832 research outputs found

    A Review on Application of Artificial Intelligence Techniques in Microgrids

    Get PDF
    A microgrid can be formed by the integration of different components such as loads, renewable/conventional units, and energy storage systems in a local area. Microgrids with the advantages of being flexible, environmentally friendly, and self-sufficient can improve the power system performance metrics such as resiliency and reliability. However, design and implementation of microgrids are always faced with different challenges considering the uncertainties associated with loads and renewable energy resources (RERs), sudden load variations, energy management of several energy resources, etc. Therefore, it is required to employ such rapid and accurate methods, as artificial intelligence (AI) techniques, to address these challenges and improve the MG's efficiency, stability, security, and reliability. Utilization of AI helps to develop systems as intelligent as humans to learn, decide, and solve problems. This paper presents a review on different applications of AI-based techniques in microgrids such as energy management, load and generation forecasting, protection, power electronics control, and cyber security. Different AI tasks such as regression and classification in microgrids are discussed using methods including machine learning, artificial neural networks, fuzzy logic, support vector machines, etc. The advantages, limitation, and future trends of AI applications in microgrids are discussed.©2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.fi=vertaisarvioitu|en=peerReviewed

    Graphical Convolution Network Based Semi-Supervised Methods for Detecting PMU Data Manipulation Attacks

    Get PDF
    With the integration of information and communications technologies (ICTs) into the power grid, electricity infrastructures are gradually transformed towards smart grid and power systems become more open to and accessible from outside networks. With ubiquitous sensors, computers and communication networks, modern power systems have become complicated cyber-physical systems. The cyber security issues and the impact of potential attacks on the smart grid have become an important issue. Among these attacks, false data injection attack (FDIA) becomes a growing concern because of its varied types and impacts. Several detection algorithms have been developed in the last few years, which were model-based, trajectory prediction-based or learning-based methods. Phasor measurement units (PMUs) and supervisory control and data acquisition (SCADA) system work together to monitor the power system operation. The unsecured devices could offer opportunities to adversaries to compromise the system. In the literature review part of this thesis, the main methods are compared considering computing accuracy and complexity. Most work about PMUs ignored the reality that the number of PMUs installed in a power system is limited to realize observability because of high installing cost. Therefore, based on observable truth of PMU and the topology structure of power system, the graph convolution network (GCN) is proposed in this thesis. The main idea is using selected features to define violated PMU, and GCN is used to classify susceptible violated nodes and normal nodes. The basic detection method is introduced at first. And then the calculation process of neural network and Fourier transform are described with more details about graph convolution network. Later, the proposed detection mechanism and algorithm are introduced. Finally, the simulation results are given and analyzed

    Real-Time Machine Learning Models To Detect Cyber And Physical Anomalies In Power Systems

    Get PDF
    A Smart Grid is a cyber-physical system (CPS) that tightly integrates computation and networking with physical processes to provide reliable two-way communication between electricity companies and customers. However, the grid availability and integrity are constantly threatened by both physical faults and cyber-attacks which may have a detrimental socio-economic impact. The frequency of the faults and attacks is increasing every year due to the extreme weather events and strong reliance on the open internet architecture that is vulnerable to cyber-attacks. In May 2021, for instance, Colonial Pipeline, one of the largest pipeline operators in the U.S., transports refined gasoline and jet fuel from Texas up the East Coast to New York was forced to shut down after being attacked by ransomware, causing prices to rise at gasoline pumps across the country. Enhancing situational awareness within the grid can alleviate these risks and avoid their adverse consequences. As part of this process, the phasor measurement units (PMU) are among the suitable assets since they collect time-synchronized measurements of grid status (30-120 samples/s), enabling the operators to react rapidly to potential anomalies. However, it is still challenging to process and analyze the open-ended source of PMU data as there are more than 2500 PMU distributed across the U.S. and Canada, where each of which generates more than 1.5 TB/month of streamed data. Further, the offline machine learning algorithms cannot be used in this scenario, as they require loading and scanning the entire dataset before processing. The ultimate objective of this dissertation is to develop early detection of cyber and physical anomalies in a real-time streaming environment setting by mining multi-variate large-scale synchrophasor data. To accomplish this objective, we start by investigating the cyber and physical anomalies, analyzing their impact, and critically reviewing the current detection approaches. Then, multiple machine learning models were designed to identify physical and cyber anomalies; the first one is an artificial neural network-based approach for detecting the False Data Injection (FDI) attack. This attack was specifically selected as it poses a serious risk to the integrity and availability of the grid; Secondly, we extend this approach by developing a Random Forest Regressor-based model which not only detects anomalies, but also identifies their location and duration; Lastly, we develop a real-time hoeffding tree-based model for detecting anomalies in steaming networks, and explicitly handling concept drifts. These models have been tested and the experimental results confirmed their superiority over the state-of-the-art models in terms of detection accuracy, false-positive rate, and processing time, making them potential candidates for strengthening the grid\u27s security

    An intelligent multimodal biometric authentication model for personalised healthcare services

    Get PDF
    With the advent of modern technologies, the healthcare industry is moving towards a more personalised smart care model. The enablers of such care models are the Internet of Things (IoT) and Artificial Intelligence (AI). These technologies collect and analyse data from persons in care to alert relevant parties if any anomaly is detected in a patient’s regular pattern. However, such reliance on IoT devices to capture continuous data extends the attack surfaces and demands high-security measures. Both patients and devices need to be authenticated to mitigate a large number of attack vectors. The biometric authentication method has been seen as a promising technique in these scenarios. To this end, this paper proposes an AI-based multimodal biometric authentication model for single and group-based users’ device-level authentication that increases protection against the traditional single modal approach. To test the efficacy of the proposed model, a series of AI models are trained and tested using physiological biometric features such as ECG (Electrocardiogram) and PPG (Photoplethysmography) signals from five public datasets available in Physionet and Mendeley data repositories. The multimodal fusion authentication model shows promising results with 99.8% accuracy and an Equal Error Rate (EER) of 0.16

    False Data Injection Attacks in Smart Grids: State of the Art and Way Forward

    Full text link
    In the recent years cyberattacks to smart grids are becoming more frequent Among the many malicious activities that can be launched against smart grids False Data Injection FDI attacks have raised significant concerns from both academia and industry FDI attacks can affect the internal state estimation processcritical for smart grid monitoring and controlthus being able to bypass conventional Bad Data Detection BDD methods Hence prompt detection and precise localization of FDI attacks is becomming of paramount importance to ensure smart grids security and safety Several papers recently started to study and analyze this topic from different perspectives and address existing challenges Datadriven techniques and mathematical modelings are the major ingredients of the proposed approaches The primary objective of this work is to provide a systematic review and insights into FDI attacks joint detection and localization approaches considering that other surveys mainly concentrated on the detection aspects without detailed coverage of localization aspects For this purpose we select and inspect more than forty major research contributions while conducting a detailed analysis of their methodology and objectives in relation to the FDI attacks detection and localization We provide our key findings of the identified papers according to different criteria such as employed FDI attacks localization techniques utilized evaluation scenarios investigated FDI attack types application scenarios adopted methodologies and the use of additional data Finally we discuss open issues and future research direction

    Detection of Stealthy False Data Injection Attacks Against State Estimation in Electric Power Grids Using Deep Learning Techniques

    Get PDF
    Since communication technologies are being integrated into smart grid, its vulnerability to false data injection is increasing. State estimation is a critical component which is used for monitoring the operation of power grid. However, a tailored attack could circumvent bad data detection of the state estimation, thus disturb the stability of the grid. Such attacks are called stealthy false data injection attacks (FDIAs). This thesis proposed a prediction-based detector using deep learning techniques to detect injected measurements. The proposed detector adopts both Convolutional Neural Networks and Recurrent Neural Networks, making full use of the spatial-temporal correlations in the measurement data. With its separable architecture, three discriminators with different feature extraction methods were designed for the predictor. Besides, a measurement restoration mechanism was proposed based on the prediction. The proposed detection mechanism was assessed by simulating FDIAs on the IEEE 39-bus system. The results demonstrated that the proposed mechanism could achieve a satisfactory performance compared with existing algorithms

    A Survey on Deep Learning Role in Distribution Automation System : A New Collaborative Learning-to-Learning (L2L) Concept

    Get PDF
    This paper focuses on a powerful and comprehensive overview of Deep Learning (DL) techniques on Distribution Automation System (DAS) applications to provide a complete viewpoint of modern power systems. DAS is a crucial approach to increasing the reliability, quality, and management of distribution networks. Due to the importance of development and sustainable security of DAS, the use of DL data-driven technology has grown significantly. DL techniques have blossomed rapidly, and have been widely applied in several fields of distribution systems. DL techniques are suitable for dynamic, decision-making, and uncertain environments such as DAS. This survey has provided a comprehensive review of the existing research into DL techniques on DAS applications, including fault detection and classification, load and energy forecasting, demand response, energy market forecasting, cyber security, network reconfiguration, and voltage control. Comparative results based on evaluation criteria are also addressed in this manuscript. According to the discussion and results of studies, the use and development of hybrid methods of DL with other methods to enhance and optimize the configuration of the techniques are highlighted. In all matters, hybrid structures accomplish better than single methods as hybrid approaches hold the benefit of several methods to construct a precise performance. Due to this, a new smart technique called Learning-to-learning (L2L) based DL is proposed that can enhance and improve the efficiency, reliability, and security of DAS. The proposed model follows several stages that link different DL algorithms to solve modern power system problems. To show the effectiveness and merit of the L2L based on the proposed framework, it has been tested on a modified reconfigurable IEEE 32 test system. This method has been implemented on several DAS applications that the results prove the decline of mean square errors by approximately 12% compared to conventional LSTM and GRU methods in terms of prediction fields.©2022 Authors. Published by IEEE. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/fi=vertaisarvioitu|en=peerReviewed
    • …
    corecore