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Abstract 
Recent   advances   in   deep   learning   and   computer   vision   techniques   and   algorithms 
have   inspired   me   to   create   a   model   application.   The   game   environment   used   is 
Slither.io.   The   system   has   no   previous   understanding   of   the   game   and   is   able   to 
learn   its   surroundings   through   feature   detection   and   deep   learning.   Contrary   to   other 
agents,   my   bot   is   able   to   dynamically   learn   and   react   to   its   environment.   It   operates 
extremely   well   in   early   game,   with   little   enemy   encounters.   It   has   difficulty 
transitioning   to   middle   and   late   game   due   to   limited   training   time.   I   will   continue   to 
develop   this   algorithm. 

 
 
1 Introduction 
 
Since   the   dawn   of   artificial   intelligence   at   Dartmouth   College   in   1956,   games,   and   more   recently 
video   games,   have   greatly   aided   the   development   and   testing   of   intelligent   algorithms.   There   is   no 
question   that   without   the   help   of   games,   the   science   would   have   never   taken   off.   First   it   was 
tic-tac-toe   and   checkers   that   machines   dominated   and   many   games   were   deemed   to   be   ‘solved’. 
These   early   programs   were   all   similar   in   the   fact   that   they   all   followed   an   instruction   set,   no 
algorithm   could   play   any   other   game.   These   basic   games   graduated   into   more   complex   ones   with 
victories   or   world   champions   in   games   like   chess   by   IBM   and   now   the   game   of   go   by   Google. 
However,   these   programs   benefit   from   advanced   search   techniques   that   help   with   the   problem   of 
dimensionality.   But   since   the   last   year   some   incredible   breakthroughs   have   been   made   by 
researchers   in   the   field.   Most   notably   google   deepmind   created   a   bot   to   play   numerous   Atari   games 
at   better   than   human   expert   level.   This   achievement,   as   impressive   as   it   is,   derives   its   success   from 
one   main   re-invention,   the   neural   network   (specifically   deep   recurrent   neural   nets).   This,   along 
with   many   other   advances   in   computing   power   and   open   sourced   learning   frameworks,   has 
undoubtedly   moved   the   science   forward   and   now   promises   widespread   application.   While   industry 
leaders   are   moving   fast   to   implement   deep   learning   in   their   businesses,   whether   it   transportation, 
trading,   or   medicine,   we   built   another   video   game   bot.  
 
The   game   Slither.IO   celebrated   its   first   birthday   on   March   25   this   year.   With   that   it   also   celebrates   a 
year   of   highly   positive   reviews.   It’s   popularity   was   only   increased   as   it   became   publicised   by   many 
famous   streamers   and   YouTubers.   It   rode   the   curtails   of   a   previous   popular   game   called   agar.io,   but 
the   overall   complexity   of   slither   is   much   lower.   The   game   is   basic,   a   player   uses   the   mouse   to 
control   a   snake   that   is   trying   to   stay   alive   in   a   large   circular   2D   map   littered   with   food   and   other 
snakes.   Anyone   can   play   it   online   at    http://Slither.io    or   on   any   device   as   a   mobile   app.   (Though 
playing   on   a   computer   is   recommended. 
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The   program   can   be   broken   down   into   two   major   parts,   feature   detection   and   machine   learning. 
They   will   both   have   their   own   sections   with   figures   and   code   explanation   below.   One   thing   to 
keep   in   mind:   Nobody   has   ever   done   this   before   for   this   game   and   there   are   significant   differences 
between   more   simple   games,   specifically   the   fact   that   it   is   mouse   controlled,   that   created   many 
challenges.  
 
2 Background 
 
As   mentioned   before   there   is   no   deep   learning   slither   bot   out   there   to   reference,   but   there   are   other 
algorithms   designed   for   different   games.   Two   major   papers   were   used   as   reference   and   inspiration 
for   this   project.   The   first:   Playing   Atari   with   Deep   Reinforcement   Learning   by   seven   researchers   at 
Google   DeepMind   is   the   pivotal   paper   showcasing   the   power   of   Deep   Q   learning   on   a   number   of 
different   Atari   games.   [1]   This   groundbreaking   work   shotput   the   neural   net   approach   onto   the 
scene   of   reinforcement   learning.   Previous   to   this   paper   most   advances   in   machine   learning   were 
with   supervised   and   unsupervised   learning,   leaving   little   market   share   to   reinforcement.   But   that   all 
changed   once   DeepMind   showed   how   good   a   single   algorithm   was   at   learning   to   play   so   many 
Atari   games   at   a   superhuman   level.   The   second:   Deep   Reinforcement   Learning:   Pong   from   Pixels 
by   Andrej   Karpathy   is   an   exploration   into   policy   gradients   and   the   classic   game   of   pong.   [2]   As 
mentioned   before,   pong   was   one   of   the   first   games   to   be   attacked   and   beaten   by   earlier   artificial 
intelligence   programmers.   Andrej’s   approach   is   a   novel   one   utilizing   discrete   game   states   and   a 
markov   decision   process.   This   blog   post/paper   is   a   follow   up   to   the   Google   paper   showcasing   the 
tradeoffs   between   deep   Q   learning   and   policy   gradients.   The   reason   this   pong   from   pixels   paper 
was   particularly   useful   was   because   it   utilized   the   same   environment   toolset,   OpenAI   Gym. 
 
3 System 
 
The   system   is   split   up   into   front   end   and   back   end   processing.   This   project   focused   on   the 
development   of   the   front   end   which   is   also   comprised   of   two   main   parts,   feature 
detection/environmental   labeling   and   machine   learning.   The   back   end   is   handled   with   the 
framework   provided   by   OpenAI.   The   framework   consists   of   two   major   components,   Gym   and 
Universe.   Below   I   discuss   how   everything   connects   and   operates. 
 
3.1 OpenAI   Back   End 
 
In   April   2016   OpenAI,   a   nonprofit   research   institute,   released   an   open   beta   for   Gym.   Gym   was   the 
foundation   for   Universe,   which   was   released   eight   months   later   in   December.   Gym   was   built   to   be 
a   training   ground   for   user   programmed   artificially   intelligent   agents.   Some   games   were   built   into 
the   framework   for   basic   reinforcement   learning.   Universe   is   what   blew   the   whole   operation   wide 
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open.   It   added   thousands   of   games   to   the   programmer’s   accessibility   and   sped   up   the   main 
workings   of   Gym   to   account   for   more   training.   What   these   frameworks   provide   the   AI 
programmer   is   a   capability   to   train   a   bot   remotely.   Instead   of   always   hosting   the   game   on   a   local 
machine,   it   adds   a   layer   of   abstraction   to   allow   the   program   to   not   worry   about   the   game   and   focus 
on   training.   How   it   does   this   is   not   so   simple,   it’s   a   mesh   of   server   side   game   processing   and 
websockets.   The   bot   sets   up   a   TCP   VNC   connection   to   receive   the   pixel   data   and   send   the   action 
data   and   an   auxiliary   reward   connection   to   receive   reward   and   latency   information.   This   allows   the 
program   to   interact   with   the   server   with   two   simple   function   calls:    make    and    step .   Make   creates   the 
necessary   processes   both   locally   and   on   the   game   server   (which   can   be   remote   or   local).   The   step 
function   takes   as   input   an   action   for   the   bot   to   take,   which   can   be   arrow   keys   or   mouse   inputs.   It 
returns   a   tuple   consisting   of   the   current   game   pixels,   the   reward   received   since   the   last   step,   a 
boolean   to   check   if   the   bot   has   died,   and   latency   information.  
 

env   =   gym.make('internet.SlitherIO-v0') 
observation_n,   reward_n,   done_n,   info   =   env.step(action_n) 

 
Universe   has   many   unique   environments   for   the   bot   to   train   on,   such   as   flash   games,   atari   games, 
web   games   like   slither,   and   even   browser   tasks   like   booking   flights.   Since   Slither.io   provided   the 
most   dynamic   yet   simple   environment   it   was   chosen   for   base   training. 
 
3.2 OpenCV   Feature   Detection   and   Labeling 
 
Due   to   lack   of   extreme   computing   resources   simple   mimicry   of   other   deep   learning   researchers 
won’t   be   possible.   Instead   of   training   the   model   just   purely   on   the   raw   pixel   data   it   was   necessary 
to   add   some   feature   detection   into   the   equation.   This   mechanism   would   take   the   raw   pixel   input 
and   execute   computer   vision   algorithms   to   produce   a   feature   dictionary.   In   order   to   differentiate   the 
in-game   elements   a   myriad   of   blurs,   thresholds,   color   conversions   and   high   level   OpenCV 
functions   were   used.   Since   the   pixel   array   is   set   at   a   native   1024x786   resolution   and   the   actual 
game   only   takes   up   a   portion   of   the   screen   it   was   necessary   to   carve   out   only   the   game   pixels,   the 
game   screen   was   a   round   500x300   pixels.      After   carving,   the   image   was   blurred   to   curb   any   noise 
from   the   connection   and   round   the   surfaces.   The   BGR   image   was   transformed   to   grayscale   and 
thresholded   to   eliminate   the   background   hexagons   as   seen   in    Figure   1 .   In   order   for   the   game   to   not 
misunderstand   the   map   and   score   located   at   the   bottom   of   the   screen   for   something   interactable 
they   are   masked   to   black.   A   duplicate   image   is   created   to   apply   a   higher   threshold   catching   only 
very   bright   objects   such   as   dead   snake   mass. 
 
After   the   vision   processing   is   done   there   are   three   images,   two   for   OpenCV   operations   and   one   for 
user   output   to   check   if   the   functions   found   any   mass/snakes.   To   recognize   all   elements   on   the 
screen   three   helper   functions   were   created   that   flow   in   this   order:   findMass,   findSnakes, 
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findDeadMass.   Each   is   pretty   self   explainable,   but   has   a   unique   attribute   and   OpenCV   function 
call   from   them.   To   track   the   findings   all   observations   are   stored   in   a   vision   dictionary   with   keys 
representing   pixel   location   and   values   representing   what   the   item   found   was   (‘S’   for   snake,   ‘Y’   for 
your   snake,   and   ‘M’   for   mass).      An   important   note   is   that   the   dictionary   keys   are   floor   divided   by   5 
for   the   x   and   y.   This   was   done   to   simplify   processing   for   the   neural   network   since   a   matrix   of 
100x60   is   far   more   manageable   than   500x300.   So,   if   a   mass   was   located   at   (323,   107)   it   would   be 
marked   as   such   in   the   vision   dict   at   (64,   21).   This   vision   dictionary   would   be   fed   to   the   neural 
network   as   pseudo-labeled   features.  
 
FindMass   is   the   simplest   function,   taking   in   a   grayscaled   image   and   calling   cv2.HoughCircles   to 
return   a   list   of   wholly   circular   objections   on   screen.   The   only   filled   circular   objects   being   the 
regular   mass   that   is   scattered   throughout   the   server.   From   there   the   algorithm   loops   through   each   of 
them   and   label   them   in   the   vision   dictionary   and   draw   a   green   circle   around   them   for   the   user   to 
see. 
 
FindSnakes   is   more   complicated   than   findMass   taking   in   a   black   and   white   image   and   calling 
cv2.findContours   (findContours   only   takes   images   that   are   black   background   and   white 
foreground   whereas   HoughCircles   takes   grayscaled).   FindContours   can   be   executed   to   return   all 
points   where   there   is   an   edge   on   an   object,   or   it   can   return   a   simplified   list   of   points.   For   speed 
purposes,   the   simple   approximation   was   ran.   This   returned   a   list   of   observed   objects.   The   program 
calculates   the   area   of   the   contour   with   a   built-in   function   called   cv2.contourArea   and   only   loops 
through   objects   with   an   area   of   170   or   higher.   (This   was   tested   as   the   minimum   size   of   a   snake 
with   mass   of   10)      All   points   in   the   contour   are   labeled   as   ‘S’   in   the   vision   dictionary   which   means 
enemy   snake.   To   differentiate   your   snake   from   the   enemies   the   moments   of   each   contour   were 
taken   using   cv2.moments.   As   the   algorithm   loops   through   snake   contours   it   calculates   the   distance 
of   the   center   of   mass   of   each   snake   from   the   center   of   the   screen.   The   snake   with   the   closest   center 
of   mass   is   yours   and   re-labeled   in   the   vision   dictionary   as   ‘Y’. 
 
FindDeadMass   also   calls   cv2.findContours   but   on   the   higher   threshold   image   to   return   only   the 
contours   that   are   mass   left   behind   by   a   dead   snake   (which   add   much   more   mass   to   your   total   if 
retrieved).   Each   contour   is   marked   as   a   ‘M’   in   the   vision   dictionary   if   the   area   is   less   than   130.   This 
is   implemented   because   it   sometimes   would   pick   up   the   heads   of   very   large   snakes   as   dead   mass. 
So   through   testing   130   was   chosen   as   the   max   size   the   algorithm   would   consider   the   object   as 
mass.  
 
Another   way   of   looking   at   these   labels   are   (+)   for   mass,   (0)   for   you,   and   (-)   for   snakes. 
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Figure   1:   All   Stages   of   Element   Attribution   and   Labeling   (Zoom   In) 
Top:   Grayscaled,   Black   and   White,   High   Threshold 

Middle:   Mass   Labeled,   Snakes   Labeled,   Dead   Mass   Re-Labeled 
Bottom:   Initial   Image,   Key,   All   Labels 

 
Overall,   the   correctness   of   the   feature   labeling   is   somewhere   between   85-90%   for   all   objects.   There 
are   only   two   unfortunate   negatives.   The   first   is   that   boosting   snakes   are   recognized   slightly   larger 
than   they   actually   are   because   a   light   aura   is   emitted   that   throws   off   the   findContours.   This   issue   is 
not   as   big   of   a   deal,   but   does   through   off   the   accuracy.   The   second   is   in   the   fact   that   dead   mass   is 
initially   labeled   as   a   snake   then   re-written   as   mass.   This   wouldn’t   be   a   problem   if   it   was   using   the 
same   image   to   derive   the   contours   from   then   re-writing   over   the   vision   dictionary   like   what   was 
done   to   find   the   bot’s   snake.   However,   the   function   takes   a   higher   thresholded   image   which   has   its 
area   decreased   slightly.   This   means   that   when   down   sampling   and   floor   dividing   some   points   may 
not   be   correctly   overwritten.   This   is   difficult   to   measure   since   it   doesn’t   happen   much. 
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3.3 Neural   Network 
 
Building   neural   network   architectures,   much   like   computer   architecture   in   the   early   days   of 
computing,   is   a   tough   job.   There   are   many   tools   to   aide   the   process,   but   it   really   comes   down   to 
what   the   model   will   be   built   for.   With   previous   deep   reinforcement   learning   algorithms   taking 
advantage   of   two   major   techniques,   and   with   little   time   to   implement   and   test   the   model   myself,   it 
was   necessary   to   modify   their   approaches.   Between   policy   gradients   and   Deep-Q   learning,   the   one 
that   was   better   applicable   to   slither   was   Deep-Q.   Where   policy   gradients   do   well   for   games   with   a 
small   number   of   actions,   Deep-Q   is   capable   of   choosing   the   best   action   among   far   more   choices. 
This   highlights   the   biggest   difference   between   my   game   and   other   applications,   options.   Atari 
Pong   and   Breakout   have   only   about   5-10   actions   mostly   moving   the   paddle   in   a   linear   fashion 
(up/down   or   left/right).   Slither,   uses   the   mouse,   thus,   having   thousands   of   potential   moves   one   per 
pixel.   Since   I   shrunk   the   game   down   to   60x100,   it   has   to   make   a   decision   to   mouse   over   one   5x5 
box   and   decide   whether   to   boost.      That’s   6,002   possible   actions   since   inaction   is   not   an   option. 
(The   two   are   from   activate   and   deactivate   boost)   With   all   that   in   mind,   and   little   formal   neural 
network   education   other   than   reading   these   papers   and   watching/reading   hours   worth   of 
informational   content,   the   architecture   was   pieced   together. 
 
Taking   after   Google   Deepmind,   the   architecture   would   be   as   follows   in    Figure   2.    There   are   three 
main   components   to   the   learning   network   each   labeled   with   a   different   color.  
 

 
Figure   2:   Deep   Learning   System   Flow 
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The   main   game   loop   is   in   black   starting   at   Observation   on   the   left.   The   algorithm   does   image 
preprocessing   talked   about   in   the   previous   section.   It   then   consults   the   neural   network   to   create 
Q-Values   from   the   frame.   This   is   a   list   of   probabilities   of   gaining   a   reward   for   each   square   it   could 
move   the   mouse   to.   Instead   of   always   picking   just   the   max   from   that   list   it   factors   in   randomness 
with   the   Epsilon   Greedy   algorithm.   What   epsilon   greedy   does   is   choose   the   max   Q-value   or   a 
random   point   based   on   a   small   percentage.   It’s   pseudo   random   because   I   already   have   labeled   data 
to   pull   a   value   from.   So   if   the   network   doesn’t   know   what   to   chose   if   defaults   to   my   original   naive 
computer   vision   based   decisions.   Once   an   action   is   selected   it   updates   the   game.   An   important   note 
to   make   again   is   that   this   is   processing   30   frames   a   second,   each   time   updating   the   neural   network. 
 
Highlighted   in   red   is   the   replay   memory   network   training.   The   agent   needs   to   recognize   awards 
occurring   from   a   string   of   events   rather   than   just   one   frame.   With   a   little   bit   of   python   code   we   can 
save   the   top   q   values   from   previous   states.   Then   we   can   update   all   of   the   values   based   on   the   next 
step   and   so   forth.   The   frame   is   fed   into   the   neural   network   as   training   data   and   it   updates   the 
model.   After   the   model   is   updated   it   then   creates   Q-values   for   the   current   state. 
 
In   blue   is   the   learning   model   being   upgraded   on   the   final   step   of   the   replay   memory   network.   This 
is   where   the   model   gets   tuned   to   the   game.   The   model   is   6,000   inputs   nodes,   four   hidden   layers   of 
1024   fully   connected   nodes   and   6,002   end   nodes   representing   the   possible   actions.   The   input   to   the 
algorithm   is   both   the   downsampled   game   pixels   and   the   labeled   game   data.   All   labels   are   added   to 
pixels   in   the   area.   This   provides   helpful   distinction   for   the   neural   network   to   learn   from.  
 
The   model   I   used   was   a   generic   model   previously   built   for   atari   breakout   by   Hvaas-Labs   in   a   string 
of   tutorials   they   have   on   github   for   machine   learning.   [3]   Similar   to   this   project’s   implementation 
the   tutorial   adds   helpful   labels   to   the   raw   data.   The   model   is   still   in   training   at   the   point   of   writing, 
but   preliminary   testing   runs   show   progress   similar   to   the   atari   tutorial.   There   is   still   more   fine   tuning 
necessary   to   achieve   better   performance.  
 
4 Evaluation 
 
There   are   a   pair   of   Slither.io   bots   on   the   internet   written   in   JavaScript   originally   written   by   Ermiya 
Eskandary.   [4]   These   bots   are   given   all   environmental   elements   through   the   browser,   and   they 
make   defensive   and   offensive   decisions   based   on   a   radius   around   your   snakes   head.   I   wanted   to 
build   a   system   that   could   reach   an   average   above   their   averages.   Without   the   neural   net 
implemented   my   bot   would   average   250   mass   and   the   other   bot   would   average   around   300.   With 
the   maxes   around   1900   and   3300   respectively.   This   is   not   too   surprising   since   without   the   neural 
net   my   bot   wouldn’t   take   into   effect   the   negative   consequences   of   navigating   into   a   snake. 
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With   the   neural   net   implemented,   the   agent   slows   at   making   decisions,   due   to   computational 
expense.   Training   the   network   takes   many   many   hours   until   any   positive   return   is   seen.   With   the 
help   of   the   labels   the   network   knows   what   is   and   isn’t   a   good   selection   and   with   the   help   of   the 
replay   memory   past   moves   can   be   associated   with   a   reward.   Overall,   for   the   algorithm   to   truly 
exceed   human   levels   of   play   the   learning   algorithm   would   need   to   play   the   game   for   much   longer. 
Initial   training   on   10   hours   shows   some   improvement. 
 
5 Future   Work 
 
Without   a   doubt   I   will   continue   to   build   out   this   project   more.   The   automatic   labeler   is   near   perfect, 
so   not   much   work   is   needed   on   that.   I   do,   however,   want   to   keep   on   designing   and   altering   the 
parameters   for   the   machine   learning   portion   of   the   system.   The   approach   taken   to   accomplish   the 
project   was   different   than   the   way   both   the   papers   approached   the   problem,   which   proved   to   be 
challenging   and   indeterminate.   Over   the   next   summer   I   will   modify   the   machine   learning   model 
provided   by   Hvass   to   better   fit   my   data   and   environment.   The   idea   of   building   programs   that   can 
solve   many   games   with   little   code   alteration   is   enticing.   After   this   game,   I   will   try   altering   the 
algorithm   to   fit   other   games   as   well. 
 
6 Conclusion 
 
Overall   the   project   was   a   lot   of   fun   to   work   on.   I   thoroughly   enjoyed   taking   the   time   to   understand 
the   underlying   system   that   OpenAI   is   offering,   and   I   think   that   if   more   people   knew   about   it   many 
advances   would   be   made   in   AI.   Their   mission   is   to   create   an   agent   that   can   learn   to   play   them   all, 
my   mission   was   to   create   an   agent   to   play   one   very   well.   I   imagine   that   if   there   are   good   features 
labeled   on   all   the   games   the   problem   would   be   much   easier.   Completing   this   senior   project   has 
provided   me   with   more   experience   with   Python,   OpenCV   and   Tensorflow.   The   system   operated 
fairly   well,   maybe   not   top   ten   of   the   leaderboard   every   game,   but   even   the   best   human   players 
can’t   accomplish   this   feat.   With   further   work   and   tinkering   I   believe   this   bot   could   beat   expert 
human   averages. 
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