i.e., classifier retraining) performs slightly better than SecureDroid when the adversarial

costs δmax ∈ {4.8, 9.0} (i.e., modifying 10 and 20 features), the difference is not statis-

tically significant. In fact, the retrained model modifies the training data distribution

approximate to the testing space through the attack model θ. After modifying a large

number of features in the malicious apps, the model tends to produce a distribution

that is very close to that of the benign apps. In this case, the retrained model may

Chapter 4. Enhancing Security of Learning-based Systems in Malware Detection 89

not be able to differentiate benign and malicious apps accurately. From Figure 4.13, we

also observe that as the adversarial cost δmax increases, the performance of the retrained

model suffers a great drop-off. For Defense1 and Defense3, their performances (TPRs

and F1 measures in Figure 4.13) sharply degrade when adversarial cost increases. For

Defense1, the weight evenness merely exploits the information of the classifier’s feature

weights while ignoring manipulation costs of different features; for Defense3, the model

is built on a carefully selected feature subset, whose robustness could be compromised

when attackers manipulate a certain number of these features.

Scalability evaluation of SecureDroid

In this section, based on the second sample set with larger size described in Sec-

tion 4.4.4 which consists of 72, 891 apps (32, 443 malicious and 40, 448 benign), we sys-

tematically evaluate the performance of our developed system SecureDroid, including

scalability and detection effectiveness. We first evaluate the training time of SecureDroid

with different sizes of the training sample sets. Figure 4.14(a) presents the scalability of

our developed system. We can observe that as the size of the training data set increases,

the running time for our detection system is quadratic to the number of training samples.

When dealing with more data, approximation or parallel algorithms could be developed.

Figure 4.14(b) shows the detection stability of SecureDroid against the adversarial at-

tacks (i.e., well-crafted attacks) and in the absence of attacks, with different sizes of

sample sets. From the results, we can conclude that our developed system SecureDroid

can enhance security of machine learning based detection, and is feasible in practical use

for Android malware detection against adversarial attacks.

(a) Scalability evaluation of SecureDroid (b) Stability evaluation of SecureDroid

Figure 4.14: Scalability and stability evaluation of SecureDroid.

Chapter 4. Enhancing Security of Learning-based Systems in Malware Detection 90

4.5 DroidEye: Fortifying Learning Security over Feature

Space

SecureDroid has provided a significant solution to enhance the security of machine

learning-based classifier against adversarial attacks, which is independent from the skills

and capabilities of the attacks to some extent. The limitations of SecureDroid lie in

that: (1) adjustable parameters, and manipulation costs are empirically decided based

on the training data; (2) feature manipulation methods (addition or elimination) are

determined through the assumption that attackers conduct a well-crafted attack and are

able to utilize information gain or max-relevance to calculate different contributions of

the features for the classification of malicious and benign files respectively.

In this section, we want to weaken the assumption of feature manipulations (i.e.,

adjustable parameters, manipulation costs, and feature manipulation methods) and con-

struct a more resilient and flexible solution against the advanced attacks. Resting on

a set of features (i.e., permissions, filtered intents, application attributes, API calls,

new-instances, and exceptions) extracted from the Android apps, to harden the eva-

sion, we first present count featurization [81, 117] to transform the binary feature space

into continuous probabilities that encode the data distribution; to improve the system

security while not compromising the detection accuracy, we further introduce softmax

function with adversarial parameter for model construction. Accordingly, we develop

a system called DroidEye which integrates the proposed method to fortify security of

learning-based classifier against adversarial malware attacks. The system architecture of

DroidEye is shown in Figure 4.15.

Figure 4.15: An overview of system architecture of DroidEye. In the system, the collected

apps are first represented as d-dimensional binary feature vectors. To harden the evasion,

count featurization is used to transform each binary feature vector xi to a continuous

feature vector x′i; then softmax function with adversarial parameter is introduced to

find the best trade-off between security and accuracy for the classifier. For a new app,

after feature representation, it will be predicted as either benign or malicious using the

classifier.

Chapter 4. Enhancing Security of Learning-based Systems in Malware Detection 91

4.5.1 Feature Representation

In this section, we will still use Android apps as a case study to investigate the secure-

learning paradigm DroidEye. As introduced in Section 4.4.1, permissions, filtered intents,

API calls, and new-Instances can reflect the behaviors and the interaction between an

app and other apps or operation system, and thus have been extracted to represent

apps. In the manifest file and dex file, there are some more useful information that can

be gleaned: in manifest file, the components are first configured using a set of application

attributes to set default values for corresponding elements (e.g., whether allow the app

to reset user data); the dex file also utilizes exceptions to indicate conditions that an

app may want to catch. In this respect, we further extract application attributes and

exceptions as features. Accordingly, we have six sets of features (S1–S6 shown in

Table 4.6) to represent Android apps that include: permissions (S1), filtered intents

(S2), and application attributes (S3) from manifest files, API calls (S4), new-instances

(S5), and exceptions (S6) from dex files.

Table 4.6: Illustration of extracted features for Android apps in DroidEye

Features Examples

Manifest

S1: Permissions INTERNET

S2: Filtered Intents action.MAIN

S3: Application Attributes debuggable

Dex

S4: API calls containsHeader

S5: New-Instances util/HashMap

S6: Exceptions SecurityException

Let d be the number of all extracted features in S1 – S6 in dataset D. Each app can

then be represented by a binary feature vector:

xi =



0

1

0

1

0

0


→

READ PHONE STATE
}

S1

vending.INSALL REFERER
}

S2

allowClearUserData
}

S3

getSimSerialNumber
}

S4

Landroid/app/ProgressDialog
}

S5

ArithmeticException
}

S6

Chapter 4. Enhancing Security of Learning-based Systems in Malware Detection 92

where xi ∈ Rd, and xij = {0, 1} (i.e., if app i includes feature j, then xij = 1; otherwise,

xij = 0).

4.5.2 Count Featurization

By performing AdvAttack described in Section 4.3.2, attackers may autonomously

add a feature in the app (i.e., set 0 to 1 in the vector). For example, they can add per-

missions in the manifest file without influence on other existing functionalities; they can

also inject API calls in the methods which will be never called by any invoke instructions

in the dex file. Figure 4.16(a) shows an example that attackers can successfully generate

a variant (x̂ = [1, 1]) to evade the detection by injecting a feature in the original mali-

cious app (denoted as x = [0, 1]). But from the defenders’ point of view, if the binary

feature space is featurized into continuous space of each feature value being 0 ≤ x ≤ 1,

the actual gradient of the feature addition or elimination available to the attackers may

be significantly squashed. If adversarial gradients are low, crafting adversarial attacks

becomes more difficult because small feature manipulations will not induce high output

variations for the learning model [100], which thus makes the model more resilient against

the adversarial attacks. As shown in Figure 4.16(b), with the same manipulation from

x to x̂, the step towards the boundary is sufficiently shortened in the continuous feature

space, which makes the evasion fail. This intuition of gradient masking [99] inspires us to

design a secure defense with count featurization [81] to combat the adversarial attacks.

(a) Binary feature space (b) Continuous feature space

Figure 4.16: Defenses in different feature spaces.

Count Featurization Count featurization is originally motivated by the objective

of reducing training time on data that contains categorical features by feeding learning

Chapter 4. Enhancing Security of Learning-based Systems in Malware Detection 93

algorithms with a limited subset of the collected data combined with historical collections

from much larger amounts of data [81, 117]. The general idea of this technique is to

featurize the data with the conditional probability of the class given the frequency (i.e.,

the number of times) a feature value was observed with each class, instead of directly

using the value of a categorical feature [81]. Given a binary feature vector of an app

x, to perform count featurization, count tables for each feature are first aggregated on

the original dataset. The conditional probabilities are then calculated directly from the

count tables as defined below.

Definition 4.1 Count table is designed per feature in x. It maintains the number of

malicious apps for each feature value (denoted as M(xi)) and the number of benign apps

for each feature value (denoted as B(xi)); it therefore encodes each feature’s propensity

to malware and benign apps.

Definition 4.2 To count-featurize a binary feature vector x = 〈x1, x2, ..., xd〉, count

featurization projects each of its features with the conditional probabilities calculated

from the count tables, i.e., x′ = 〈P(M(x1)|x1), ...,P(M(xd)|xd)〉, where P(M(xi)|xi) =

M(xi)/(M(xi) +B(xi)) from the row matching xi in the corresponding count table.

This is a simplified version of the count featurization function, which is particularly

valuable when the features are of high cardinality [81]. Considering that each feature

only has two values (i.e., 1 and 0) in our application, this potentially is at the cost

of reducing predictive accuracy. To preserve each feature’s informative property, we

formulate a softmax function to convert conditional probabilities into more effective

action probabilities for model construction. The softmax function for feature xi is given

by

P̄(xi) =
exp(P(M(xi)|xi)/τ)∑

k∈{M(xi),B(xi)} exp(P(k|xi)/τ)
, (4.31)

where τ is an adjustment parameter that plays a critical role to actively keep the trade-off

between security and accuracy for the classifier trained on the count-featurized proba-

bility vectors. In adversarial settings, we refer to this adjustment parameter as the

adversarial parameter. The higher the adversarial parameter of softmax function is, the

more ambiguous and secure its action probabilities will be (i.e., when τ → +∞, all the

probabilities are close to 0.5), whereas the smaller τ is, the more discrete and informative

its probabilities will be (i.e., when τ → 0+, the probabilities are close to 1 or 0) [100].

Therefore, based on the softmax function with adversarial parameter in Eq. (4.31), the

Chapter 4. Enhancing Security of Learning-based Systems in Malware Detection 94

final probability vector for x can be formulated as

x′ = 〈P̄(x1), P̄(x2), ..., P̄(xd)〉. (4.32)

Figure 4.17 shows an example of an app x and its count-featurized vector x′ with τ = 0.5.

Figure 4.17: An example of count featurization.

Proposed Defense An adversary-aware learning system for Android malware detec-

tion should (1) relatively consistently predict the correct labels for the manipulated apps,

as well as (2) significantly display good accuracy on benign apps [100, 134]. Different

from the previous work towards this goal which substantially performed model regular-

ization [32], data retraining [54, 133, 83], or feature reduction [152, 82], we adapt count

featurization to improve the security of the learning model while leaving model, training

data, and feature sets unchanged. It’s recalled that the benefit of count featurization

in our application is intuitive as the probabilities ranging in [0, 1] encode additional dis-

tribution information about each class, in addition to simply providing an app’s feature

existences, permitting more secure and accurate learning. To implement the defense,

called DroidEye, we add a count featurization layer and a softmax layer with adversarial

parameter τ in front of the learning model shown in Figure 4.9, which count-featurizes

the binary feature vector x for each app into continuous vector x′. The learning model

predicts the class for a given app by training on count-featurized conditional probabil-

ities. Note that, when classifying a new app, the adversarial parameter τ should be

configured as a low value (e.g., τ = 1) to make the predictions more accurate.

Algorithm 8 illustrates the implementation of the proposed defense (denoted as

DroidEye) in detail. Since DroidEye has not changed the original model and training

data, the only impact on computational complexity is limited for count featurization,

requiring O(nd) queries, which ensures that the learning model can still take advantage

of large dataset to achieve the good performance.

Chapter 4. Enhancing Security of Learning-based Systems in Malware Detection 95

Algorithm 8: DroidEye - A secure classifier with count featurization

against adversarial Android malware attacks.

Input: Training data set D = {xi, yi}ni=1; τ : adversarial parameter

Output: f : the labels for the apps

Formulate count tables for features: M(X) and B(X);

Initialize(i = 1);

for i ≤ n do

Calculate 〈P(M(x1)|x1), ...,P(M(xd)|xd)〉;
Calculate x′i = 〈P̄(x1), P̄(x2), ..., P̄(xd)〉;
xi = x′i;

end

Use conjugate gradient descent method to solve:

argmin
X,w,b

L(y, f(X)) + β||w||+ γ||b||;

return f = sign(f(X));

Theoretical Analysis The adversary generally takes two steps to craft the adversarial

attack: (1) evaluate the sensitivity of class change to each input feature, and (2) use the

sensitivity information to select a set of manipulations among the input features [100].

In the attacks (e.g., FGSM) discussed in Section 4.5.3, the sensitivity of the model to

the feature manipulations is primarily evaluated through adversarial gradient, which

is defined as the gradient difference between the adversarial attack and the original

malware:

∇G = ∇L(f(x̂), y)−∇L(f(x), y). (4.33)

The higher adversarial gradient denotes that crafting adversarial attacks is relatively

easier as small feature manipulations will induce high output variation of the learning

model [100]. The adversarial gradient will not vanish unless ∇xL(f(x), y) becomes zero,

which is impractical [96]. But count featurization can significantly reduce ∇G to the

small feature manipulations.

Again, our defense using continuous probability vectors by count featurization bene-

fits from the additional knowledge found in the apps. The additional knowledge encodes

the relative distributions of malware and benign apps, which prevents the models from

fitting too tightly to the feature existences, and contributes to a more stable while still

accurate feature representations around training data. On the contrary, the adversary

Chapter 4. Enhancing Security of Learning-based Systems in Malware Detection 96

may only manage to add or eliminate a small number of features to craft the attacks x̂,

which may have limited impact on the actual probability distributions and data struc-

ture, that is, based on the same feature manipulations, roughly

∇L(f(x̂′), y)−∇L(f(x′), y) < ∇L(f(x̂), y)−∇L(f(x), y). (4.34)

Actually when the probabilities x′ are all smoothed to be close to 0.5, ∇Gx′ would be

significantly approaching 0. If the small feature manipulations cannot induce the evasion,

the adversary may have to manipulate a larger number of features to achieve the goal.

Considering the adversarial cost, and the app’s original functionalities, this may not be

always feasible.

Note that the count featurization is controlled by an adversarial parameter τ in

softmax, which is capable of further adjusting the trade-off between the smoothness

and accuracy of the learning model. Here, we further quantify the continuous feature

space’s smoothness to the input x by its Jacobian Matrix [100]. We use P̄i(x) to denote

the probability of feature x to be with class i (i ∈ {malware, benign}), and let G(x) =

exp(M(x)/τ)+exp(B(x)/τ). Its formulation of component (i, j) at adversarial parameter

τ is:

∂P̄i(x)

∂xj

∣∣∣∣
τ

=
∂

∂xj

(
exp(M(x)/τ)

exp(M(x)/τ) + exp(B(x)/τ)

)
=

1

G2(x)

(
∂ exp(M(x)/τ)

∂xj
G(x)− exp(M(x)/τ)

∂G(x)

∂xj

)
=

exp(M(x)/τ) exp(B(x)/τ)

τG2(x)

(
∂(exp(M(x)− exp(B(x))

∂xj

) (4.35)

Since M(x) and B(x) are fixed values for each feature, and the component values are

inversely proportional to τ , the increasing τ will essentially reduce the values of all the

components of Jacobian matrix. This analysis illustrates that count featurization resting

on high settings of τ reduces the model sensitivity to small feature manipulations. When

τ is well tuned, the model may also preserve the reasonable generalization ability. The

empirical analysis will be given in Section 4.5.3.

4.5.3 Experimental Results and Analysis

In this section, we present three sets of experimental studies to empirically validate

our developed system DroidEye. The real sample collection we obtained from Comodo

Cloud Security Center contains 14, 804 apps (8, 059 are benign apps, while the remaining

6, 745 apps are malware including the families of Geinimi, GinMaster, DriodKungfu, etc.)

Chapter 4. Enhancing Security of Learning-based Systems in Malware Detection 97

with 812 features, including 105 permissions, 68 filtered intents, 8 application attributes,

330 API calls, 259 new-instances, and 42 exceptions. We randomly select 90% of the

samples for training, while the remaining 10% is used for testing. To quantitatively

validate the effectiveness of different methods in Android malware detection, we use the

performance indices shown in Table 4.4.

To thoroughly assess the security and detection accuracy of DroidEye against a wide

class of attacks, we implement three kinds of representative adversarial attacks:

• AdvAttack, introduced in Section 4.3.2, is L0 attack model [21] that measures

C(x̂,x) using L0 distance.

• Fast Gradient Sign Method (FGSM) [54] is one of L∞ attacks [21] that measure

C(x̂,x) using L∞ distance. As an L∞ attack model, given a malicious app x, Fast

Gradient Sign Method (FGSM) [54] sets

x̂ = x + ε · sign(∇xL(f(x), y)), (4.36)

where L is the loss function used in classifier training, y is the target label for x,

and ε is a constant parameter. Intuitively, for each feature xi, FGSM uses the

gradient of the loss function to determine in which direction the feature’s value

should be increased or decreased to minimize the loss function. To apply FGSM

to the binary feature space in our application, we further define a threshold θ to

adjust x̂ so that x̂i = {0, 1}, i.e., if x̂i ≥ θ, then x̂i = 1; otherwise x̂i = 0. In this

paper, we implement FGSM to conduct L∞ attack for our further investigation.

• ANAttack, an anonymous attack, randomly manipulates some features for addi-

tion and elimination to simulate the attack in which the defenders may have zero

knowledge of what the attack is.

Evaluation of DroidEye with Different Adversarial Parameter Values

In this set of experiments, we evaluate how different settings of the adversarial pa-

rameter τ in the count featurization function may influence the performance of our

developed system DroidEye. Note that the adversarial parameter is set to 1 when count-

featurizing the testing apps. That is, τ only impacts on model training. It’s recalled that

the adversarial parameter is the key to adjust the trade-off between the smoothness and

accuracy of the learning model. Therefore, the objective here is to identify the optimal

training adversarial parameter for DroidEye resting on our data collection. Here, we

Chapter 4. Enhancing Security of Learning-based Systems in Malware Detection 98

specifically explore AdvAttack with different numbers of manipulated features to taint

the malicious apps in the testing set, and repeat the experiments by measuring the ad-

versarial parameter τ varying in {0.1, 0.5, 1, 1.5, 2, 5, 6, 7, 10}. The experimental results

are shown in Figure 4.18.

Figure 4.18: Evaluation of DroidEye with different τ under AdvAttack with number of

manipulated features varying from 10 to 50.

From Figure 4.18, we can see that: (1) when τ → 0+, the learning model is fairly

vulnerable to the adversarial attacks, since the probability values in the feature space

are extremely close to 1 or 0; increasing the parameter generally increases the TPRs

while making adversarial evasion harder; (2) there is a turning point after the TPRs

reach the highest (around τ = 5.5); as τ → 10, the TPRs suffer from a drastic drop for

all the probability values are approaching 0.5, which makes the features too ambiguous

to discriminate malware from the benigh apps. Observations validate our theoretical

analysis in Section 4.5.2. To fortify the security of the learning model while not com-

promising the detection accuracy, the optimal adversarial parameter should be linked

to both precision and recall. In Figure 4.18, we can observe F1 measures at τ = 1.5

outperform the others with the highest average value (i.e., an average of 0.8254). Hence

in the following experiments, we will formalize DroidEye based on the setting of τ = 1.5.

Evaluation of DroidEye against Different Attacks

In this section, we validate the effectiveness of DroidEye against above mentioned ad-

versarial attacks. We learn a linear SVM (denoted as Original-Classifier) as the learning-

Chapter 4. Enhancing Security of Learning-based Systems in Malware Detection 99

based classifier to facilitate our empirical analysis. To estimate the impact of feature

manipulations on both DroidEye and Original-Classifier, we implement the above three

kinds of attacks with the number of manipulated features varying in {10, 20, 30, 40, 50},
and then assess the security of DroidEye under different attacks by comparisons with

Original-Classifier. To validate the detection accuracy of DroidEye without attacks, we

also perform 10-fold cross validations for evaluation. The experimental results are shown

in Figure 4.19.

(a) Under AdvAttack (b) Under FGSM attack

(c) Under ANAattack (d) ROC curves without attacks

Figure 4.19: Security evaluations of DroidEye and Original-Classifier under AdvAattack,

FGSM attack, ANAattack, and without attacks.

Security. Figure 4.19(a)–(c) signify that DroidEye can significantly enhance secu-

rity compared to the Original-Classifier, as its performance decreases more elegantly

against increasing manipulated features, especially in the scenarios of FGSM attack and

AdvAttack. In the FGSM attack, the TPR of Original-Classifier drops to 14.94% with 50

manipulated features, while DroidEye retains the TPR at 61.37% with the same feature

manipulations. In the AdvAttack, the performance of Original-Classifier is compromised

Chapter 4. Enhancing Security of Learning-based Systems in Malware Detection 100

to a greater extent with TPR of 4.98% with 50 features manipulated; instead, DroidEye

can significantly bring the detection system back up to the desired performance level:

the average TPR of DroidEye are actually stay around 77.00%. This demonstrates that

DroidEye which devises our proposed count featurization is indeed resilient against those

representative attack strategies. In the ANAttack, which is simulated under defenders

have zero knowledge of what the attack is and by randomly injecting or removing fea-

tures from the malicious apps, DroidEye also outperforms the Original-Classifier, which

can retain the average TPR at 82.12% with different feature manipulations.

Accuracy. Figure 4.19(d) shows the ROC curves of the 10-fold cross validations for

Original-Classifier and DroidEye without any attacks, from which we can see DroidEye

is not only resilient against adversarial attacks, but its detection accuracy (an average

0.9210 TPR at 0.0525 FPR) is also as good as the Original-Classifier in the absence of

attacks.

According to the analysis of security and accuracy, DroidEye can effectively fortify

security of the learning-based classifier against different representative types of adver-

sarial attacks (e.g., L0 attack, and L∞ attack) while not compromising the detection

accuracy. Considering that DroidEye improves the security of the learning model only

through feature space while leaving model, training data and feature sets unchanged, it

can be a feasible solution for real-world Android malware detection.

Comparisons of DroidEye with Other Representative Defense Methods

In this set of experiments, similar to the experimental comparisons of SecureDroid

with other defenses in Section 4.4.4, we further examine the effectiveness of DroidEye

against the adversarial attacks by comparisons with other popular defense methods, in-

cluding (1) feature evenness (Defense1) which enables the Original-Classifier to learn

more evenly-distributed feature weights through feature reweighting [78]; (2) classifier

retraining (Defense2) which retrains the Original-Classifier using the adversarial ex-

amples [83, 133]; (3) adversarial feature selection (Defense3) which selects a subset of

features based on the generalization capability of Original-Classifier and its security

against data manipulation [152]; (4) distillation (Defense4) which applies the soft labels

for training through softmax function devised in distillation layer [100]. As illustrated in

Section 4.5.3, AdvAttack is the most effective attack strategy among those three. Thus

here we evaluate different defense methods under such kind of attacks. The experimental

results are reported in Figure 4.20.

Chapter 4. Enhancing Security of Learning-based Systems in Malware Detection 101

(a) TPRs under attacks (b) F1 measures under attacks

Figure 4.20: Comparisons of different defense methods.

From Figure 4.20, we can observe that DroidEye performs better than the other

defense models (i.e., Defense1–4) against AdvAttack. As expected, Defense1, Defense2,

and Defense3 follow the similar degrading tracks when manipulated features increase as

displayed in Section 4.4.4: for Defense1, the weight evenness yields the classifier with

more evenly-distributed feature weights, which in turn tends to cause the features to

lose the significant information for classification; for Defense2, when more feature being

manipulated in the malicious apps, the trained model more likely produces a distribution

that is very close to that of the benign apps, which may not be able to differentiate benign

and malicious apps accurately; for Defense3, the model is built on a carefully selected

feature subset, whose robustness could be compromised when attackers manipulate a

certain number of these features. Defense4 (T = 1) utilizes the same gradient masking

idea over label space to improve the robustness of the learning model, but soft labels

in training have limited impact on the linear learning classifier with only two outputs.

For DroidEye itself, small feature manipulations may not induce high output variation

for the learning model, but after modifying a large number of features, the adversarial

gradients may be significantly changed even in the continuous feature space, and thus its

performance suffers from some drop-off, which performs slightly worse than SecureDroid.

4.6 Summary

In this section, we explore the adversarial attacks corresponding to the different

scenarios, and define a general attack strategy to thoroughly assess the adversary be-

haviors. Resting on the learning-based classifier which is degraded by the adversarial

Chapter 4. Enhancing Security of Learning-based Systems in Malware Detection 102

malware attacks, we propose three secure-learning paradigms SecDefender, SecureDroid,

and DroidEye to counter these adversarial attacks. In our proposed methods, SecDe-

fender is formulated against well-crafted attack AdvAttack through investigating the

property of the feature set observed from the real sample collection, adopts classifier

retraining technique, and enhances the robustness of the classifier using security regular-

ization. SecureDroid is independent from the skills and capabilities of the attackers, and

considers different importances of the features associated with their contributions to the

classification problem and manipulation costs to the adversarial attacks; more specifi-

cally, in our developed system SecureDroid, a novel feature selection method SecCLS is

proposed to reduce the possibility to select those features attackers tend to manipulate

and thus helps to construct more secure classifier, and an ensemble learning approach

SecENS is further proposed to aggregate the individual classifiers that are constructed

using the proposed SecCLS. DroidEye thoroughly gets rid of empirical assumption for the

adjustable parameters of the learning model, and improves the system security through

feature space transformation, leaving model and training data unchanged.

Comprehensive experiments on the real sample collections from Comodo Cloud Se-

curity Center are conducted to validate the effectiveness of SecDefender, SecureDroid,

and DroidEye. The results demonstrate that SecDefender can be resilient against at-

tacks, but the limitation is relying on the skills and capacities of the attackers. For

SecureDroid, the results demonstrate that our feature selection method SecCLS is more

resilient to disrupt the feature manipulations, and SecureDroid can improve the security

against various kinds of adversarial attacks even that attackers are with different skills

and capabilities or have different knowledge about the targeted learning system, but the

cons of SecureDroid lie in empirical assumption of feature manipulations and adjustable

parameters. For DroidEye, the learning model can reduce the sensitivity to small feature

manipulations, and preserve the reasonable generalization ability against the adversarial

attacks. According to different application scenarios, these secure-learning models can

be feasible in practical use for different malware detection tasks. The research work

conducted in this chapter have been also published in the following papers:

• Lingwei Chen, Shifu Hou, Yanfang Ye �. “SecureDroid: Enhancing Security of

Machine Learning-based Detection against Adversarial Android Malware Attacks”,

ACSAC ’17 Proceedings of the 33rd Annual Computer Security Applications Con-

ference, 362–372, 2017.

• Lingwei Chen, Yanfang Ye �, Thirimachos Bourlai. “Adversarial Machine Learn-

Chapter 4. Enhancing Security of Learning-based Systems in Malware Detection 103

ing in Malware Detection: Arms Race between Evasion Attack and Defense“,

EISIC ’17 European Intelligence and Security Informatics Conference, 99–106,

2017.

• Lingwei Chen, Yanfang Ye �. “SecMD: Make Machine Learning More Secure

Against Adversarial Malware Attacks”, AI ’17 Australasian Joint Conference on

Artificial Intelligence, 76–89, 2017.

• Lingwei Chen, Shifu Hou, Yanfang Ye �, Lifei Chen. “An Adversarial Machine

Learning Model Against Android Malware Evasion Attacks”, Asia-Pacific Web

(APWeb) and Web-Age Information Management (WAIM) Joint Conference on

Web and Big Data, 43–55, 2017.

• Lingwei Chen, Shifu Hou, Yanfang Ye �, Shouhuai Xu. “DroidEye: Fortifying Se-

curity of Learning-based Classifier against Adversarial Android Malware Attacks”,

IEEE/ACM International Conference on Advances in Social Networks Analysis

and Mining (ASONAM), 782-789, 2018.

104

Chapter 5

Conclusion and Future Work

In this chapter, the summary of the contributions of this dissertation are presented.

Then some future extensions of the current work are described.

5.1 Conclusion

Intelligent Malware Detection Utilizing file-to-file relations In intelligent mal-

ware detection, machine learning techniques exploit various classification approaches

based on different feature representations to detect malicious files, which have set some

successful examples for malware detection. However, such techniques mostly utilize local

features either statically or dynamically extracted from file samples, while rarely inves-

tigating relations among file samples for malware detection. Recently, features beyond

file content are starting to be leveraged for malware detection [149, 25, 121, 72], such as

machine-to-file relations [25] and file-to-file relations (e.g., file co-existence) [149, 121],

which provide invaluable insight about the properties of file samples [149]. In this dis-

sertation, we take a further step to delve deeper into the relationship characteristics of

malware and benign files, and investigate how we can construct the file-to-file relation

graph between malware and benign file, what graph-based features, relationship charac-

teristics, and representations can be employed for malware detection, and how we can

build effective learning frameworks over graph for malware detection. The conclusion

for intelligent malware detection using file-to-file relations can be summarized as follow:

• We provide deep analysis of file-to-file relations between malware and benign files

and study how the file co-existence relation graphs can be constructed.

• Resting on the constructed file-to-file relation graphs, we design an enhanced Belief

Chapter 5. Conclusion and Future Work 105

Propagation algorithm for unknown file labeling that fine tunes various components

used in the algorithm and formulates the new message and belief read-out functions.

• We investigate several new and robust graph-based features for malware detec-

tion and reveal the characteristics of file relations, based on which we propose an

effective active learning framework (MSIA+EBP) for malware detection.

• We leverage a sequence modeling method Long Short-term Memory to learn the

representations of files in our constructed graph which captures the long-range

structural information.

To the best of our knowledge, this is the first investigation of the relationship charac-

teristics for the file-to-file relations in malware detection using social network analysis,

which yields great value and unveils a new avenue for better understanding malware’s

file relation ecosystem.

Enhancing Security of Learning-based Systems in Malware Detection As ma-

chine learning based detections become more widely deployed, the adversary incentives

for defeating them increases. That is, machine learning itself may open the possibility

for an adversary who actively manipulate the data to make the classifier produce errors.

In this dissertation, we also present and study several topics to understand how we can

define adversarial malware attacks, and how the security of a machine learning-based

malware detection system can be enhanced in different scenarios. The conclusion for

enhancing security of learning-based systems in malware detection can be summarized

as follow:

• We explore the adversarial attacks corresponding to the different scenarios, thor-

oughly assess the adversary behaviors through feature manipulations, adversarial

cost, and attack goals, and accordingly present a general attack strategy for further

investigations. Resting on the learning-based classifier which is degraded by the

adversarial malware attacks, we propose three secure-learning models SecDefender,

SecureDroid, and DroidEye to counter these attacks.

• SecDefender adopts classifier retraining technique on basis of an attack model

AdvAttack through investigating the property of the feature set observed from the

real sample collection and their different contributions, and enhances the robustness

of the classifier using the security regularization term.

Chapter 5. Conclusion and Future Work 106

• SecureDroid is independent from the skills and capabilities of the attackers, and

considers different importances of the features associated with their contributions

to the classification problem and manipulation costs to the adversarial attacks;

more specifically, SecCLS is proposed to reduce the possibility to select those

features attackers tend to manipulate and thus helps to construct more secure

classifier, while SecENS is further proposed to aggregate the individual classifiers

that are constructed using the proposed SecCLS to improve system security while

not compromising detection accuracy.

• DroidEye thoroughly gets rid of empirical assumption for the adjustable parameters

of the learning model, utilizes count featurization to transform the binary feature

space into continuous probabilities encoding the distribution in each class to reduce

the adversarial gradient of the learning model, and then introduces softmax with

adversarial parameter to find the best trade-off between security and accuracy for

the classifier.

Comprehensive experiments on the real sample collections from Comodo Cloud Secu-

rity Center are conducted to validate the effectiveness of SecDefender, SecureDroid, and

DroidEye. The results demonstrate that SecDefender can be resilient against attacks,

but the limitation is relying on the skills and capacities of the attackers. For SecureDroid,

the results demonstrate that our feature selection method SecCLS is more resilient to

disrupt the feature manipulations, and SecureDroid can improve the security against

the adversarial attacks even that attackers are with different skills and capabilities or

have different knowledge about the targeted learning system. For DroidEye, the learn-

ing model can reduce the sensitivity to small feature manipulations, and preserve the

reasonable generalization ability against the adversarial attacks. According to different

application scenarios, these secure-learning models can be feasible in practical use for

different malware detection tasks.

5.2 Future Work

In this section, we propose several future research topics based on our research goals.

These future work are summarized as follows.

Intelligent malware detection using heterogeneous file contents and relations: Both

PE files and Android apps can be characterized by a rich source of heterogeneous infor-

mation, including their either static or dynamic content features (e.g., API calls, system

Chapter 5. Conclusion and Future Work 107

calls, dynamic behaviors, network traffic, etc.), and their relatedness over different types

of relationships (e.g., co-author, co-affiliation, content sharing, temporal relations, etc.).

We have presented effective graph inference, active learning and graph representation

learning frameworks for malware detection based on the constructed file coexistence

graphs, but barely considered different potential file relations and contents. To fully

leverage such heterogeneous information, we would like to investigate how to use multi-

view graphs, heterogeneous information network, or attributed network as an abstract

representation to provide a natural way of expressing complex file relationships and se-

mantics. Accordingly, we also want to elaborate innovative methods to learn the latent

feature representations over these new graphs and networks to integrate both structural

and semantic information for malware detection.

More defensive learning models in practical use for malware detection: According to

different application scenarios, SecDefender, SecureDroid, and DroidEye all have pro-

vided significant solutions to enhance the security of machine learning-based classifier

against adversarial attacks. But there are also some cons for these learning paradigms:

SecDefender makes strong assumptions about the structure of the data and the at-

tack model; SecureDroid empirically decides the adjustable parameters and manipula-

tion costs, while feature manipulation methods (addition or elimination) are determined

through the assumption that attackers conduct a well-crafted attack and are able to uti-

lize information gain or max-relevance to calculate different contributions of the features

for the classification of malicious and benign files respectively; DroidEye suffers from the

performance drop-off when a large number of features being manipulated. Consequently,

we want to weaken the assumption and construct more resilient solutions against the ad-

vanced attacks through analyzing learning model and feature space, and limiting the

data exposure to adversarial attacks. In addition to evasion attacks, poisoning attacks

and the corresponding secure solutions is also an important task for malware detection.

Gaining insight into the malware development and dissemination ecosystem: As mal-

ware has been progressively evolving into more complex threat, it’s important to under-

stand how the major players in the malware industry fit together and how these rela-

tionships affect the ways that malware is developed, distributed and ultimately used in

attacks. The more we know about the activities of malware authors, malware distribu-

tors and malware affiliates at a large scale, the better we can prepare ourselves to defend

against these attacks. We’d like to gain insight into the malware development and dis-

semination ecosystem to endeavor to gain a holistic and in-depth understanding about

Chapter 5. Conclusion and Future Work 108

the scope and magnitude malicious display, the features of their infrastructures, and the

behaviors of malicious parties, and develop infrastructure-aware technologies to detect

these malicious activities. To reveal these insights will help us decompose the relation-

ships between cyber-criminals in malware industry, and accordingly facilitate securing

the cyberspace.

109

List of Publications

1. Yanfang Ye �, Shifu Hou, Lingwei Chen, Xin Li, Liang Zhao, Shouhuai Xu, Jiabin

Wang, Qi Xiong. “ICSD: An Automatic System for Insecure Code Snippet Detection in

Stack Overflow over Heterogeneous Information Network”, ACSAC ’18 Proceedings of

the 34rd Annual Computer Security Applications Conference, 542–552, 2018. (20.1%

acceptance rate)

2. Yanfang Ye �, Shifu Hou, Lingwei Chen, Jingwei Lei, Wenqiang Wan, Jiabin

Wang, Qi Xiong, Fudong Shao. “AiDroid: When Heterogeneous Information Network

Marries Deep Neural Network for Real-time Android Malware Detection”, arXiv preprint

arXiv:1811.01027, 2018.

3. Lingwei Chen, Shifu Hou, Yanfang Ye �, Shouhuai Xu. “DroidEye: Fortifying

Security of Learning-based Classifier against Adversarial Android Malware Attacks”,

IEEE/ACM International Conference on Advances in Social Networks Analysis and Min-

ing (ASONAM), 782-789, 2018.

4. Yanfang Ye �, Lingwei Chen, Shifu Hou, William Hardy, Xin Li. “DeepAM: A

Heterogeneous Deep Learning Framework for Intelligent Malware Detection”, Knowledge

and Information Systems (KAIS), Vol.54(2), 265–285, 2018. (2019 Impact factor:

2.247)

5. Lingwei Chen, Shifu Hou, Yanfang Ye �. “SecureDroid: Enhancing Security

of Machine Learning-based Detection against Adversarial Android Malware Attacks”,

ACSAC ’17 Proceedings of the 33rd Annual Computer Security Applications Conference,

362–372, 2017. (19.7% acceptance rate)

6. Lingwei Chen, Yanfang Ye �, Thirimachos Bourlai. “Adversarial Machine Learn-

ing in Malware Detection: Arms Race between Evasion Attack and Defense”, EISIC

’17 European Intelligence and Security Informatics Conference, 99–106, 2017. (IEEE

EISIC 2017 Best Paper Award)

7. Lingwei Chen, Yanfang Ye �. “SecMD: Make Machine Learning More Secure

List of Publications 110

Against Adversarial Malware Attacks”, AI ’17 Australasian Joint Conference on Artificial

Intelligence, 76–89, 2017.

8. Lingwei Chen, Shifu Hou, Yanfang Ye �, Lifei Chen. “An Adversarial Machine

Learning Model Against Android Malware Evasion Attacks”, Asia-Pacific Web (APWeb)

and Web-Age Information Management (WAIM) Joint Conference on Web and Big Data,

43–55, 2017.

9. Shifu Hou, Lingwei Chen, Yanfang Ye �, Lifei Chen. “Deep Analysis and Utiliza-

tion of Malware’s Social Relation Network for Its Detection”, Asia-Pacific Web (APWeb)

and Web-Age Information Management (WAIM) Joint Conference on Web and Big Data,

31–42, 2017.

10. Shifu Hou, Aaron Saas, Lingwei Chen, Yanfang Ye �, Thirimachos Bourlai.

“Deep Neural Networks for Automatic Android Malware Detection”, ASONAM ’17

Proceedings of the 2017 IEEE/ACM International Conference on Advances in Social

Networks Analysis and Mining, 803–810, 2017.

11. William Hardy, Lingwei Chen, Shifu Hou, Yanfang Ye �, Xin Li. “DL4MD: A

Deep Learning Framework for Intelligent Malware Detection”, DMIN ’16 International

Conference on Data Mining, 61-67, 2016.

12. Abu HM Rubaiyat, Tanjin T Toma, Masoumeh Kalantari-Khandani, Syed A

Rahman, Lingwei Chen, Yanfang Ye �, Christopher S Pan. “Automatic Detection of

Helmet Uses for Construction Safety”, WIW ’16 IEEE/WIC/ACM International Con-

ference on Web Intelligence Workshops, 135–142, 2016.

13. Lingwei Chen, William Hardy, Yanfang Ye �, Tao Li. “Analyzing File-to-File

Relation Network in Malware Detection”, WISE ’15 International Conference on Web

Information Systems Engineering, 415–430, 2015.

14. Lingwei Chen, Tao Li, Melih Abdulhayoglu, Yanfang Ye �. “Intelligent Malware

Detection Based on File Relation Graphs”, ICSC ’15 IEEE International Conference on

Sematic Computing, 85–92, 2015.

111

Bibliography

[1] M. S. Alam and S. T. Vuong, “Random forest classification for detecting android
malware,” in GreenCom-iThings-CPSCom, 2013, pp. 663–669.

[2] B. Anderson, D. Quist, J. Neil, C. Storlie, and T. Lane, “Graph-based malware
detection using dynamic analysis,” Journal in computer Virology, vol. 7, no. 4, pp.
247–258, 2011.

[3] Android, “Application fundamentals,” in https://developer.android.com/
guide/components/fundamentals.html, 2017.

[4] AV-TEST, “Malware statistics,” in https://www.av-test.org/en/statistics/mal-
ware/, 11 2018.

[5] D. Babic, D. J. Klein, I. Lukovits, S. Nikolic, and N. Trinajstic, “Resistance-
distance matrix: A computational algorithm and its application,” International
Journal of Quantum Chemistry, vol. 90, no. 1, pp. 166–176, 2002.

[6] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by jointly
learning to align and translate,” arXiv preprint arXiv:1409.0473, 2014.

[7] M. Bailey, J. Oberheide, J. Andersen, Z. M. Mao, F. Jahanian, and J. Nazario, “Au-
tomated classification and analysis of internet malware,” in International Work-
shop on Recent Advances in Intrusion Detection, 2007, pp. 178–197.

[8] ——, “Automated classification and analysis of internet malware,” in International
Workshop on Recent Advances in Intrusion Detection. Springer, 2007, pp. 178–
197.

[9] U. Baldangombo, N. Jambaljav, and S.-J. Horng, “A static malware detection
system using data mining methods,” CoRR Journal, vol. 1308, no. 2831, 2013.

[10] M. Barreno, B. Nelson, A. D. Joseph, and J. D. Tygar, “The security of machine
learning,” Machine Learning, vol. 81, no. 2, pp. 121–148, 2010.

[11] M. Barreno, B. Nelson, R. Sears, A. D. Joseph, and J. D. Tygar, “Can machine
learning be secure?” in Proceedings of the 2006 ACM Symposium on Information,
computer and communications security, 2006, pp. 16–25.

[12] U. Bayer, A. Moser, C. Kruegel, and E. Kirda, “Dynamic analysis of malicious
code,” Journal in Computer Virology, vol. 2, no. 1, pp. 67–77, 2006.

Bibliography 112

[13] B. Biggio, I. Corona, D. Maiorca, B. Nelson, N. Srndic, P. Laskov, G. Giacinto,
and F. Roli, “Evasion attacks against machine learning at test time,” in Joint
European conference on machine learning and knowledge discovery in databases
(ECML PKDD), 2013, pp. 387–402.

[14] B. Biggio, G. Fumera, and F. Roli, “Security evaluation of pattern classifiers under
attack,” IEEE Transactions on Knowledge and Data Engineering, vol. 26, no. 4,
pp. 984–996, 2014.

[15] B. Biggio, F. Roli, and G. Fumera, “Design of robust classifiers for adversarial
environments,” in Proceedings of IEEE International Conference on SMC, 2011,
pp. 977–982.

[16] B. Biggio, G. Fumera, and F. Roli, “Multiple classifier systems for robust classifier
design in adversarial environments,” International Journal of Machine Learning
and Cybernetics, vol. 1, no. 1, pp. 27–41, 2010.

[17] S. M. Bridges, R. B. Vaughn et al., “Fuzzy data mining and genetic algorithms ap-
plied to intrusion detection,” in Proceedings of 12th Annual Canadian Information
Technology Security Symposium, 2000, pp. 109–122.

[18] M. Bruckner, C. Kanzow, and T. Scheffer, “Static prediction games for adversarial
learning problems,” Journal of Machine Learning Research, vol. 13, no. 1, pp.
2617–2654, 2012.

[19] M. Bruckner and T. Scheffer, “Stackelberg games for adversarial prediction prob-
lems,” in KDD ’11 Proceedings of the 17th ACM SIGKDD international conference
on Knowledge discovery and data mining, 2011, pp. 547–555.

[20] C. Cade, “Understanding heuristic-based scanning vs. sandboxing,” in https://
www.opswat.com/blog/understanding-heuristic-based-scanning-vs-sandboxing,
2015.

[21] N. Carlini and D. Wagner, “Towards evaluating the robustness of neural networks,”
in 2017 IEEE Symposium on Security and Privacy (SP). IEEE, 2017, pp. 39–57.

[22] N. Cesa-Bianchi, C. Gentile, F. Vitale, and G. Zappella, “Active learning on trees
and graphs,” in COLT, 2013, pp. 320—-332.

[23] S. Cesare, Y. Xiang, and W. Zhou, “Control flow-based malware variant detection,”
IEEE Transactions on Dependable and Secure Computing, vol. 11, no. 4, pp. 307–
317, 2014.

[24] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey,” ACM
computing surveys (CSUR), vol. 41, no. 3, p. 15, 2009.

[25] D. H. Chau, C. Nachenberg, J. Wilhelm, A. Wright, and C. Faloutsos, “Polonium:
Tera-scale graph mining for malware detection,” in Proceedings of the 2011 SIAM
International Conference on Data Mining, 2011, pp. 131–142.

[26] K. Chen, P. Zhu, and Y. Xiong, “Mining spam accounts with user influence,” in In-
ternational Conference on Information Science and Cloud Computing Companion
(ISCC-C), 2013, pp. 167–173.

Bibliography 113

[27] L. Chen, W. Hardy, Y. Ye, and T. Li, “Analyzing file-to-file relation network in
malware detection,” in WISE ’15 International Conference on Web Information
Systems Engineering, 2015, pp. 415–430.

[28] L. Chen, S. Hou, and Y. Ye, “Securedroid: Enhancing security of machine learning-
based detection against adversarial android malware attacks,” in ACSAC ’17 Pro-
ceedings of the 33rd Annual Computer Security Applications Conference, 2017, pp.
362–372.

[29] L. Chen, S. Hou, Y. Ye, and L. Chen, “An adversarial machine learning model
against android malware evasion attacks,” in Asia-Pacific Web (APWeb) and Web-
Age Information Management (WAIM) Joint Conference on Web and Big Data,
2017, pp. 43–55.

[30] L. Chen, S. Hou, Y. Ye, and S. Xu, “Droideye: Fortifying security of learning-
based classifier against adversarial android malware attacks,” in IEEE/ACM
International Conference on Advances in Social Networks Analysis and Mining
(ASONAM). IEEE, 2018, pp. 782–789.

[31] L. Chen, T. Li, M. Abdulhayoglu, and Y. Ye, “Intelligent malware detection based
on file relation graphs,” in ICSC ’15 IEEE International Conference on Sematic
Computing, 2015, pp. 85–92.

[32] L. Chen and Y. Ye, “Secmd: Make machine learning more secure against ad-
versarial malware attacks,” in AI ’17 Australasian Joint Conference on Artificial
Intelligence, 2017, pp. 76–89.

[33] L. Chen, Y. Ye, and T. Bourlai, “Adversarial machine learning in malware de-
tection: Arms race between evasion attack and defense,” in EISIC ’17 European
Intelligence and Security Informatics Conference, 2017, pp. 99–106.

[34] T. Chen and J.-M. Robert, Statistical Methods in Computer Security. CRC Press,
2004.

[35] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk,
and Y. Bengio, “Learning phrase representations using rnn encoder-decoder for
statistical machine translation,” arXiv preprint arXiv:1406.1078, 2014.

[36] M. Christodorescu, S. Jha, S. A. Seshia, D. Song, and R. E. Bryant, “Semantics-
aware malware detection,” in Security and Privacy, 2005 IEEE Symposium on.
IEEE, 2005, pp. 32–46.

[37] Cybersecurity-Ventures, “Cybercrime damages are predicted to cost the
world $6 trillion annually by 2021,” in https://www.prnewswire.com/news-
releases/cybercrime-damages-are-predicted-to-cost-the-world-6-trillion-annually-
by-2021-300540158.html, 10 2017.

[38] N. Dalvi, P. Domingos, Mausam, S. Sanghai, and D. Verma, “Adversarial classifica-
tion,” in KDD ’04 Proceedings of the tenth ACM SIGKDD international conference
on Knowledge discovery and data mining, 2004, pp. 99–108.

Bibliography 114

[39] S. Das, Y. Liu, W. Zhang, and M. Chandramohan, “Semantics-based online mal-
ware detection: Towards efficient real-time protection against malware,” IEEE
Transactions on Information Forensics and Security, vol. 11, no. 2, pp. 289–302,
2016.

[40] D. Debarr, H. Sun, and H. Wechsler, “Adversarial spam detection using the ran-
domized hough transform-support vector machine,” in ICMLA ’13 12th interna-
tional conference on Machine Learning and Applications (ICMLA), 2013, pp. 299–
304.

[41] A. Demontis, M. Melis, B. Biggio, D. Maiorca, D. Arp, K. Rieck, I. Corona, G. Gi-
acinto, and F. Roli, “Yes, machine learning can be more secure! a case study on
android malware detection,” IEEE Transactions on Dependable and Secure Com-
puting, 2017.

[42] R. Diestel, Graph Theory, Vol. 173, 4th Edition. Heidelberg: Springer, 2010.

[43] T. G. Dietterich, “Ensemble methods in machine learning,” Multiple Classifier
Systems, vol. 1, pp. 1–15, 2000.

[44] R. A. Dunne, A Statistical Approach to Neural Networks for Pattern Recognition.
Wiley-Interscience, 1st edition, 2007.

[45] M. Egele, T. Scholte, E. Kirda, and C. Kruegel, “A survey on automated dynamic
malware analysis techniques and tools,” ACM Computing Surveys (CSUR), vol. 44,
no. 2, pp. 6:1–6:42, 2008.

[46] ——, “A survey on automated dynamic malware-analysis techniques and tools,”
ACM Computing Surveys (CSUR), vol. 44, no. 2, p. 6, 2012.

[47] Y. Fan, S. Hou, Y. Zhang, Y. Ye, and M. Abdulhayoglu, “Gotcha-sly malware!:
Scorpion a metagraph2vec based malware detection system,” in Proceedings of the
24th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining. ACM, 2018, pp. 253–262.

[48] E. Filiol, “Malware pattern scanning schemes secure against blackbox analysis,”
Journal in Computer Virology, vol. 2, no. 1, pp. 35–50, 2006.

[49] E. Filiol, G. Jacob, and M. Liard, “Evaluation methodology and theoretical model
for antiviral behavioural detection strategies,” Journal in Computer Virology,
vol. 3, no. 1, pp. 23–37, 2007.

[50] I. Firdausi, A. Erwin, A. S. Nugroho et al., “Analysis of machine learning tech-
niques used in behavior-based malware detection,” in Advances in Computing,
Control and Telecommunication Technologies (ACT), 2010 Second International
Conference on. IEEE, 2010, pp. 201–203.

[51] E. Gandotra, D. Bansal, and S. Sofat, “Malware analysis and classification: A
survey,” Journal of Information Security, vol. 5, no. 02, p. 56, 2014.

[52] GDATA, “History of malware,” in https://www.gdata-software.com/seccurity-
labs/information/history-of-malware, 2005.

Bibliography 115

[53] A. Globerson and S. Roweis, “Nightmare at test time: Robust learning by feature
deletion,” in ICML ’06 Proceedings of the 23rd international conference on Machine
learning, 2006, pp. 353–360.

[54] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing adversarial
examples,” in ICLR ’15, 2015.

[55] A. Graves, “Generating sequences with recurrent neural networks,” arXiv preprint
arXiv:1308.0850, 2013.

[56] R. A. Grimes, Malicious mobile code: Virus protection for Windows. ” O’Reilly
Media, Inc.”, 2001.

[57] H. Guo, Y. Li, Y. Li, X. Liu, and J. Li, “Bpso-adaboost-knn ensemble learning
algorithm for multi-class imbalanced data classification,” Engineering Applications
of Artificial Intelligence, vol. 49, pp. 176–193, 2016.

[58] N. Haghtalab, F. Fang, T. H. Nguyen, A. Sinha, A. D. Procaccia, and M. Tambe,
“Three strategies to success: Learning adversary models in security games,” in
IJCAI’16, 2016, pp. 308–314.

[59] J. Han, M. Kamber, and J. Pei, Data Mining: Concepts and Techniques 3rd Edi-
tion. Waltham, MA, USA: Morgan Kaufmann, 2011.

[60] W. Hardy, L. Chen, S. Hou, Y. Ye, and X. Li, “Dl4md: A deep learning framework
for intelligent malware detection,” in DMIN ’16 International Conference on Data
Mining, 2016, pp. 61–67.

[61] V. Harrison and J. Pagliery, “Nearly 1 million new malware threats released every
day,” in http://money.cnn.com/2015/04/14/technology/security/
cyber-attack-hacks-security, 2015.

[62] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of data with
neural networks,” Science, vol. 313, no. 5786, pp. 504–507, 2006.

[63] T. K. Ho, “The random subspace method for constructing decision forests,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 20, no. 8, pp.
832–844, 1998.

[64] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computa-
tion, vol. 9, no. 8, pp. 1735–1780, 1997.

[65] S. Hou, L. Chen, E. Tas, I. Demihovskiy, and Y. Ye, “Cluster-oriented ensemble
classifiers for malware detection,” in IEEE International Conference on Sematic
Computing (IEEE ICSC), 2015, pp. 189–196.

[66] S. Hou, L. Chen, Y. Ye, and L. Chen, “Deep analysis and utilization of malware’s
social relation network for its detection,” in Asia-Pacific Web (APWeb) and Web-
Age Information Management (WAIM) Joint Conference on Web and Big Data,
2017, pp. 31–42.

Bibliography 116

[67] S. Hou, A. Saas, L. Chen, and Y. Ye, “Deep4maldroid: A deep learning framework
for android malware detection based on linux kernel system call graphs,” in WIW
’16 IEEE/WIC/ACM International Conference on Web Intelligence Workshops
(WIW), 2016.

[68] S. Hou, A. Saas, Y. Ye, and L. Chen, “Droiddelver: An android malware detec-
tion system using deep belief network based on api call blocks,” in WAIM ’16
International Conference on Web-Age Information Management, 2016, pp. 54–66.

[69] S. Hou, Y. Ye, Y. Song, and M. Abdulhayoglu, “Hindroid: An intelligent an-
droid malware detection system based on structured heterogeneous information
network,” in KDD ’17 Proceedings of the 23rd ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, 2017, pp. 1507–1515.

[70] N. Idika and A. P. Mathur, “A survey of malware detection techniques,” Purdue
University, vol. 48, 2007.

[71] W. Jung, S. Kim, and S. Choi, “Deep learning for zero-day flash malware detec-
tion,” in 36th IEEE Symposium on Security and Privacy, 2015.

[72] N. Karampatziakis, J. W. Stokes, A. Thomas, and M. Marinescu, “Using file rela-
tionships in malware classification,” in DIMVA 2012: Detection of Intrusions and
Malware, and Vulnerability Assessment, 2012, pp. 1–20.

[73] Kaspersky, “The great bank robbery,” in http://www.kaspersky.com/about/news/
virus/2015/Carbanak-cybergang-steals-1-bn-USD-from-100-financial-institutions-
worldwide, 2015.

[74] KasperskyLab, “4 in 5 malware attacks cause problems for users and 1 in 3
result in money loss,” in http://www.kaspersky.com/about/news/virus/2015/4-in-
5-Malware-Attacks-Cause-Problems-for-Users-and-1-in-3-Result-in-Money-Loss,
2015.

[75] J. Kephart and W. Arnold, “Automatic extraction of computer virus signatures,”
in Proceedings of the 4th Virus Bulletin International Conference, 1994, pp. 178–
184.

[76] Kingsoft, “2015-2016 internet security research report in china,” in
http://cn.cmcm.com/news/media/2016-01-14/60.html, 2016.

[77] C. Kolbitsch, E. Kirda, and C. Kruegel, “The power of procrastination: detection
and mitigation of execution-stalling malicious code,” in CCS ’11, 2011, pp. 285–
296.

[78] A. Kolcz and C. H. Teo, “Feature weighting for improved classifier robustness,” in
CEAS ’09 Sixth conference on email and anti-spam, 2009.

[79] J. Z. Kolter and M. A. Maloof, “Learning to detect malicious executables in the
wild,” in KDD ’04, 2004, pp. 470–478.

Bibliography 117

[80] D. Kong and G. Yan, “Discriminant malware distance learning on structural infor-
mation for automated malware classification,” in KDD ’13 Proceedings of the 19th
ACM SIGKDD international conference on Knowledge discovery and data mining,
2013, pp. 1357–1365.

[81] M. Lecuyer, R. Spahn, R. Geambasu, T.-K. Huang, and S. Sen, “Pyramid: En-
hancing selectivity in big data protection with count featurization,” in Security
and Privacy (SP), 2017 IEEE Symposium on. IEEE, 2017, pp. 78–95.

[82] B. Li and Y. Vorobeychik, “Feature cross-substitution in adversarial classification,”
in NIPS’14, 2014, pp. 2087–2095.

[83] B. Li, Y. Vorobeychik, and X. Chen, “A general retraining framework for scalable
adversarial classification,” in NIPS 2016 Workshop on Adversarial Training, 2016.

[84] Y. Li, R. Ma, and R. Jiao, “A hybrid malicious code detection method based on
deep learning,” International Journal of Security and Its Applications, vol. 9, no. 5,
pp. 205–216, 2015.

[85] H.-J. Liao, C.-H. R. Lin, Y.-C. Lin, and K.-Y. Tung, “Intrusion detection system:
A comprehensive review,” Journal of Network and Computer Applications, vol. 36,
no. 1, pp. 16–24, 2013.

[86] J. Liu, Z. He, L. Wei, and Y. Huang, “Content to node: Self-translation network
embedding,” in Proceedings of the 24th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining. ACM, 2018, pp. 1794–1802.

[87] D. Lowd and C. Meek, “Adversarial learning,” in KDD ’05, 2005, pp. 641–647.

[88] M. Ludwig and D. Noah, The giant black book of computer viruses. American
Eagle Books, 2017.

[89] J. Mar, I.-F. Hsiao, Y. C. Yeh, C.-C. Kuo, and S.-R. Wu, “Intelligent intrusion
detection and robust null defense for wireless networks,” International Journal of
Innovative Computing Information and Control, vol. 8, no. 5, pp. 3341–59, 2012.

[90] M. M. Masud, T. M. Al-Khateeb, K. W. Hamlen, J. Gao, L. Khan, J. Han, and
B. Thuraisingham, “Cloud-based malware detection for evolving data streams,”
ACM TMIS, vol. 2, no. 3, pp. 16:1–16:27, 2011.

[91] C. Modi, D. Patel, B. Borisaniya, H. Patel, A. Patel, and M. Rajarajan, “A sur-
vey of intrusion detection techniques in cloud,” Journal of network and computer
applications, vol. 36, no. 1, pp. 42–57, 2013.

[92] R. Moskovitch, C. Feher, and Y. Elovici, “A chronological evaluation of unknown
malcode detection,” LNCS: Intelligence and Security Informatics, vol. 5477, no.
2009, pp. 112–117, 2009.

[93] I. Muslea, S. Minton, and C. A. Knoblock, “Active learning with multiple views,”
Journal of Artificial Intelligence Research, vol. 27, pp. 203–233, 2006.

Bibliography 118

[94] H. T. Nguyen and A. Smeulders, “Active learning using pre-clustering,” in Pro-
ceedings of the twenty-first international conference on Machine learning. ACM,
2004, p. 79.

[95] N. Nissim, R. Moskovitch, L. Rokach, and Y. Elovici, “Novel active learning meth-
ods for enhanced pc malware detection in windows os,” Expert Systems with Ap-
plications, vol. 41, no. 13, pp. 5843–5857, 2014.

[96] A. Nøkland, “Improving back-propagation by adding an adversarial gradient,”
arXiv preprint arXiv:1510.04189, 2015.

[97] N. Noorshams and M. J. Wainwright, “Belief propagation for continuous state
spaces: Stochastic message-passing with quantitative guarantees,” Journal of Ma-
chine Learning Research, vol. 14, no. 1, pp. 2799–2835, 2013.

[98] J. Ouellette, A. Pfeffer, and A. Lakhotia, “Countering malware evolution using
cloud-based learning,” in 8th International Conference on Malicious and Unwanted
Software (MALWARE), 2013, pp. 85–94.

[99] N. Papernot, P. McDaniel, A. Sinha, and M. Wellman, “Towards the science of
security and privacy in machine learning,” arXiv preprint arXiv:1611.03814, 2016.

[100] N. Papernot, P. McDaniel, X. Wu, S. Jha, and A. Swami, “Distillation as a defense
to adversarial perturbations against deep neural networks,” in IEEE Symposium
on Security and Privacy (SP), 2016, pp. 582–597.

[101] Y. Park, Q. Zhang, D. Reeves, and V. Mulukutla, “Antibot: Clustering common
semantic patterns for bot detection,” in COMPSAC ’10, 2010, pp. 262–272.

[102] J. Pearl, Reverend Bayes on inference engines: A distributed hierarchical approach.
Cognitive Systems Laboratory, School of Engineering and Applied Science, Uni-
versity of California, Los Angeles, 1982.

[103] H. Peng, F. Long, and C. Ding, “Feature selection based on mutual information:
Criteria of max-dependency, max-relevance, and min-redundancy,” IEEE TPAMI,
vol. 27, no. 8, pp. 1226–1238, 2005.

[104] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning of social rep-
resentations,” in Proceedings of the 20th ACM SIGKDD international conference
on Knowledge discovery and data mining. ACM, 2014, pp. 701–710.

[105] B. Rankin, “A brief history of malware — its evolution and impact,”
in https://www.lastline.com/blog/history-of-malware-its-evolution-and-impact/, 4
2018.

[106] J. Raymond, “Malware definition and their removal methods,” in https://antivirus.
comodo.com/blog/comodo-news/malware-definition-and-their-removal/, 7 2018.

[107] R. Rehmani, G. C. Hazarika, and G. Chetia, “Malware threats and mitigation
strategies: A survey,” Journal of Theoretical and Applied Information Technology,
vol. 29, no. 2, pp. 69–73, 2011.

Bibliography 119

[108] F. Roli, B. Biggio, and G. Fumera, “Pattern recognition systems under attack,” in
CIARP ’13, 2013, pp. 1–8.

[109] I. A. Saeed, A. Selamat, and A. M. Abuagoub, “A survey on malware and mal-
ware detection systems,” International Journal of Computer Applications, vol. 67,
no. 16, 2013.

[110] I. Santos, J. Nieves, and P. G. Bringas, “Semi-supervised learning for unknown
malware detection,” in International Symposium on Distributed Computing and
Artificial Intelligence, 2011, pp. 415–422.

[111] I. Santos, J. Devesa, F. Brezo, J. Nieves, and P. G. Bringas, “Opem: A static-
dynamic approach for machine-learning-based malware detection,” in International
Joint Conference CISIS’12-ICEUTE 12-SOCO 12 Special Sessions. Springer,
2013, pp. 271–280.

[112] I. Santos, C. Laorden, and P. G. Bringas, “Collective classification for unknown
malware detection,” in Security and Cryptography (SECRYPT), 2011 Proceedings
of the International Conference on. IEEE, 2011, pp. 251–256.

[113] A. Saracino, D. Sgandurra, G. Dini, and F. Martinelli, “Madam: Effective and
efficient behavior-based android malware detection and prevention,” IEEE Trans-
actions on Dependable and Secure Computing, vol. 15, no. 1, pp. 83–97, 2018.

[114] M. G. Schultz, E. Eskin, E. Zadok, and S. J. Stolfo, “Data mining methods for
detection of new malicious executables,” in SP ’01, 2001, p. 38.

[115] J. Scott, Social Networks Analysis: A Hand Book, 2nd Edition. SAGE Publica-
tions Ltd, 2000.

[116] S. Shah, H. Jani, S. Shetty, and K. Bhowmick, “Virus detection using artificial
neural networks,” International Journal of Computer Applications, vol. 84, no. 5,
pp. 17–23, 2013.

[117] A. Shrivastava, A. C. Konig, and M. Bilenko, “Time adaptive sketches (ada-
sketches) for summarizing data streams,” in Proceedings of the 2016 International
Conference on Management of Data. ACM, 2016, pp. 1417–1432.

[118] F. Stroud, “Cryptomining malware,” in https://www.webopedia.com/TERM/C/
cryptomining-malware.html, 2018.

[119] A. H. Sung, J. Xu, P. Chavez, and S. Mukkamala, “Static analyzer of vicious
executables (save),” in ACSAC ’04, 2004, pp. 326–334.

[120] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning with neural
networks,” in Advances in neural information processing systems, 2014, pp. 3104–
3112.

[121] A. Tamersoy, K. Roundy, and D. H. Chau, “Guilt by association: large scale
malware detection by mining file-relation graphs,” in KDD ’14 Proceedings of the
20th ACM SIGKDD international conference on Knowledge discovery and data
mining, 2014, pp. 1524–1533.

Bibliography 120

[122] R. Thomas and M. Ligh, “Method and system for automatic detection and analysis
of malware,” Jan. 26 2016, uS Patent 9,245,114.

[123] A. Vasudevan and R. Yerraballi, “Spike: engineering malware analysis tools us-
ing unobtrusive binary-instrumentation,” in Proceedings of the 29th Australasian
Computer Science Conference-Volume 48. Australian Computer Society, Inc.,
2006, pp. 311–320.

[124] D. Venugopal and G. Hu, “Efficient signature based malware detection on mobile
devices,” Mobile Information Systems, vol. 4, no. 1, pp. 33–49, 2008.

[125] J. Von Neumann, “Theory and organization of complicated automata,” Burks
(1966), pp. 29–87, 1949.

[126] N. Šrndic and P. Laskov, “Practical evasion of a learning-based classifier: A case
study,” in SP ’14, 2014, pp. 197–211.

[127] F. Wang, W. Liu, and S. Chawla, “On sparse feature attacks in adversarial learn-
ing,” in ICDM ’14, 2014, pp. 1013–1018.

[128] T.-Y. Wang, S.-J. Horng, M.-Y. Su, C.-H. Wu, P.-C. Wang, and W.-Z. Su, “A
surveillance spyware detection system based on data mining methods,” in Evo-
lutionary Computation, 2006. CEC 2006. IEEE Congress on. IEEE, 2006, pp.
3236–3241.

[129] Wikipedia, “Timeline of computer viruses and worms,” in https://en.wikipedia.org/
wiki/Timeline of computer viruses and worms, 11 2018.

[130] R. J. Williams and D. Zipser, “Gradient-based learning algorithms for recurrent
networks and their computational complexity,” Backpropagation: Theory, archi-
tectures, and applications, vol. 1, pp. 433–486, 1995.

[131] D.-J. Wu, C.-H. Mao, T.-E. Wei, H.-M. Lee, and K.-P. Wu, “Droidmat: Android
malware detection through manifest and api calls tracing,” in ASIAJCIS ’12 Pro-
ceedings of the 2012 Seventh Asia Joint Conference on Information Security, 2012.

[132] W.-C. Wu and S.-H. Hung, “Droiddolphin: a dynamic android malware detection
framework using big data and machine learning,” in RACS ’14 Proceedings of the
2014 Conference on Research in Adaptive and Convergent Systems, 2014.

[133] Y. Wu, T. Ren, and L. Mu, “Importance reweighting using adversarial-
collaborative training,” in NIPS 2016 Workshop, 2016.

[134] W. Xu, D. Evans, and Y. Qi, “Feature squeezing: Detecting adversarial examples
in deep neural networks,” arXiv preprint arXiv:1704.01155, 2017.

[135] W. Xu, Y. Qi, and D. Evans, “Automatically evading classifiers a case study on
pdf malware classifiers,” in NDSS ’16, 2016.

[136] C. Yang, R. Harkreader, J. Zhang, S. Shin, and G. Gu, “Analyzing spammer’s
social networks for fun and profit: A case study of cyber criminal ecosystem on
twitter,” in Proceedings of the 21st international conference on World Wide Web
(WWW ’12), 2012, pp. 71–80.

Bibliography 121

[137] C. Yang, Z. Xu, G. Gu, V. Yegneswaran, and P. Porras, “Droidminer: Automated
mining and characterization of fine-grained malicious behaviors in android appli-
cations,” ESORICS European Symposium on Research in Computer Security, vol.
8712, pp. 163–182, 2014.

[138] P. Yang and P. Zhao, “A min-max optimization framework for online graph clas-
sification,” in CIKM ’15, 2015, pp. 643–652.

[139] Y. Ye, D. Wang, T. Li, and D. Ye, “Imds: Intelligent malware detection system,”
in KDD ’07, 2007, pp. 1043–1047.

[140] Y. Ye, D. Wang, T. Li, D. Ye, and Q. Jiang, “An intelligent pe-malware detection
system based on association mining,” Journal in Computer Virology, vol. 4, no. 4,
pp. 323–334, 2008.

[141] Y. Ye, L. Chen, D. Wang, T. Li, Q. Jiang, and M. Zhao, “Sbmds: an interpretable
string based malware detection system using svm ensemble with bagging,” Journal
in Computer Virology, vol. 5, pp. 283–293, 2009.

[142] Y. Ye, L. Chen, S. Hou, W. Hardy, and X. Li, “Deepam: a heterogeneous deep
learning framework for intelligent malware detection,” Knowledge and Information
Systems, vol. 54, no. 2, pp. 265–285, 2018.

[143] Y. Ye, S. Hou, L. Chen, J. Lei, W. Wan, J. Wang, Q. Xiong, and F. Shao, “Aidroid:
When heterogeneous information network marries deep neural network for real-
time android malware detection,” arXiv preprint arXiv:1811.01027, 2018.

[144] Y. Ye, T. Li, D. Adjeroh, and S. S. Iyengar, “A survey on malware detection using
data mining techniques,” ACM Computing Surveys (CSUR), vol. 50, no. 3, p. 41,
2017.

[145] Y. Ye, T. Li, Y. Chen, and Q. Jiang, “Automatic malware categorization using
cluster ensemble,” in Proceedings of the 16th ACM SIGKDD international confer-
ence on Knowledge discovery and data mining. ACM, 2010, pp. 95–104.

[146] Y. Ye, T. Li, K. Huang, Q. Jiang, and Y. Chen, “Hierarchical associative classifier
(hac) for malware detection from the large and imbalanced gray list,” Journal of
Intelligent Information Systems, vol. 35, no. 1, pp. 1–20, 2010.

[147] Y. Ye, T. Li, Q. Jiang, Z. Han, and L. Wan, “Intelligent file scoring system for
malware detection from the gray list,” in KDD ’09, 2009, pp. 1385–1394.

[148] Y. Ye, T. Li, Q. Jiang, and Y. Wang, “Cimds: adapting postprocessing techniques
of associative classification for malware detection,” IEEE Transactions on Systems,
Man, and Cybernetics, Part C (Applications and Reviews), vol. 40, no. 3, pp. 298–
307, 2010.

[149] Y. Ye, T. Li, S. Zhu, W. Zhuang, E. Tas, U. Gupta, and M. Abdulhayoglu, “Com-
bining file content and file relations for cloud based malware detection,” in KDD
’11 Proceedings of the 17th ACM SIGKDD international conference on Knowledge
discovery and data mining, 2011, pp. 222–230.

Bibliography 122

[150] J. S. Yedidia, W. T. Freeman, and Y. Weiss, “Understanding belief propagation
and its generalizations,” in Exploring artificial intelligence in the new millennium,
2003, pp. 239–269.

[151] Z. Yuan, Y. Lu, Z. Wang, and Y. Xue, “Droid-sec: deep learning in android
malware detection,” in SIGCOMM ’14 Proceedings of the 2014 ACM conference
on SIGCOMM, 2014, pp. 371–372.

[152] F. Zhang, P. P. K. Chan, B. Biggio, D. S. Yeung, and F. Roli, “Adversarial fea-
ture selection against evasion attacks,” IEEE Transactions on Cybernetics, vol. 46,
no. 3, pp. 766–777, 2015.

[153] M. Zhao, F. Ge, T. Zhang, and Z. Yuan, “Antimaldroid: An efficient svm-based
malware detection framework for android,” in ICICA ’11 International Conference
on Information Computing and Applications, 2011, pp. 158–166.

	Intelligent Malware Detection Using File-to-file Relations and Enhancing its Security against Adversarial Attacks
	Recommended Citation

	tmp.1556118717.pdf.6DbcX

