5,019 research outputs found

    Social Bots: Human-Like by Means of Human Control?

    Get PDF
    Social bots are currently regarded an influential but also somewhat mysterious factor in public discourse and opinion making. They are considered to be capable of massively distributing propaganda in social and online media and their application is even suspected to be partly responsible for recent election results. Astonishingly, the term `Social Bot' is not well defined and different scientific disciplines use divergent definitions. This work starts with a balanced definition attempt, before providing an overview of how social bots actually work (taking the example of Twitter) and what their current technical limitations are. Despite recent research progress in Deep Learning and Big Data, there are many activities bots cannot handle well. We then discuss how bot capabilities can be extended and controlled by integrating humans into the process and reason that this is currently the most promising way to go in order to realize effective interactions with other humans.Comment: 36 pages, 13 figure

    Application of information theory and statistical learning to anomaly detection

    Get PDF
    In today\u27s highly networked world, computer intrusions and other attacks area constant threat. The detection of such attacks, especially attacks that are new or previously unknown, is important to secure networks and computers. A major focus of current research efforts in this area is on anomaly detection.;In this dissertation, we explore applications of information theory and statistical learning to anomaly detection. Specifically, we look at two difficult detection problems in network and system security, (1) detecting covert channels, and (2) determining if a user is a human or bot. We link both of these problems to entropy, a measure of randomness information content, or complexity, a concept that is central to information theory. The behavior of bots is low in entropy when tasks are rigidly repeated or high in entropy when behavior is pseudo-random. In contrast, human behavior is complex and medium in entropy. Similarly, covert channels either create regularity, resulting in low entropy, or encode extra information, resulting in high entropy. Meanwhile, legitimate traffic is characterized by complex interdependencies and moderate entropy. In addition, we utilize statistical learning algorithms, Bayesian learning, neural networks, and maximum likelihood estimation, in both modeling and detecting of covert channels and bots.;Our results using entropy and statistical learning techniques are excellent. By using entropy to detect covert channels, we detected three different covert timing channels that were not detected by previous detection methods. Then, using entropy and Bayesian learning to detect chat bots, we detected 100% of chat bots with a false positive rate of only 0.05% in over 1400 hours of chat traces. Lastly, using neural networks and the idea of human observational proofs to detect game bots, we detected 99.8% of game bots with no false positives in 95 hours of traces. Our work shows that a combination of entropy measures and statistical learning algorithms is a powerful and highly effective tool for anomaly detection

    Slither.io Deep Learning Bot

    Get PDF
    Recent advances in deep learning and computer vision techniques and algorithms have inspired me to create a model application. The game environment used is Slither.io. The system has no previous understanding of the game and is able to learn its surroundings through feature detection and deep learning. Contrary to other agents, my bot is able to dynamically learn and react to its environment. It operates extremely well in early game, with little enemy encounters. It has difficulty transitioning to middle and late game due to limited training time. I will continue to develop this algorithm

    Trends in Detection and Characterization of Propaganda Bots

    Get PDF
    Since the revelations of interference in the 2016 US Presidential elections, the UK’s Brexit referendum, the Catalan independence vote in 2017 and numerous other major political discussions by malicious online actors and propaganda bots, there has been increasing interest in understanding how to detect and characterize such threats.We focus on some of the recent research in algorithms for detection of propaganda botnets and metrics by which their impact can be measure

    BotArtist: Twitter bot detection Machine Learning model based on Twitter suspension

    Full text link
    Twitter as one of the most popular social networks, offers a means for communication and online discourse, which unfortunately has been the target of bots and fake accounts, leading to the manipulation and spreading of false information. Towards this end, we gather a challenging, multilingual dataset of social discourse on Twitter, originating from 9M users regarding the recent Russo-Ukrainian war, in order to detect the bot accounts and the conversation involving them. We collect the ground truth for our dataset through the Twitter API suspended accounts collection, containing approximately 343K of bot accounts and 8M of normal users. Additionally, we use a dataset provided by Botometer-V3 with 1,777 Varol, 483 German accounts, and 1,321 US accounts. Besides the publicly available datasets, we also manage to collect 2 independent datasets around popular discussion topics of the 2022 energy crisis and the 2022 conspiracy discussions. Both of the datasets were labeled according to the Twitter suspension mechanism. We build a novel ML model for bot detection using the state-of-the-art XGBoost model. We combine the model with a high volume of labeled tweets according to the Twitter suspension mechanism ground truth. This requires a limited set of profile features allowing labeling of the dataset in different time periods from the collection, as it is independent of the Twitter API. In comparison with Botometer our methodology achieves an average 11% higher ROC-AUC score over two real-case scenario datasets
    corecore