

Slither.io Deep Learning Bot

James Caudill

Computer Engineering
California Polytechnic State University, San Luis Obispo

Senior Project Report

Advisor: Dr. Foaad Khosmood
12 June 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@CalPoly

https://core.ac.uk/display/84280128?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract
Recent advances in deep learning and computer vision techniques and algorithms
have inspired me to create a model application. The game environment used is
Slither.io. The system has no previous understanding of the game and is able to
learn its surroundings through feature detection and deep learning. Contrary to other
agents, my bot is able to dynamically learn and react to its environment. It operates
extremely well in early game, with little enemy encounters. It has difficulty
transitioning to middle and late game due to limited training time. I will continue to
develop this algorithm.

1 Introduction

Since the dawn of artificial intelligence at Dartmouth College in 1956, games, and more recently
video games, have greatly aided the development and testing of intelligent algorithms. There is no
question that without the help of games, the science would have never taken off. First it was
tic-tac-toe and checkers that machines dominated and many games were deemed to be ‘solved’.
These early programs were all similar in the fact that they all followed an instruction set, no
algorithm could play any other game. These basic games graduated into more complex ones with
victories or world champions in games like chess by IBM and now the game of go by Google.
However, these programs benefit from advanced search techniques that help with the problem of
dimensionality. But since the last year some incredible breakthroughs have been made by
researchers in the field. Most notably google deepmind created a bot to play numerous Atari games
at better than human expert level. This achievement, as impressive as it is, derives its success from
one main re-invention, the neural network (specifically deep recurrent neural nets). This, along
with many other advances in computing power and open sourced learning frameworks, has
undoubtedly moved the science forward and now promises widespread application. While industry
leaders are moving fast to implement deep learning in their businesses, whether it transportation,
trading, or medicine, we built another video game bot.

The game Slither.IO celebrated its first birthday on March 25 this year. With that it also celebrates a
year of highly positive reviews. It’s popularity was only increased as it became publicised by many
famous streamers and YouTubers. It rode the curtails of a previous popular game called agar.io, but
the overall complexity of slither is much lower. The game is basic, a player uses the mouse to
control a snake that is trying to stay alive in a large circular 2D map littered with food and other
snakes. Anyone can play it online at http://Slither.io or on any device as a mobile app. (Though
playing on a computer is recommended.

1

http://slither.io/

The program can be broken down into two major parts, feature detection and machine learning.
They will both have their own sections with figures and code explanation below. One thing to
keep in mind: Nobody has ever done this before for this game and there are significant differences
between more simple games, specifically the fact that it is mouse controlled, that created many
challenges.

2 Background

As mentioned before there is no deep learning slither bot out there to reference, but there are other
algorithms designed for different games. Two major papers were used as reference and inspiration
for this project. The first: Playing Atari with Deep Reinforcement Learning by seven researchers at
Google DeepMind is the pivotal paper showcasing the power of Deep Q learning on a number of
different Atari games. [1] This groundbreaking work shotput the neural net approach onto the
scene of reinforcement learning. Previous to this paper most advances in machine learning were
with supervised and unsupervised learning, leaving little market share to reinforcement. But that all
changed once DeepMind showed how good a single algorithm was at learning to play so many
Atari games at a superhuman level. The second: Deep Reinforcement Learning: Pong from Pixels
by Andrej Karpathy is an exploration into policy gradients and the classic game of pong. [2] As
mentioned before, pong was one of the first games to be attacked and beaten by earlier artificial
intelligence programmers. Andrej’s approach is a novel one utilizing discrete game states and a
markov decision process. This blog post/paper is a follow up to the Google paper showcasing the
tradeoffs between deep Q learning and policy gradients. The reason this pong from pixels paper
was particularly useful was because it utilized the same environment toolset, OpenAI Gym.

3 System

The system is split up into front end and back end processing. This project focused on the
development of the front end which is also comprised of two main parts, feature
detection/environmental labeling and machine learning. The back end is handled with the
framework provided by OpenAI. The framework consists of two major components, Gym and
Universe. Below I discuss how everything connects and operates.

3.1 OpenAI Back End

In April 2016 OpenAI, a nonprofit research institute, released an open beta for Gym. Gym was the
foundation for Universe, which was released eight months later in December. Gym was built to be
a training ground for user programmed artificially intelligent agents. Some games were built into
the framework for basic reinforcement learning. Universe is what blew the whole operation wide

2

open. It added thousands of games to the programmer’s accessibility and sped up the main
workings of Gym to account for more training. What these frameworks provide the AI
programmer is a capability to train a bot remotely. Instead of always hosting the game on a local
machine, it adds a layer of abstraction to allow the program to not worry about the game and focus
on training. How it does this is not so simple, it’s a mesh of server side game processing and
websockets. The bot sets up a TCP VNC connection to receive the pixel data and send the action
data and an auxiliary reward connection to receive reward and latency information. This allows the
program to interact with the server with two simple function calls: make and step . Make creates the
necessary processes both locally and on the game server (which can be remote or local). The step
function takes as input an action for the bot to take, which can be arrow keys or mouse inputs. It
returns a tuple consisting of the current game pixels, the reward received since the last step, a
boolean to check if the bot has died, and latency information.

env = gym.make('internet.SlitherIO-v0')
observation_n, reward_n, done_n, info = env.step(action_n)

Universe has many unique environments for the bot to train on, such as flash games, atari games,
web games like slither, and even browser tasks like booking flights. Since Slither.io provided the
most dynamic yet simple environment it was chosen for base training.

3.2 OpenCV Feature Detection and Labeling

Due to lack of extreme computing resources simple mimicry of other deep learning researchers
won’t be possible. Instead of training the model just purely on the raw pixel data it was necessary
to add some feature detection into the equation. This mechanism would take the raw pixel input
and execute computer vision algorithms to produce a feature dictionary. In order to differentiate the
in-game elements a myriad of blurs, thresholds, color conversions and high level OpenCV
functions were used. Since the pixel array is set at a native 1024x786 resolution and the actual
game only takes up a portion of the screen it was necessary to carve out only the game pixels, the
game screen was a round 500x300 pixels. After carving, the image was blurred to curb any noise
from the connection and round the surfaces. The BGR image was transformed to grayscale and
thresholded to eliminate the background hexagons as seen in Figure 1 . In order for the game to not
misunderstand the map and score located at the bottom of the screen for something interactable
they are masked to black. A duplicate image is created to apply a higher threshold catching only
very bright objects such as dead snake mass.

After the vision processing is done there are three images, two for OpenCV operations and one for
user output to check if the functions found any mass/snakes. To recognize all elements on the
screen three helper functions were created that flow in this order: findMass, findSnakes,

3

findDeadMass. Each is pretty self explainable, but has a unique attribute and OpenCV function
call from them. To track the findings all observations are stored in a vision dictionary with keys
representing pixel location and values representing what the item found was (‘S’ for snake, ‘Y’ for
your snake, and ‘M’ for mass). An important note is that the dictionary keys are floor divided by 5
for the x and y. This was done to simplify processing for the neural network since a matrix of
100x60 is far more manageable than 500x300. So, if a mass was located at (323, 107) it would be
marked as such in the vision dict at (64, 21). This vision dictionary would be fed to the neural
network as pseudo-labeled features.

FindMass is the simplest function, taking in a grayscaled image and calling cv2.HoughCircles to
return a list of wholly circular objections on screen. The only filled circular objects being the
regular mass that is scattered throughout the server. From there the algorithm loops through each of
them and label them in the vision dictionary and draw a green circle around them for the user to
see.

FindSnakes is more complicated than findMass taking in a black and white image and calling
cv2.findContours (findContours only takes images that are black background and white
foreground whereas HoughCircles takes grayscaled). FindContours can be executed to return all
points where there is an edge on an object, or it can return a simplified list of points. For speed
purposes, the simple approximation was ran. This returned a list of observed objects. The program
calculates the area of the contour with a built-in function called cv2.contourArea and only loops
through objects with an area of 170 or higher. (This was tested as the minimum size of a snake
with mass of 10) All points in the contour are labeled as ‘S’ in the vision dictionary which means
enemy snake. To differentiate your snake from the enemies the moments of each contour were
taken using cv2.moments. As the algorithm loops through snake contours it calculates the distance
of the center of mass of each snake from the center of the screen. The snake with the closest center
of mass is yours and re-labeled in the vision dictionary as ‘Y’.

FindDeadMass also calls cv2.findContours but on the higher threshold image to return only the
contours that are mass left behind by a dead snake (which add much more mass to your total if
retrieved). Each contour is marked as a ‘M’ in the vision dictionary if the area is less than 130. This
is implemented because it sometimes would pick up the heads of very large snakes as dead mass.
So through testing 130 was chosen as the max size the algorithm would consider the object as
mass.

Another way of looking at these labels are (+) for mass, (0) for you, and (-) for snakes.

4

Figure 1: All Stages of Element Attribution and Labeling (Zoom In)
Top: Grayscaled, Black and White, High Threshold

Middle: Mass Labeled, Snakes Labeled, Dead Mass Re-Labeled
Bottom: Initial Image, Key, All Labels

Overall, the correctness of the feature labeling is somewhere between 85-90% for all objects. There
are only two unfortunate negatives. The first is that boosting snakes are recognized slightly larger
than they actually are because a light aura is emitted that throws off the findContours. This issue is
not as big of a deal, but does through off the accuracy. The second is in the fact that dead mass is
initially labeled as a snake then re-written as mass. This wouldn’t be a problem if it was using the
same image to derive the contours from then re-writing over the vision dictionary like what was
done to find the bot’s snake. However, the function takes a higher thresholded image which has its
area decreased slightly. This means that when down sampling and floor dividing some points may
not be correctly overwritten. This is difficult to measure since it doesn’t happen much.

5

3.3 Neural Network

Building neural network architectures, much like computer architecture in the early days of
computing, is a tough job. There are many tools to aide the process, but it really comes down to
what the model will be built for. With previous deep reinforcement learning algorithms taking
advantage of two major techniques, and with little time to implement and test the model myself, it
was necessary to modify their approaches. Between policy gradients and Deep-Q learning, the one
that was better applicable to slither was Deep-Q. Where policy gradients do well for games with a
small number of actions, Deep-Q is capable of choosing the best action among far more choices.
This highlights the biggest difference between my game and other applications, options. Atari
Pong and Breakout have only about 5-10 actions mostly moving the paddle in a linear fashion
(up/down or left/right). Slither, uses the mouse, thus, having thousands of potential moves one per
pixel. Since I shrunk the game down to 60x100, it has to make a decision to mouse over one 5x5
box and decide whether to boost. That’s 6,002 possible actions since inaction is not an option.
(The two are from activate and deactivate boost) With all that in mind, and little formal neural
network education other than reading these papers and watching/reading hours worth of
informational content, the architecture was pieced together.

Taking after Google Deepmind, the architecture would be as follows in Figure 2. There are three
main components to the learning network each labeled with a different color.

Figure 2: Deep Learning System Flow

6

The main game loop is in black starting at Observation on the left. The algorithm does image
preprocessing talked about in the previous section. It then consults the neural network to create
Q-Values from the frame. This is a list of probabilities of gaining a reward for each square it could
move the mouse to. Instead of always picking just the max from that list it factors in randomness
with the Epsilon Greedy algorithm. What epsilon greedy does is choose the max Q-value or a
random point based on a small percentage. It’s pseudo random because I already have labeled data
to pull a value from. So if the network doesn’t know what to chose if defaults to my original naive
computer vision based decisions. Once an action is selected it updates the game. An important note
to make again is that this is processing 30 frames a second, each time updating the neural network.

Highlighted in red is the replay memory network training. The agent needs to recognize awards
occurring from a string of events rather than just one frame. With a little bit of python code we can
save the top q values from previous states. Then we can update all of the values based on the next
step and so forth. The frame is fed into the neural network as training data and it updates the
model. After the model is updated it then creates Q-values for the current state.

In blue is the learning model being upgraded on the final step of the replay memory network. This
is where the model gets tuned to the game. The model is 6,000 inputs nodes, four hidden layers of
1024 fully connected nodes and 6,002 end nodes representing the possible actions. The input to the
algorithm is both the downsampled game pixels and the labeled game data. All labels are added to
pixels in the area. This provides helpful distinction for the neural network to learn from.

The model I used was a generic model previously built for atari breakout by Hvaas-Labs in a string
of tutorials they have on github for machine learning. [3] Similar to this project’s implementation
the tutorial adds helpful labels to the raw data. The model is still in training at the point of writing,
but preliminary testing runs show progress similar to the atari tutorial. There is still more fine tuning
necessary to achieve better performance.

4 Evaluation

There are a pair of Slither.io bots on the internet written in JavaScript originally written by Ermiya
Eskandary. [4] These bots are given all environmental elements through the browser, and they
make defensive and offensive decisions based on a radius around your snakes head. I wanted to
build a system that could reach an average above their averages. Without the neural net
implemented my bot would average 250 mass and the other bot would average around 300. With
the maxes around 1900 and 3300 respectively. This is not too surprising since without the neural
net my bot wouldn’t take into effect the negative consequences of navigating into a snake.

7

With the neural net implemented, the agent slows at making decisions, due to computational
expense. Training the network takes many many hours until any positive return is seen. With the
help of the labels the network knows what is and isn’t a good selection and with the help of the
replay memory past moves can be associated with a reward. Overall, for the algorithm to truly
exceed human levels of play the learning algorithm would need to play the game for much longer.
Initial training on 10 hours shows some improvement.

5 Future Work

Without a doubt I will continue to build out this project more. The automatic labeler is near perfect,
so not much work is needed on that. I do, however, want to keep on designing and altering the
parameters for the machine learning portion of the system. The approach taken to accomplish the
project was different than the way both the papers approached the problem, which proved to be
challenging and indeterminate. Over the next summer I will modify the machine learning model
provided by Hvass to better fit my data and environment. The idea of building programs that can
solve many games with little code alteration is enticing. After this game, I will try altering the
algorithm to fit other games as well.

6 Conclusion

Overall the project was a lot of fun to work on. I thoroughly enjoyed taking the time to understand
the underlying system that OpenAI is offering, and I think that if more people knew about it many
advances would be made in AI. Their mission is to create an agent that can learn to play them all,
my mission was to create an agent to play one very well. I imagine that if there are good features
labeled on all the games the problem would be much easier. Completing this senior project has
provided me with more experience with Python, OpenCV and Tensorflow. The system operated
fairly well, maybe not top ten of the leaderboard every game, but even the best human players
can’t accomplish this feat. With further work and tinkering I believe this bot could beat expert
human averages.

8

References

[1] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, Martin Riedmiller. Playing Atari with Deep Reinforcement Learning
https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf

[2] Andrej Karpathy. Deep Reinforcement Learning: Pong from Pixels
http://karpathy.github.io/2016/05/31/rl/

[3] Hvass-Labs. Reinforcement Learning Tutorial
https://github.com/Hvass-Labs/TensorFlow-Tutorials/blob/master/16_Reinforcement_Learning.ipy
nb

[4] Ermiya Eskandary. Slither.io JavaScript Bot
https://github.com/ErmiyaEskandary/Slither.io-bot

9

https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf
http://karpathy.github.io/2016/05/31/rl/
https://github.com/Hvass-Labs/TensorFlow-Tutorials/blob/master/16_Reinforcement_Learning.ipynb
https://github.com/Hvass-Labs/TensorFlow-Tutorials/blob/master/16_Reinforcement_Learning.ipynb
https://github.com/ErmiyaEskandary/Slither.io-bot

