
University of Wisconsin Milwaukee University of Wisconsin Milwaukee

UWM Digital Commons UWM Digital Commons

Theses and Dissertations

August 2020

Detection of Stealthy False Data Injection Attacks Against State Detection of Stealthy False Data Injection Attacks Against State

Estimation in Electric Power Grids Using Deep Learning Estimation in Electric Power Grids Using Deep Learning

Techniques Techniques

Qingyu Ge
University of Wisconsin-Milwaukee

Follow this and additional works at: https://dc.uwm.edu/etd

 Part of the Artificial Intelligence and Robotics Commons, and the Electrical and Electronics Commons

Recommended Citation Recommended Citation
Ge, Qingyu, "Detection of Stealthy False Data Injection Attacks Against State Estimation in Electric Power
Grids Using Deep Learning Techniques" (2020). Theses and Dissertations. 2504.
https://dc.uwm.edu/etd/2504

This Thesis is brought to you for free and open access by UWM Digital Commons. It has been accepted for
inclusion in Theses and Dissertations by an authorized administrator of UWM Digital Commons. For more
information, please contact open-access@uwm.edu.

https://dc.uwm.edu/
https://dc.uwm.edu/etd
https://dc.uwm.edu/etd?utm_source=dc.uwm.edu%2Fetd%2F2504&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=dc.uwm.edu%2Fetd%2F2504&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=dc.uwm.edu%2Fetd%2F2504&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd/2504?utm_source=dc.uwm.edu%2Fetd%2F2504&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:open-access@uwm.edu

DETECTION OF STEALTHY FALSE DATA INJECTION ATTACKS AGAINST STATE

ESTIMATION IN ELECTRIC POWER GRIDS USING DEEP LEARNING TECHNIQUES

by

Qingyu Ge

A Thesis Submitted in

Partial Fulfillment of the

Requirements for the Degree of

Master of Science

in Engineering

at

The University of Wisconsin-Milwaukee

August 2020

ii

ABSTRACT

DETECTION OF STEALTHY FALSE DATA INJECTION ATTACKS AGAINST STATE
ESTIMATION IN ELECTRIC POWER GRIDS USING DEEP LEARNING TECHNIQUES.

by

Qingyu Ge

The University of Wisconsin-Milwaukee, 2020
 Under the Supervision of Dr. Lingfeng Wang

Since communication technologies are being integrated into smart grid, its vulnerability to false

data injection is increasing. State estimation is a critical component which is used for

monitoring the operation of power grid. However, a tailored attack could circumvent bad data

detection of the state estimation, thus disturb the stability of the grid. Such attacks are called

stealthy false data injection attacks (FDIAs). This thesis proposed a prediction-based detector

using deep learning techniques to detect injected measurements. The proposed detector adopts

both Convolutional Neural Networks and Recurrent Neural Networks, making full use of the

spatial-temporal correlations in the measurement data. With its separable architecture, three

discriminators with different feature extraction methods were designed for the predictor.

Besides, a measurement restoration mechanism was proposed based on the prediction. The

proposed detection mechanism was assessed by simulating FDIAs on the IEEE 39-bus system.

The results demonstrated that the proposed mechanism could achieve a satisfactory

performance compared with existing algorithms.

iii

©Copyright by Qingyu Ge, 2020
All Rights Reserved

iv

To
my parents,

mentor
and advisor.

v

TABLE OF CONTENTS

LIST OF FIGURES ... vii
LIST OF TABLES ... x

ACKNOWLEDGMENTS .. xi
Chapter 1 INTRODUCTION AND LITERATURE REVIEW ... 1

1.1 Introduction ... 1

1.2 Literature Review.. 3

1.2.1 Detection Mechanisms ... 3

1.2.2 Convolutional Neural Networks .. 6

1.2.2.1 Convolutional Layer ... 7

1.2.2.2 Pooling Layer ... 8

1.2.2.3 Fully-Connected Layer ... 9

1.2.3 Recurrent Neural Networks ... 10

1.2.3.1 Simple Recurrent Neural Networks ... 10

1.2.3.2 Long Short-Term Memory ... 13

1.3 Anomaly Detection Metrics .. 15

1.4 Contribution and Roadmap ... 17

Chapter 2 PROBLEM FORMULATION AND ATTACK MODELS 18

2.1 State Estimation .. 18

2.2 Bad Data Detection ... 19

2.3 False Data Injection Attack ... 21

2.4 Attack Generation Algorithms .. 22

Chapter 3 DETECTION AND RESTORATION .. 25

3.1 Detection ... 25

3.1.1 Predictor ... 26

3.1.2 Discriminator ... 27

3.1.2.1 Concatenation-Based Discriminator ... 28

3.1.2.2 Convolution-Based Discriminator .. 29

3.1.2.3 Squared-Error-Vector-Based Discriminator ... 30

3.1.2.4 Difference Between Three Discriminators ... 31

3.1.2.5 Training for Discriminator ... 31

3.1.3 Measurement Restoration .. 33

3.1.4 Detection and Restoration Mechanism .. 34

3.1.5 Data Preparation and Training ... 35

3.1.1 Optimal Threshold Determination ... 36

Chapter 4 EXPERIMENTS AND OBSERVATIONS ... 37

4.1 Data Generation, Test Cases, and Model’s Parameters. 37

4.2 Analysis of Data Set.. 42

4.1 Prediction .. 43

4.2 Detection ... 44

4.2.1 Normal Targeted Attacks.. 44

4.2.2 Playback Targeted Attacks ... 52

vi

4.2.3 Further experiment ... 58

4.2.4 Analysis of The Difference Between Precited Data and Actual Data 59

4.2.4.1 Normal Targeted Attacks .. 59

4.2.4.2 Playback Targeted Attacks .. 66

4.3 Prediction Based on Measurement Restoration .. 72

Chapter 5 CONCLUSION AND FUTURE WORK .. 73

5.1 Conclusion .. 73

5.2 Future Work .. 74

References .. 75

vii

LIST OF FIGURES

Figure 1-1: An example of an architecture for image classification with a convolutional neural
network [44, p. 2] ... 7

Figure 1-2: Convolution [48] ... 8
Figure 1-3: Max-pooling [49] .. 9
Figure 1-4 Diagram of an RNN [53].. 10
Figure 1-5 An unrolled RNN cell [23] ... 11
Figure 1-6 The LSTM cell[62] .. 13
Figure 3-1 Architecture of Semi-Supervised Detector... 26
Figure 3-2 Architecture of the predictor .. 27
Figure 3-3 architecture of the discriminator .. 28
Figure 3-4 Diagram of concatenation .. 29
Figure 3-5 Diagram of convolution ... 30
Figure 3-6 Flow chart of measurement restoration .. 34
Figure 3-7 Architecture of detection and restoration mechanism .. 35
Figure 4-1 IEEE 39-Bus Power System .. 40
Figure 4-2 Ideal Operating Conditions for Bus 1 .. 41
Figure 4-3 Histograms of hacked and unhacked measurements of IEEE 39 bus system by

normal targeted attacks ... 42
Figure 4-4 Histograms of hacked and unhacked measurements of IEEE 39 bus system by

playback targeted attacks .. 43
Figure 4-5 ROC Curve for concatenation discriminator under normal targeted attacks 46
Figure 4-6 ROC Curve for convolution discriminator under normal targeted attacks 46
Figure 4-7 ROC Curve for Squared error vector discriminator under normal targeted attacks

... 47
Figure 4-8 ROC Curve for Euclidean distance method under normal targeted attacks 47
Figure 4-9 ROC Curve for random forest classifier under normal targeted attacks 48
Figure 4-10 ROC Curve for KNN classifier under normal targeted attacks 48
Figure 4-11 ROC Curve for SVM classifier under normal targeted attacks 49
Figure 4-13 Precision for various classifiers under normal targeted attacks with different levels

... 50
Figure 4-14 Recall for various classifiers under normal targeted attacks with different levels

... 51
Figure 4-15 F1-Score for various classifiers under normal targeted attacks with different levels

... 51
Figure 4-16 ROC Curve for concatenation discriminator under playback targeted attacks 53
Figure 4-17 ROC Curve for convolution discriminator under playback targeted attacks 53
Figure 4-18 ROC Curve for Squared error vector discriminator under playback targeted attacks

... 54
Figure 4-19 ROC Curve for Euclidean distance method under playback targeted attacks...... 54
Figure 4-20 ROC Curve for random Forest under playback targeted attacks 55
Figure 4-21 ROC Curve for KNN under playback targeted attacks .. 55

viii

Figure 4-22 ROC Curve for SVM under playback targeted attacks .. 56
Figure 4-24 Precision for various classifiers under playback targeted attacks with different

levels ... 57
Figure 4-25 Recall for various classifiers under playback targeted attacks with different levels

... 57
Figure 4-26 F1-Score for various classifiers under playback targeted attacks with different

levels ... 58
Figure 4-27 Distribution of Euclidean distance between predicted data and actual data under

normal targeted attacks of mixed levels .. 60
Figure 4-28 Distribution of Euclidean distance between predicted data and actual data under

normal targeted attacks with k/n=0.1 .. 60
Figure 4-29 Distribution of Euclidean distance between predicted data and actual data under

normal targeted attacks with k/n=0.2 .. 61
Figure 4-30 Distribution of Euclidean distance between predicted data and actual data under

normal targeted attacks with k/n=0.3 .. 61
Figure 4-31 Distribution of Euclidean distance between predicted data and actual data under

normal targeted attacks with k/n=0.4 .. 62
Figure 4-32 Distribution of Euclidean distance between predicted data and actual data under

normal targeted attacks with k/n=0.5 .. 62
Figure 4-33 Distribution of Euclidean distance between predicted data and actual data under

normal targeted attacks with k/n=0.6 .. 63
Figure 4-34 Distribution of Euclidean distance between predicted data and actual data under

normal targeted attacks with k/n=0.7 .. 63
Figure 4-35 Distribution of Euclidean distance between predicted data and actual data under

normal targeted attacks with k/n=0.8 .. 64
Figure 4-36 Distribution of Euclidean distance between predicted data and actual data under

normal targeted attacks with k/n=0.9 .. 64
Figure 4-37 Distribution of Euclidean distance between predicted data and actual data under

normal targeted attacks with k/n=1.0 .. 65
Figure 4-38 Distribution of Euclidean distance between predicted data and actual data under

playback targeted attacks of mixed levels .. 66
Figure 4-39 Distribution of Euclidean distance between predicted data and actual data under

playback targeted attacks with k/n=0.1 ... 67
Figure 4-40 Distribution of Euclidean distance between predicted data and actual data under

playback targeted attacks with k/n=0.2 ... 67
Figure 4-41 Distribution of Euclidean distance between predicted data and actual data under

playback targeted attacks with k/n=0.3 ... 68
Figure 4-42 Distribution of Euclidean distance between predicted data and actual data under

playback targeted attacks with k/n=0.4 ... 68
Figure 4-43 Distribution of Euclidean distance between predicted data and actual data under

playback targeted attacks with k/n=0.5 ... 69
Figure 4-44 Distribution of Euclidean distance between predicted data and actual data under

playback targeted attacks with k/n=0.6 ... 69
Figure 4-45 Distribution of Euclidean distance between predicted data and actual data under

ix

playback targeted attacks with k/n=0.7 ... 70
Figure 4-46 Distribution of Euclidean distance between predicted data and actual data under

playback targeted attacks with k/n=0.8 ... 70
Figure 4-47 Distribution of Euclidean distance between predicted data and actual data under

playback targeted attacks with k/n=0.9 ... 71
Figure 4-48 Distribution of Euclidean distance between predicted data and actual data under

playback targeted attacks with k/n=1.0 ... 71
Figure 4-49 MSE of prediction under normal targeted attacks .. 72

x

LIST OF TABLES

Table 4-1 Detection using Various Approach under normal targeted attacks with mixed levels
.. 45

Table 4-2 Detection using Various Approaches under playback targeted attacks with mixed
levels ... 52

Table 4-3 Detection using discriminators when the dataset is changed 58

xi

ACKNOWLEDGMENTS

First, I appreciate my advisor Dr. Wang for the mentorship. I also learned a lot from his course

on cyber and physical systems and got to know machine learning could be applied in this field

as well.

Second, I am thankful to Dr. Liu, who gave me many useful advices during my research. He

was very nice and was always patient in answering my questions.

Finally, thanks to my parents, who supported me to study abroad; and thanks to Dr. Ma, who

was my neighbor and helped me; and thanks to everyone who cared about me during this

pandemic.

1

CHAPTER 1 INTRODUCTION AND LITERATURE REVIEW

1.1 Introduction

It is an inevitable trend to develop the smart grid in the 21st century. According to the IEEE

Grid Vision 2050, the primary expectancy of the smart grid is to have the control and

automation processes distributed over the whole power grid to enable efficient and reliable

bidirectional power flow [1, 2]. This objective is realized through the integration of the

Information and communication technologies (ICT) and supervisory control and data

acquisition (SCADA) into the power grid, which is becoming a cyber-physical system (CPS)

[1, 3]. ICT relies on common infrastructure like the internet, which may bring up a new

challenge. Due to the strong coupling between the physical network and the communication

network, attackers can extract and modify information flowing through the communication

network, which may influence the physical network and further lead to severe accidents. Such

cases have been seen throughout the last decades. On December 23, 2015, a wide blackout took

place in Kyiv, Ukraine for several hours since attackers penetrated the SCADA system and

opened several circuit breakers in the distribution system [4]. Similarly, there are instances of

other attacks, such as the Slammer [5] and the Aurora [6]. There are various forms of attacks,

for example, time synchronization attack [7], Denial of Service Attack (DOS) [8], which causes

disruptions at the communication system, and False Data Injection Attacks (FDIA) [9], which

causes disruptions at the physical system level.

The smart grid relies heavily on SCADA. The most vulnerable part of SCADA systems is the

2

State Estimation (SE) [10]. The control center obtains real-time data from the SCADA system,

estimates the state of the grid, and then takes appropriate actions to ensure regular and stable

operation of the power grid peter [11]. However, the state estimator can be fooled by FDIAs to

predict wrong states without getting detected [12, 13]. Generally, intruders need to know the

complete configuration of the grid to launch such attacks, but recent researches have proven it

is possible even if the information is incomplete [14].

Bad Data Detection (BDD) is currently deployed in power grids to secure the integrity of

measurement data. BDD filters measurement errors caused by device fault or malicious attack,

where it is assumed that bad data will necessarily lead to high residual error [9]. However, the

residual error would keep the same as the usual case when a successful FDIA is launched. Thus,

it passes by the BDD.

Deep learning is part of a broader family of machine learning methods based on artificial neural

networks. Deep belief networks and convolutional neural networks have demonstrated great

potential in computer vision, speech recognition, and natural language recognition [15]. The

reason why deep learning is so successful is that neural networks have the ability to learn

complex structures, and data are exploding in this age. Deep learning is data-driven. It is an

excellent function approximator trained using gradient descent algorithm over a specific dataset.

Encouraged by its application and effectiveness in time series prediction and anomaly detection,

its potential to detect false data injection attacks in the electric power grid is explored in this

paper.

3

1.2 Literature Review

1.2.1 Detection Mechanisms

Since the stealthy FDIAs discussed in this paper are designed to bypass BBD during state

estimation, conventional estimation-based methods fail to detect them [13]. With the

assumption that the attack vector is sparse, sparse matrix reconstruction methods are employed

to identify compromised devices [16, 17]. However, such methods cannot guarantee excellent

performance for stealthy FDIAs in certain conditions [18]. Therefore, different approaches

need to be explored for this problem. Ozay et al. [18] took the lead in applying machine learning

techniques to tackle this anomaly detection problem by regarding it as a classification task. The

author tested a group of machine learning algorithms, including Sparse Logistic Regression, k-

Nearest Neighbors (KNN), and Support Vector Machines (SVM), whose performance is

impressive. However, these models are slow and not scalable for large power systems. Besides,

these methods are supervised, which means various scenarios need to be considered as many

as possible in the training phase. Therefore, semi-supervised SVM is also applied in [18], which

is a good fit when labeled data is little. This approach would take into consideration unlabeled

data when being training. Besides, it is mentioned in [19] that the probability density function

of the regular classes can be modeled by any density estimation algorithm when only regular

data is known, for example, Gaussian Mixture Models [20] or Kernel Density Estimation [21].

Unsupervised learning is another approach where unlabeled data are delivered to the machine

for finding classification schemes and patterns, and it is assumed that anomalies are rare in a

dataset compared to regular instances [19]. This approach has been applied in many practical

4

problems, such as network intrusion detection and fraud detection, and can be fit into the

detection of FDIAs on power grids. Goldstein et al. [19] evaluated dozens of such algorithms.

Most of these algorithms are based on density estimation using KNN or k-means clustering.

Points lying outside the margin of density clusters are marked as anomalies [19]. KNN is the

most straightforward global unsupervised anomaly detection algorithm. If one point is so far

away from its k neighbors that it is classified as an outlier. K-means clustering is another basic

algorithm, which is to separate observations into k clusters. If one point does not belong to any

cluster, then it is an abnormal sample. This method has been applied to detecting FDIA in

energy theft [22]. However, for a dynamic system like the power gird, non-anomalous points

can exist in various clusters of density-clouds in an n-dimensional hyperspace. Thus, it is

necessary to detect local anomalies [23]. Reference [19] discussed a series of local anomaly

detection algorithms, for example, Local Outlier Factor (LOF) and Local Outlier Probability

(LoOP). However, since these methods are based on KNN, they cost much time. Apart from

that, another common techniques has been utilized in the detection of FDIAs, such as Principal

component analysis (PCA) [24] and Isolation Forest [25, 26]. Additionally, one-class SVM can

be trained unsupervisedly to address this problem with a soft-margin [27], but it is a challenge

to find the best set of hyper-parameters.

Artificial Neural Networks (ANN) have drawn enormous attention in recent years and achieve

significant performance in fields of object recognition [28], speech recognition [29], and

anomaly detection [30]. No matter in supervised [31], semi-supervised [32], or unsupervised

manner [33], deep neural networks have proven itself in anomaly detection [23]. References

[34, 35] proposed an extended DBN architecture called Conditional Deep Belief Network

5

(CDBN) to extract high-dimensional temporal features of FDIAs. Stacked auto-encoder is

employed in [36] to extract the nonlinear and nonstationary features of electric load data, which

facilitates detection. Apart from that, autoencoders can also be used to reconstruct input data,

and then the similarity between original data and reconstructed ones determines whether the

input is abnormal or not. Generative models like Generative Adversarial Networks (GANs) [37]

and Variational Auto-Encoders (VAEs) [38] are also promising. The discriminator in GANs is

a great detector to judge whether the new data are different from learned data. VAEs can

transform new data into latent space to see whether they keep in accordance with the

distribution of historical data.

Recently, Recurrent Neural Networks (RNNs) are favored to capture the temporal correlations.

References [39–41] trained an RNN in a supervised setting to predict the existence of

anomalies, and reference [42] adopted the discrete wavelet transform (DWT) as spatial-

temporal features extraction tool before using an RNN to make a prediction. RNNs can also be

built as autoencoders, and the reconstruction error is the metric of anomaly [41]. Additionally,

RNNs are deployed in prediction-based detectors. For example, reference [43] used mean

squared error (MSE) between estimated measurements by RNNs and actual measurements as

the metric of an anomaly. An anomaly exists if MSE at specific measurements is unreasonably

high. Niu et al. [44] followed this idea but added a CNN in front of RNN to adjust the

dimensionality of data. Wang et al. [45] introduced the residual architecture into RNNs to

improve the performance. The model in [45] divides input time series to the linear part which

is predicted by RNNs, and the nonlinear part which is predicted by vector autoregressive

processes (VAR). It employs the Weibull distribution to fit SSE between the predicted values

6

and the observed values to determine the detection threshold. In this paper, the detection

mechanism is explored based on prediction using CNNs and RNNs.

1.2.2 Convolutional Neural Networks

Convolutional Neural Network (CNN), a category of feedforward Neural Network (FNN), has

succeeded in processing video signals and images, for example, style transfer and recognition

of objects. A critical point of CNNs is the local connectivity between neurons in adjacent layers,

which are motivated by the structure of the animal visual cortex, whose individual neurons are

organized in such a manner as to respond to overlapping regions of the visual field [46, 47].

Since CNNs currently are mainly focused on images, it is unrealistic to connect neurons to all

neurons in the previous layer when coping with high-dimensional tensors. In CNNs, every

neuron is linked to only a small region of the neurons of the last layer, and hence the network

is capable of leveraging the spatially local structure of the data. Such functionality can be

borrowed as a preceding procedure to provide spatial features to the following networks.

CNNs are typically made up of three forms of layers: (1) fully-connected layer, (2)

convolutional layer (3), and pooling layer. Various instances of CNNs can be roughly defined

as the following process, as shown in Figure 1-1:

1. Convolve the source image with a group of filters.

2. Subsample the result of coevolution after being through activation functions.

3. Repeat steps 1 and 2 until sufficiently high-level features are obtained.

7

4. Attach fully connected layers, a FNN, to the resulting features.

Figure 1-1: An example of an architecture for image classification with a convolutional neural

network [44, p. 2]

1.2.2.1 Convolutional Layer

Convolutional layers are critical to a CNN which serve as feature extractors. A convolutional

layer is built on a group of learnable kernels, which are 1D or 2D arrays of numbers reflecting

how a pixel’s neighbors impact on its convolution value. These kernels would be convolved

across the input features during the forward propagation, producing a new feature map. Kernels

do not need to keep the same height and width. A kernel can be 1D or 2D according to problems.

However, dimensions, whether 1D or 2D, must be odd numbers to center the kernel over the

region.

Figure 1-2 reveals how convolution works. To calculate the value of each transformed pixel,

add the products of each surrounding pixel value with the corresponding kernel value; for

instance, in Figure 1-2, -8 is derived because the only product of right-bottom corners is non-

8

zero. During a convolution operation, the kernel moves across every possible position in the

image to repeat this procedure and put the effect to the whole image [48].

Figure 1-2: Convolution [48]

1.2.2.2 Pooling Layer

Pooling can be regarded as a nonlinear down-sampling, in which various nonlinear functions

such as the maximum, the minimum, and the average are implemented. What is used the most

common is the Max pooling, which parts the image into non-overlapping patches and picks up

the maximum value as the final output for each patch. Figure 1-3 is an example of this

procedure.

9

Figure 1-3: Max-pooling [49]

There are three main reasons why max-pooling is useful [50, 51]:

(1) It reduces the computational burden for the following layers by eliminating non-maximal

values.

(2) It provides a form of translation invariance so that robustness is assured.

(3) It is a simple approach to reducing the dimensionality of intermediate representations.

1.2.2.3 Fully-Connected Layer

Fully connected layers, which connect every neuron between two layers, play a supporting role

in CNN. It is the same as the conventional multi-layer perceptron (MLP) neural network.

Generally, it is added between CNNs and other types of neuron networks where the 2D or 3D

output would be flattened into a 1D shape.

10

1.2.3 Recurrent Neural Networks

1.2.3.1 Simple Recurrent Neural Networks

Recurrent neural network (RNN) is a class of artificial neural networks where connections

between nodes form a directed graph along a temporal sequence, which is shown in Figure 1-

4. This structure allows it to exhibit temporal dynamic behavior [52].

Figure 1-4 Diagram of an RNN [53]

RNNs are fundamentally different from the FNN. For example, the neurons in each hidden

layer are connected, and the input of the hidden layer includes not only the output of the input

layer but also the output of itself at the previous moment. This structure allows RNNs to process

sequence data better and has achieved great success and wide application in Natural Language

Processing (NLP).

11

The training of RNNs is divided into two steps, which are forward propagation and

backpropagation. The forward propagation is to calculate the output value. Outputs are

generated through activation functions one by one as a time series, which depends on the

current input and the previous hidden states. The following Equation illustrates how to

calculate the output and hidden state at each time step.

(2-1)
ℎ௧ = 𝜎௛(𝑊௛ℎ௧ିଵ + 𝑊௜𝑥௧ + 𝑏௛)
𝑜௧ = 𝜎௢(𝑊௢ℎ௧ + 𝑏௢) (1-1)

The meaning of symbols is listed below:

𝑥௧: input vector

ℎ௧: hidden layer vector

𝑜௧: output vector

𝑊 𝑏: parameter matrices and vector

𝜎௛ 𝜎௢: Activation functions

Back-propagation uses the chain rule to propagate prediction-error gradients to modify all

network weights [54]. An RNN can be seen as deep feedforward networks in which all the

layers share the same weights when it is unfolded in time (Figure 1-5) [55].

Figure 1-5 An unrolled RNN cell [23]

12

When backpropagation is applied to this unrolled chain, it is referred to as Back Propagation

Through Time (BPPT) [54, 56]. The loss function of RNNs is defined as an overall summation

of losses in each time step [57, 58], as shown below.

(2-1) ℒ(𝑦, 𝑜) = ෍ ℒ௧(𝑦௧, 𝑜௧)

்

௧ୀଵ

 (1-2)

In Equation (1-2), 𝑦 is the target output. By considering the network parameters in Figure 1-

5(1-5 as the set 𝜃 = {𝑊௛, 𝑊௜, 𝑊௢, 𝑏௛, 𝑏ை} and ℎ௧ as the hidden state of the network at time 𝑡,

gradients can be written as

(2-1)
𝜕ℒ

𝜕𝜃
= 𝑡 = ෍ ൬

𝜕ℒ௧

𝜕𝜃
൰

௧

௞ୀଵ

 (1-3)

where the expansion of loss function gradients at time 𝑡 is

(2-1)

∂ℒ௧

∂𝜃
= ෍ ൬

∂ℒ௧

∂ℎ௧
⋅

∂ℎ௧

∂ℎ௞
⋅

∂ℎ௞

∂𝜃
൰

௧

௞ୀଵ

= ෍ ൭
∂ℒ𝓉

∂ℎ௧
⋅ ෑ

∂ℎ௜

∂ℎ௜ିଵ

௧

௜ୀ௞ାଵ

⋅
∂ℎ௞

∂𝜃
൱

௧

௞ୀଵ

= ෍ ൭
∂ℒ𝓉

∂ℎ௧
⋅ ෑ

∂ℎ௜

∂ℎ௜ିଵ

௧

௜ୀ௞ାଵ

⋅
∂ℎ௞

∂𝜃
൱

௧

௞ୀଵ

(1-4)

It can be seen from Equation (1-4) that calculation of gradient involves calculating a product

of gradients of all hidden states concerning their previous hidden states. Thus, RNNs may suffer

a problem of vanishing gradients or exploding gradients with the association of nonlinear

activation functions such as “tanh” and “sigmoid”, which nullifies the influence of initial inputs

on the final output during the training phase [59]. This phenomenon causes memory of the

13

network to ignore long term dependencies and hardly learn the correlation between temporally

distant events [57]. Fortunately, Long Short Term Memory (LSTM) [60] has been developed

to get rid of this problem.

1.2.3.2 Long Short-Term Memory

LSTM is one of the most common and effective ways of reducing the effects of vanishing and

exploding gradients [57, 60]. This approach changes the structure of hidden units from

“sigmoid” or “tanh” functions to memory components, in which their inputs and outputs are

managed by gates. Such gates control the stream of information to hidden neurons and retain

features derived from previous time steps [57, 60, 61]. A typical LSTM cell is shown in Figure

1-6.

Figure 1-6 The LSTM cell[62]

Compared with simple RNNs, LSTM networks have an extra state variable called cell state. A

typical LSTM cell is made of an input gate, a forget gate, and an output gate, and a cell

14

activation component. The compact forms of the equations for the forward pass of an LSTM

unit are: [60, 63, 64]

(2-1)

𝑓௧ = 𝜎௚൫𝑊௙𝑥௧ + 𝑈௙ℎ௧ିଵ + 𝑏௙൯
𝑖௧ = 𝜎௚(𝑊௜𝑥௧ + 𝑈௜ℎ௧ିଵ + 𝑏௜)
𝑜௧ = 𝜎௚(𝑊௢𝑥௧ + 𝑈௢ℎ௧ିଵ + 𝑏௢)
𝑐̃௧ = 𝜎௛(𝑊௖𝑥௧ + 𝑈௖ℎ௧ିଵ + 𝑏௖)
𝑐௧ = 𝑓௧ ∗ 𝑐௧ିଵ + 𝑖௧ ∗ 𝑐̃௧
ℎ௧ = 𝑜௧ ∗ 𝜎௛(𝑐௧)

(1-5)

where the initial values are 𝑐଴ = 0 and ℎ଴ = 0 and the operator “∗” denotes the element-wise

product. And other definitions are:

𝑥௧:

𝑓௧ :

𝑖௧:

ℎ௧:

𝑜௧:

𝑐̃௧:

𝑐௧:

𝑊, 𝑈, 𝑏:
𝜎௚:

𝜎௛:

input vector to the LSTM unit

forget gate’s activation vector

input/update gate’s activation vector

output gate’s activation vector

hidden state vector also known as output vector of the LSTM unit

cell input activation vector

cell state vector

weight matrices and bias vector parameters which need to be learned during training

activation function for gates

activation function for hidden state

As known from Equation (1-5), if the forget gate is closed, i.e. 𝑓௧ = 0, the historical cell state

cannot be involved in the current time step; if the forget gate is open, i.e. 𝑓௧ ≠ 0, the historical

cell state can be remembered in the current time step; if the input gate is closed, i.e. 𝑖௧ = 0, the

input cannot be passed down to the current cell state; if the input gate is open, i.e. 𝑖௧ ≠ 0, the

input can be passed to the current cell state; if the output gate is closed, i.e. 𝑜௧ = 0, the hidden

state of the current cell is prohibited from being passed down; if the output gate is open, i.e.

𝑜௧ ≠ 0, the hidden state of the current cell can be passed down. LSTMs are fundamental blocks

of our temporal predictor of the whole detector.

15

1.3 Anomaly Detection Metrics

In general, for binary classification tasks such as anomaly detection, common metrics to judge

the performance of a model are Accuracy, Precision, Recall, F1-Score, Receiver Operating

Characteristics (ROC) curve and Area Under the Curve (AUC), and Precision-Recall curve

[65]. Considering that the frequency of anomalies, in reality, is much smaller than the frequency

of non-anomalous conditions, the data set itself is unbalanced. Therefore, metrics such as

Accuracy will not be a good choice for evaluation, while Precision and Recall can better

evaluate the performance of the model. Both ROC-AUC and Precision-Recall curves can

evaluate the overall performance of a model and help to find the optimal threshold. However,

the ROC curve is not sensitive to the imbalance of the dataset and can maintain stability when

the proportion of positive and negative samples changes. Therefore, six metrics are used in this

paper to verify the effectiveness and feasibility of the intrusion detection mechanism: Precision,

Recall, F1-Score, ROC-AUC, training time, and test time. In this problem, anomalies are

treated as positive cases, and normal samples are treated as negative cases.

Definition:

(1) TN (True Positive) indicates the number of normal data correctly identified as normal data.

(2) FN (False Negative) indicates the number of normal data recognized as anomalies.

(3) TP (True Positive) indicates the number of anomalies correctly identified as anomalies.

(4) FP (False Positive) indicates the number of anomalies recognized as normal data.

16

Therefore, the first three metrics can be represented as follows:

(1) Precision：

(2-1) Precision =
TP

TP + FP
 (1-6)

It represents the proportion of true anomalies in the samples predicted as anomalies. The higher

the Precision is, the better the algorithm is.

(2) Recall：

(2-1) Recall =
TP

TP + FN
 (1-7)

It represents the proportion of the abnormal samples that are correctly predicted. The higher

the Recall is, the better the algorithm is.

(3) F1 Score ：

(2-1) F1 =
Precision × Recall × 2

Precision + Recall
 (1-8)

It represents the harmonic mean of Precision and Recall. The larger the F1 Score is, the better

the overall performance of the detector is.

ROC curve and AUC will be discussed in Chapter 3, where the threshold determination will be

17

detailed. AUC, along with the F1 Score, is used to reflect the overall performance of the

detector.

1.4 Contribution and Roadmap

The contribution of this paper is as follows,

1. An FDIA detection framework, which includes a predictor and a discriminator, is proposed.

2. Three ANN-based discriminators are developed for the FDIA detector.

3. A measurement restoration mechanism is proposed along with a method to determine the

optimal threshold for the proposed mechanism.

The rest of this paper is composed as follows: The generation and implementation algorithm

of FDIAs are discussed in Chapter 2. Then, the detection model and recovery methodology

proposed in this paper are discussed in Chapter 3. Lastly, the experimental results are analyzed

and summarized in Chapter 4, followed by a summary in Chapter 5.

18

CHAPTER 2 PROBLEM FORMULATION AND ATTACK

MODELS

2.1 State Estimation

The key to maintaining the reliability of the power system is to monitor the power flows and

voltages. The control center receives readings from redundant meters and estimates the state of

power system variables from these meter measurements. For example, state variables include

bus voltage angles and magnitudes and state estimation problem is to estimate power system

state variables 𝐱 = (𝑥ଵ, 𝑥ଶ, . . . , 𝑥௡)୘ based on meter measurements 𝐳 = (𝑧ଵ, 𝑧ଶ, . . . , 𝑧௠)୘ ,

where 𝑛 and 𝑚 are positive integers and 𝑥௜ , 𝑧௝ ∈ 𝑅 for 𝑖 = 1, 2, . . . , 𝑛 and 𝑗 = 1, 2, . . . , 𝑚

[66]. To be more specifically, 𝐞 = (𝑒ଵ, 𝑒ଶ, . . . , 𝑒௠)୘ with 𝑒௝ ∈ 𝑅 , 𝑗 = 1, 2, . . . , 𝑚 , are

measurement errors. Following formula connects state variables and related measurements.

(2-1) 𝐳 = 𝐡(𝐱) + 𝐞 (2-1)

In Equation (2-1), 𝐡(𝐱) = (ℎଵ(𝑥ଵ, 𝑥ଶ, … , 𝑥௡), ℎଶ(𝑥ଵ, 𝑥ଶ, … , 𝑥௡), …, ℎ௠(𝑥ଵ, 𝑥ଶ, … , 𝑥௡))୘ and

ℎ௜(𝑥ଵ, 𝑥ଶ, … , 𝑥௡) is a function of 𝑥ଵ, 𝑥ଶ, … , 𝑥௡ . The state estimation problem is finding an

estimate 𝐱ො to 𝐱 that is the best match of the measurement 𝐳 according to Equation (2-1).

Furthermore, Equation (2-1) can be written as a linear regression formula with state estimation

using DC power flow model, i.e.,

(2-1) 𝐳 = 𝐇𝐱 + 𝐞 (2-2)

where 𝐇 = ൫ℎ௜,௝൯
୫×୬

. Three common statistical estimation criteria have been used in state

19

estimation: the maximum likelihood criterion, the weighted least-square criterion, and the

minimum variance criterion [66]. These three criteria lead to the same estimator with the

following matrix solution (2-3), if meter errors are believed to be normally distributed with

zero mean.

(2-1) 𝐱ො = (𝐇T𝐖𝐇)ି𝟏𝐇T𝐖𝐳 (2-3)

In Equation (2-4), 𝐖 is a diagonal matrix, which elements are reciprocals of the variances of

meter errors, which means

(2-1)

𝐖 =

⎣
⎢
⎢
⎡
𝜎ଵ

ିଶ

𝜎ଶ
ିଶ

⋱
𝜎௠

ିଶ⎦
⎥
⎥
⎤

 (2-4)

where σ௜
ଶ the variance of the 𝑖-th meter (1 ≤ 𝑖 ≤ 𝑚).

2.2 Bad Data Detection

Bad measurements can be caused for various reasons, for instance, meter failures or malicious

attacks. Strategies for bad measurement detection have been established to secure the state

estimation [66]. In general, measurements from regular sensors typically provide an

approximation of state variables to their actual values. However, estimated state variables may

be shifted away from their actual values by abnormal measurements, which means

inconsistency generally exists between good and bad measurements. Because of that, some

researchers proposed that the presence of bad measurements can be spotted by calculating the

measurement residual 𝐳 − 𝐇𝐱ො between vector of estimated measurements and observed ones

and its L2-norm ‖𝐳 − 𝐇𝐱ො‖. More precisely, the L2-norm ‖𝐳 − 𝐇𝐱ො‖ has to be compared with

20

a threshold 𝜏 which is set by humans, and the existence of bad measurements can be inferred

when ‖𝐳 − 𝐇𝐱ො‖ > 𝜏. Now the problem is transmitted into another form, the selection of 𝜏,

which is a critical part.

Before solving this problem, some assumptions need to be set up: (1) all state variables are

mutually independent, and (2) meter errors obey the normal distribution. Sequentially,

‖𝐳 − 𝐇𝐱ො‖ଶ which is denoted as ℒ(𝐱), satisfies a χଶ(𝑣) distribution, where 𝑣 = 𝑚 − 𝑛 is the

degree of freedom. Reference [66] gives out that the threshold 𝜏 can be determined through a

hypothesis test with a significance level of 𝛼 which means the probability of ℒ(x) ≥ 𝜏 is

equivalent to 𝛼. Thus, the existence of bad measurements is suggested by ℒ(x) ≥ 𝜏 with false

alarm of probability 𝛼.

The detection mechanism by the L-2 norm is widely used in power systems, which causes a

loophole for attackers. A smart attacker can design false data deliberately to deceive the

estimator without activating any alarm. Notably, the credibility of the state estimator is

undermined by the attacker through compromising a subset of meters and then submitting

modified readings [13]. Denoting 𝐜 as the deviation vector of the estimated state variables

before and after the attack, the estimated state vector being hacked can be expressed as 𝐱ොୠୟୢ =

𝐱ො + 𝐜 . Additionally, denoting 𝐚 = (𝑎ଵ, … , 𝑎௠)୘ as the nonzero vector injected to the

measurement data 𝐳 = (𝑧ଵ, . . . , 𝑧௠)୘, the measurement vector being hacked can be expressed

as 𝐳ୠୟୢ = 𝐳 + 𝐚.

With the DC power system model, the estimated state variables after FDIAs are as follows [66]:

21

𝐱ොୠୟୢ = (𝐇𝐓𝐖𝐇)ି𝟏𝐇𝐓𝐖𝐳ୠୟୢ

= (𝐇𝐓𝐖𝐇)ି𝟏𝐇𝐓𝐖(𝐳 + 𝐚)

= 𝐱ො + (𝐇𝐓𝐖𝐇)ି𝟏𝐇𝐓𝐖𝐚
= 𝐱ො + 𝐜

 (2-5)

and the new ℒ(x) can be computed as:

ℒ(x)ୠୟୢ = ‖𝐳ୠୟୢ − 𝐇𝐱ොୠୟୢ‖ଶ

= ‖𝐳 + 𝐚 − 𝐇(𝐱ො + (𝐇T𝐖𝐇)ିଵ𝐇T𝐖𝐚)‖ଶ

= ‖𝐳 − 𝐇𝐱ො + (𝐚 − 𝐇(𝐇T𝐖𝐇)ିଵ𝐇T𝐖𝐚)‖ଶ

= ‖𝐳 − 𝐇𝐱ො + (𝐚 − 𝐇𝐜)‖ଶ

 (2-6)

If 𝐚 = 𝐇𝐜, then ℒ(x)ୠୟୢ = ℒ(x), which means bad data are successfully injected into meter

measurements while leaving the residual value unchanged.

2.3 False Data Injection Attack

Yao Liu etc. proposed the concept of such stealthy FDIAs in [13] in 2011. He sorted the FDIAs

as random FDIA and targeted FDIA, considering the possible attack goals. Random FDIA, in

which the attacker seeks to find any attack vector as long as it is able to result in an inaccurate

estimation of state variables. For targeted FDIA, the attacker seeks to find an attack vector

which is able to inject a specific error into certain state variables. While the latter type of attack

can potentially cause more damage to the system, the former one is easier to launch. In a

targeted false data injection attack, two cases are considered: a constrained case and an

unconstrained case. In the constrained case, the attacker wants to launch a targeted false data

injection attack that only changes the target state variables but does not contaminate the other

state variables. The constrained case reflects the situations where the control center has the

ability to verify estimates of the other state variables. In the unconstrained case, the attacker

22

does not have any concern about the influence on the other state variables while compromising

the chosen ones. All these situations are under the consideration of limited access to meter

devices from the attacker’s perspective, which bothers attackers a lot, because attackers have

to try many times to construct a satisfying attack vector. Whether easy or difficult to launch

successful FDIAs depends on how many devices the attacker can approach. The more meters

are accessed by the attacker, the larger the probability of success is.

Since the detection mechanism focused on in this paper is to defend such attacks, a strong

adversary is expected. Thus, assuming the attacker, who is eager to cause a severe impact on

the system, has the best knowledge of the entire power system and construct attack vectors

based on that. Therefore, targeted attacks under the constrained case are chosen in this paper

to test the detection mechanism. In constrained case, the attacker can construct an attack

vector 𝐚 by substituting fixed 𝐜 into the relation 𝐚 = 𝐇𝐜.

2.4 Attack Generation Algorithms

When generating targeted attack as training data, in order to make the simulation more realistic,

the following factors need to be considered:

1. The proportion of violated state variables
௞

௡
, where 𝑘 is the number of compromised state

variables, and 𝑛 is the total number of state variables. Typically, the ratio from 10% to

100% with a 10% step is of interest.

2. The duration of the attack 𝑡ଵ. An attack may last for a while, interfering with measurement

data at several points of time.

23

3. The period between every attack 𝑡ଶ. The shorter the interval is, the more frequently the

grid is hacked, while the longer the interval is, the safer the grid is, and fewer attacks occur.

Furthermore, two forms of targeted attacks are considered, the normal targeted attacks and the

playback targeted attacks.

1. The normal targeted attacks: The attacker would change the states to any values he/she

wants. It is impossible to guess the false data the attacker plans to inject, but the distribution

of changes in state variables can be assumed beforehand. In this way, attacks of different

intensities can be generated as many as possible. Normal distribution or uniform

distribution is a common choice.

2. The playback targeted attacks: False data can be constructed deliberately based on a real

historical event and then injected into the system. Sequentially, such kind of attack may not

be likely to be detected successfully only if a static method was applied [44].

At the same time, considering the extreme case, we assume that the attacker can access all the

measurement devices and have a full understanding of the structure of the entire power grid. It

is difficult to achieve this, because there are always some meters that are not easy to access,

such as the measurement points in a substation [13], and the structural parameters of the power

grid cannot be easily obtained by outliers. The advantage of considering extreme conditions is

that it can cover all the situations that may occur in reality. The labels for measurements are set

to 0 when it is safe while 1 when it is attacked. As for the obtainment of measurements, real-

world load curves are used in the simulation, and thus measurements can be generated at every

24

time step, and then the noise is added.

Based on what is discussed before, the algorithm of the generation of attacks is designed as

follows:

Algorithm 1 Generation of Attacks

1: Procedure GENERATE_ATTACK (𝑎𝑡𝑡𝑎𝑐𝑘_𝑡𝑦𝑝𝑒, 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡𝑠, 𝑠𝑡𝑎𝑡𝑒𝑠_𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠,

2: 𝑘/𝑛, 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛)

3: for 𝑖 in range (size_of (𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡𝑠)) do

4: ℎ𝑎𝑐𝑘𝑒𝑑_𝑠𝑡𝑎𝑡𝑒 ← choice (𝑠𝑡𝑎𝑡𝑒𝑠, int (𝑘/𝑛 × size_of (𝑠𝑡𝑎𝑡𝑒𝑠)))

5: 𝑛𝑜𝑖𝑠𝑒 ← Norm(𝜇, 𝜎ଶ)

6: 𝑧[𝑖] ← 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑡𝑛𝑠[𝑖] + 𝑛𝑜𝑖𝑠𝑒

7: 𝑡 = 0

8: if 𝑡 < (𝑡ଵ + 𝑡ଶ) do

9: if 𝑡 = 0 do

10: if 𝑎𝑡𝑡𝑎𝑐𝑘_𝑡𝑦𝑝𝑒 ≠ “playback” then

11: 𝑎 ← get_normal_targeted_attack (ℎ𝑎𝑐𝑘𝑒𝑑_𝑠𝑡𝑎𝑡𝑒, 𝑡ଵ, 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛)

12: else

13: 𝑎 ← get_playback_targeted_attack (ℎ𝑎𝑐𝑘𝑒𝑑_𝑠𝑡𝑎𝑡𝑒, 𝑡ଵ)

14: end if

15: end if

16: if 𝑡 ≤ 𝑡ଵ do

17: 𝑧[𝑖] ← 𝑧[𝑖] + 𝑎

18: 𝑙𝑎𝑏𝑒𝑙[𝑖] ← 1

19: else

20: 𝑙𝑎𝑏𝑒𝑙[𝑖] ← 0

21: end if

22: 𝑡+= 1

23: else

24: 𝑡 = 0

25: end if

26: save (𝑧[𝑖])

27: end for

28: end procedure

25

CHAPTER 3 DETECTION AND RESTORATION

3.1 Detection

As mentioned earlier, FDIAs detection can be treated as a problem of detecting anomalies in a

time series. It is because sparse attack vectors are added to the actual measurements [17],

thereby violating the time structure of the data. Therefore, by predicting the measurement value

at the next moment and comparing it with the actual measurement value, an abnormality can

be detected. As shown in Figure 3-1, the detector in this paper consists of two parts. The first

part is called predictor, which is based on the model proposed in [44], takes in measurements

over a window of length 𝑘 in time step [𝑡 − 𝑘, 𝑡 − 1] to predict the measurement value at

time step 𝑡. The second part is called discriminator, which compares the predicted measurement

value with the actual one to judge the current condition of power system whether being hacked

or not. Since predictor needs to be trained through unsupervised learning, that is, only historical

measurement data are required to make predictor obtain the ability of prediction, while the

discriminator needs to take in historical data and corresponding labels to learn the difference

between predicted measurement value and the actual value, which is supervised learning. When

two parts are combined, they make up a semi-supervised detector.

26

Figure 3-1 Architecture of Semi-Supervised Detector

3.1.1 Predictor

The predictor takes in the measurement data in the time steps [𝑡 − 𝑘, 𝑡 − 1] as input, and

outputs the predicted measurement value at time 𝑡. The predictor consists of two parts, the first

half is a CNN, and the second half is a bidirectional LSTM network. The CNN extracts the

features of the sequence by learning the spatial structure of the measurement data, which is

hidden under the noise at every moment, and then compresses and maps the features into the

low-dimensional latent space. It plays the role of dimensionality reduction during this process.

The bidirectional LSTM network learns the temporal structure of the compressed data so that

the data at the next moment can be inferred in the latent space according to the characteristics

of the previous (𝑘 − 1) time steps. Finally, predicted data are upgraded from low dimension

to the actual dimension through a linear layer. The architecture of the predictor is shown in

Figure 3-2.

27

Figure 3-2 Architecture of the predictor

The network is trained based on historical measurement data and does not need any labels.

Therefore, it is unsupervised learning. Since it is a regression problem to predict future data

based on historical data, mean square error (MSE) is selected as loss function, as shown in

Equation (3-1), which is being minimized when the predicted value is approaching the actual

value.

(2-1) 𝐿(𝑦, 𝑦ො) =
1

𝑛
෍(𝑦௜ − 𝑦పෝ)ଶ

௡

௜ୀଵ

 (3-1)

In Equation (3-1), 𝑦௜ is the 𝑖 -th actual value and 𝑦పෝ is the 𝑖 -th predicted value, 𝑛 is the

number of samples in a batch.

3.1.2 Discriminator

The discriminator is primarily a Multi-layer Perceptron (MLP). It is a feedforward artificial

28

neural network model that maps multiple input data sets to a single output data set. The MLP

is fully connected between layers. The discriminator takes in the predicted value and the actual

value, finds out differences between the two vectors, and then learns the nonlinear mapping

relationship between the differences and the labels through the multiple hidden layers. Finally,

a sigmoid function is used to calculate the probability of whether the system being hacked at

the current moment or not. Figure 3-3 shows the architecture of the discriminator.

Figure 3-3 architecture of the discriminator

To be able to distinguish the difference between the predicted value and the actual value after

the power grid being attacked, three designs of the neural network are proposed, which varies

in the feature extraction part in the proceeding stage. They are concatenation-based

discriminator, convolution-based discriminator, and square-error-vector-based discriminator.

3.1.2.1 Concatenation-Based Discriminator

The predicted vector and the actual vector are spliced together to obtain a new vector with a

double-length, which is used as the feature vector to be further processed by the subsequent

MLP, as shown in Figure 3-4. The MLP can automatically pair off each measurement with its

29

counterpart and recognize the correspondence between these pairs and final decision through

training.

Figure 3-4 Diagram of concatenation

3.1.2.2 Convolution-Based Discriminator

As mentioned earlier, one of the advantages of CNNs is feature extraction. Thus it is widely

used in image processing. Inspired by this, CNNs are used to extract the difference between

the two vectors. Since what is of interest is the difference between corresponding elements of

the two vectors, rather than the difference between different elements, a special way is proposed

in this paper to make the two vectors suitable for convolution processing. According to the

format of an image, the elements of a vector are regarded as pixels, and the two vectors are

regarded as two channels. The synthesized “image” is scanned by a kernel with the size of (1,1)

30

to perform the convolution, and the result goes through activation functions, which guarantees

that only “channels” on a single “pixel” participate in each calculation. With the “image”

passing through multiple convolutional layers, the number of channels increases. It should be

noted that pooling is not required in this process. All channels need to be expanded into a one-

dimensional vector before going to the MLP. Figure 3-5 illustrates this process. In this way, the

difference between the corresponding elements of the predicted vector and the actual vector

can be extracted and stored in this flatten vector from which the MLP can figure out whether

the system being attacked or not.

Figure 3-5 Diagram of convolution

3.1.2.3 Squared-Error-Vector-Based Discriminator

This scheme is to directly calculate the squared errors of the predicted vector and the actual

vector, which are used as features to be passed down to the following MLP. Through the

31

squaring operation, any error greater than one is amplified while the one less than one is

reduced, making the difference more distinct.

3.1.2.4 Difference Between Three Discriminators

From the concatenation-based discriminator to the square-error-vector-based discriminator, the

burden on the MLP is decreasing. In concatenation-based discriminator, the MLP shoulders the

responsibility of analyzing concatenated vector and making the judgment. In convolution-

based discriminator, the CNN takes on the responsibility of analyzing the deviation between

predicted vector and actual vector while the MLP focuses on making decisions. However, what

features the CNN extracts are unclear, while in squared-error-vector-based discriminator, it is

assumed that squared error can be a good fit that CNN can be removed. Additionally, CNN

provides multiple features, while the squared error is a single feature. The performance of these

three designs is presented in Chapter 4.

3.1.2.5 Training for Discriminator

Training discriminator is slightly complicated. First, the predictor gives out the predicted value

at each moment to form a prediction data set, which is used as the training data set for the

discriminator together with the actual data set and the labels obtained during the attack

generating stage. For the 0-1 binary classification task, binary cross-entropy loss is the most

appropriate estimator, which is presented in Equation (3-2) [67].

(2-1) 𝐿(𝑐, 𝑝) = −
1

𝑛
෍ 𝑐 𝑙𝑜𝑔(𝑝) + (1 − 𝑐) 𝑙𝑜𝑔(1 − 𝑝)

௡

 (3-2)

32

In Equation (3-2), 𝑐 is the true label (𝑐 = 1 for the attacked case and 𝑐 = 0 for secure case),

and 𝑝 is the predicted label, which can also be seen as the probability of positive class (being

attacked), 𝑛 is the number of samples in a batch.

It should be noted that, during the training process, the neural network minimizes the empirical

loss. Thus, unbalanced data set where the number of anomalies is much less than the normal

ones will make the discriminator impossible to learn how to judge anomalies. Such occasions

may happen when realistic labeled data is used as the training set, which needs particular

attention when training network. However, the occurrence of such a situation can be avoided

by weighting the loss function: the penalty can be increased when anomalies are missed (false

negatives) to make loss larger than when discriminator fails to predict the normal situations

(false positive) [41]. The weighted loss function, for example, is described in Equation (3-3),

where 𝑎 is the penalty multiplier for false negatives. Also, Due to the neural network is trained

using mini-batch stochastic gradient descent, another solution is to ensure that the normal data

and the abnormal data are evenly distributed for the network to learn when constructing mini-

batches. However, this approach will distort the actual distribution of the data and cause

deviations for the discriminator.

 𝐿(𝑐, 𝑝) = −
1

𝑛
෍ 𝑎 𝑐 log(𝑝) + (1 − 𝑐) log(1 − 𝑝)

௡

 (3-3)

However, in the training task of this paper, the data set can be carefully designed so that the

number of positive and negative samples is roughly equal to ensure the balance of the data set.

Even Equation (3-2) can still ensure that the discriminator is perfectly trained.

33

3.1.3 Measurement Restoration

With the predicted measurements from the predictor at the current time point, if the alarm was

triggered by the discriminator in which the power grid was under attack, the damaged

measurements could be repaired by predicted ones. For the measurement vector that needs to

be repaired, firstly, the element that has the largest error from the predicted one needs to be

found out, then replaced by the corresponding predicted value. The MSE is required to be

calculated after every substitution to see whether it is less than a certain threshold. If the

predetermined accuracy is reached, the repair work is done. The key is to determine the proper

threshold. First of all, the prediction results given by the predictor are not 100% perfect,

including errors caused by the unpredictability of noise. Therefore, the average error in the safe

state can be used as the threshold for restoration. Accordingly, Algorithm 2 is defined, and

Figure 3-6 illustrates the process.

Algorithm 2 Measurements Restoration

1: Procedure REPAIR_MEASUREMENTS (𝑟𝑒𝑎𝑙_𝑧, 𝑝𝑟𝑒𝑑_𝑧, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑)

2: while mse_of (𝑟𝑒𝑎𝑙_𝑧, 𝑝𝑟𝑒𝑑_𝑧) > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 do

3: 𝑖𝑛𝑑𝑒𝑥 ← arg_max(get_error (𝑟𝑒𝑎𝑙_𝑧, 𝑝𝑟𝑒𝑑_𝑧))

4: 𝑟𝑒𝑎𝑙_𝑧[𝑖𝑛𝑑𝑒𝑥] ← 𝑝𝑟𝑒𝑑_𝑧[𝑖𝑛𝑑𝑒𝑥]

5: end while

34

Figure 3-6 Flow chart of measurement restoration

3.1.4 Detection and Restoration Mechanism

The detection method and restoration method mentioned above are combined to obtain the

comprehensive detection and restoration mechanism proposed in this paper. The real-time

measurement data is continuously inputted into the detector, and the detector gives out the

prediction of the current state of the power grid. If the grid is attacked, the alarm sets off, and

the damaged data are handed over to the restorer for repair. After the repair is completed, the

repaired measurement data are passed to the state estimator; If the power grid is safe, the

measurement data are directly used for state estimation. In both branches, the measurement

35

data are stored for offline training of the detector. Figure 3-7 details the architecture of such an

integrated mechanism.

Since the structure of power grids and load characteristics are changing with time, it is

necessary to train and update the detector periodically. In other words, short training time and

prediction time are of importance, because the time required for training a neural network and

prediction is directly related to the depth and scale of the network, which means that the

detector cannot have a too complex structure.

Figure 3-7 Architecture of detection and restoration mechanism

3.1.5 Data Preparation and Training

Since this is a many-to-one model of sequence prediction, batches of time series and the

corresponding state of the system for the last time step of the series need to be prepared. A

fixed-length rolling window has been used to create training pairs. The inputs for detector are

the measurements within a time window (predictor’s input), and the measurement of the next

36

time step to the window (along with the predictor’s predicted measurement as the

discriminator’s input). The output of the detector is the label corresponding to the system state

at a single time step. The detector is trained by the ADAM [68] optimizer using mini-batch

gradient descent. Dropouts are used to prevent the overfitting of the model [69]. The dropouts

technique randomly drops out the neural connections between layers, thereby improving the

generalization ability of the detector and making it more robust to noise.

3.1.1 Optimal Threshold Determination

The optimal threshold can be determined through the ROC curve and then be used to calculate

Precision, Recall, and F1 Score for the proposed detector.

ROC curve is a graphical plot which illustrates the diagnostic ability of a binary classifier

system when its discrimination threshold varies. The ROC curve is defined by depicting the

true-positive rate (TPR) against the false-positive rate (FPR) at various threshold settings,

which plots relative tradeoff between false positives (costs) and true positives (benefits). The

TPR is also known as the sensitivity, Recall, or probability of detection in machine learning.

The FPR, also known as the probability of false alarm, is equal to (1 − specificity), where the

specificity means true-negative rate (TNR), which measures the proportion of actual negatives

that are correctly detected [70, 71].

In ROC space, a diagonal line from the left bottom corner to the top right corner, also known

as the line of no-discrimination, represents points set by a random guess. Points under the

diagonal represent poor classification results (worse than the random guess), while points

37

above the line indicate great results (better than the random guess). The best potential classifier

would yield a point in the upper left corner or coordinate (0,1) of the ROC region, indicating

100% sensitivity (no false negatives) and 100% specificity (no false positives). The (0,1) point

is also called a perfect classification. It should be kept in mind that the output of a consistently

bad classifier could simply be reversed to get a good classifier [70].

As a result, the point near the perfect classification should be picked up as an optimal cutoff

point, which can be screened out by minimum Euclidean distance from (0,1) or maximum

Youden index 𝐽, which is the vertical distance between the point on the ROC curve and the

diagonal line. The formula to calculate Youden index 𝐽 is as follows [72],

 𝐽 = sensitivity + specificity − 1 (3-4)

which can be expanded as follows by notations in section 1.3 of Chapter 1, that is

 𝐽 =
TP

TP + FN
+

TN

TN + FP
− 1 (3-5)

Youden index is used to search out the best threshold in this paper.

CHAPTER 4 EXPERIMENTS AND OBSERVATIONS

4.1 Data Generation, Test Cases, and Model’s Parameters.

In order to make the simulation more realistic, actual load data from the New York Independent

System Operator (NYISO) [73] were used, which was a total of 9094 points sampled every 5

minutes in a month. These load data were applied to the IEEE 39-bus case [74] (Figure 4-1),

38

and the AC power flow was calculated by MATPOWER [75]toolbox to obtain measurements.

Since there were only 11 load profiles from the NYISO data set, all the curves were scaled and

replicated to match the IEEE 39-bus system while inactive power injections kept unchanged.

Part of the ideal operating conditions of bus 1 is shown in Figure 4-2. The obtained

measurements include active power flow of 39 buses and 56 branches, 85 measurements in

total. Besides, gaussian noise with a mean of zero and a standard deviation of 0.02 was added

to obtained measurements.

Based on the measurements, the algorithm discussed in Chapter 2 was used to generate attacks.

For ordinary targeted FDIAs, changes with a uniform distribution [−10%, 10%] were applied

to state variables; for playback FDIAs, a delay of 3 time steps was applied to state variables,

i.e., real load data 15 minutes ago were used to generate attack vectors. Besides, the width of

the rolling window to create training pairs was set to three time steps, along with the duration

of each attack was four time steps, and the break between every attack was three time steps.

The reason why it was set up in this way is that these parameters can simulate various scenarios

where how many hacked measurement vectors account for each time window. For example,

the grid being attacked at all time steps or only one time step in a window results in different

errors for prediction. As mentioned before, different attack levels were considered, in which

the number of attacked state variables increases from 10% to 100% by 10%. All measurements

were repeatedly applied to each attack level. Additionally, assume all devices can be accessed

by an attacker so that situations can be covered as many as possible.

In this experiment, the detector was trained for only three epochs to avoid overfitting and tuned

39

up by Bayes Optimization. The predictor contained two convolutional layers with ReLU

activation functions, which reduced the dimensionality of measurements from 85 to 32, and 3

bidirectional RNN layers with LSTM cells along with a dense layer at the end to output

predictions. The discriminator contained two hidden layers with ReLU activation functions.

All dropout rates were set to 0.5 during tuning up.

In order to verify the effectiveness of the proposed detection mechanism, results were

compared with other machine learning algorithms, and the effectiveness of the detection

mechanism was analyzed in different attack scenarios.

40

Figure 4-1 IEEE 39-Bus Power System

41

Figure 4-2 Ideal Operating Conditions for Bus 1

0.98

1

Voltage Magnitude

-10
0

10
20

Voltage Angle

0.6

0.7
Active Power Injection

Ideal operating conditions for bus 1

day1 day2 day3 day4 day5 day6 day7
-1

0

1
Inactive Power Injection

42

4.2 Analysis of Data Set

The strength of the attack vectors depends on the value of the state change 𝐜. Random values

of 𝐜 can cover various conditions of malicious data injection attacks, which can successfully

bypass the traditional residual detection mechanism. After the test system being injected into

the aforementioned normal targeted attacks and playback targeted attacks respectively with

𝑘/𝑛 = 50%, histograms of the measurements of the test system before and after attacks are

compared together, as shown in Figure 4-3 and Figure 4-4.

Figure 4-3 Histograms of hacked and unhacked measurements of IEEE 39 bus system by normal

targeted attacks

normal measurements

-20 -15 -10 -5 0 5 10 15 20
0

5000

10000

15000

Histgram of hacked & unhacked measurements of 39-bus system

hacked measurements with k/n=50%

-20 -15 -10 -5 0 5 10 15 20
0

5000

10000

15000

43

Figure 4-4 Histograms of hacked and unhacked measurements of IEEE 39 bus system by playback

targeted attacks

It can be seen from Figure 4-3 and Figure 4-4 that after stealthy attacks were injected into the

test system, the probability distribution of the measurements changed, but the change was slight.

Therefore, it is difficult to detect malicious data injection attacks through statistic methods.

Later the proposed detector is tested for such attacks.

4.1 Prediction

70% of ideal baseline data, 6364 samples, were spilled to train the predictor, and the remaining

30% was used as a test dataset. After being trained for three epochs, the MSE of prediction

reached 0.0071 on the test dataset, and the training time was 39s, and the test time was 0.68s.

normal measurements

-20 -10 0 10 20 30
0

5000

10000

15000

Histgram of hacked & unhacked measurements of 39-bus system

hacked measurements with k/n=50%

-20 -10 0 10 20 30
0

5000

10000

15000

44

Next, the predicted data were used to train and test discriminators together with the attacked

dataset. The performance of discriminators based on such a predictor was evaluated

considering both mixed attack levels and each attack level, respectively.

4.2 Detection

Conventionally, samples are separated according to their Euclidean distance and a threshold.

In this section, three ANN-based discriminators were compared with such a Euclidean-

distance-based approach, as well as three other common classifiers in machine learning:

Random Forest, K-Nearest Neighbors (KNN), and support vector machine (SVM). It is worth

noting that three non-ANN-based classifiers take in only attacked data, which means they have

nothing to do with the predictor. The ratio between a training set and a test set was still

70%/30%, and attacks were from different attack levels uniformly.

4.2.1 Normal Targeted Attacks

The ANN-based discriminators were trained for three epochs. With the classification threshold

being determined by the algorithm in Chapter 3, the metrics on the test set are shown in Table

4-1. The ROC curves are shown in Figure 4-5 to Figure 4-11.

As can be seen from these figures and the table, the ANN-based discriminators had a robust

performance compared to other methods, especially achieved both high Precision and Recall.

The top three were occupied by them in ROC-AUC and top four in F1-Score, with acceptable

training and detection time. Although SVM’s F1-Score exceeded convolution-based and

squared-error-vector-based approaches, the time required by SVM in the training phase was

45

almost 43 times the average time 17.12s of the neural network classifiers, which was the longest

training time among all classifiers. Similarly, the detection time required by the KNN was

almost 209 times the average value 1.87s of the neural network classifiers, which was the

longest detection time among all classifiers. Random Forest was the one with the shortest

detection time, but its ROC-AUC was the lowest. The method based on Euclidean distance had

the shortest training and detection time in total because it did not require training, but its F1-

Score was the lowest.

At last, even if the time consumption caused by the predictor had been added, the proposed

detector would be still tempting. However, the discriminator and the predictor do not have to

be trained together. On the whole, if time cost is important, it is recommended to choose the

Euclidean-distance-based method; if time is sort of ample, the discriminators based on neural

networks demonstrate the best performance.

 ROC-

AUC
Precision Recall F1-Score

Training

Time/s

Test

Time/s

Concatenation 0.9877 0.9945 0.9542 0.9739 11.94 1.39

Convolution 0.9922 0.9856 0.9690 0.9773 25.22 2.58

Squared Error Vector 0.9962 0.9976 0.9715 0.9844 14.22 1.64

Euclidean Distance 0.9798 0.9419 0.9215 0.9316 0 1.39

Random Forest 0.9202 0.8982 0.9904 0.9420 20.27 0.10

KNN 0.9465 0.9979 0.8956 0.9440 2.86 390.16

SVM 0.9787 0.9947 0.9643 0.9792 729.43 21.18

Table 4-1 Detection using Various Approach under normal targeted attacks with mixed levels

46

Figure 4-5 ROC Curve for concatenation discriminator under normal targeted attacks

Figure 4-6 ROC Curve for convolution discriminator under normal targeted attacks

47

Figure 4-7 ROC Curve for Squared error vector discriminator under normal targeted attacks

Figure 4-8 ROC Curve for Euclidean distance method under normal targeted attacks

48

Figure 4-9 ROC Curve for random forest classifier under normal targeted attacks

Figure 4-10 ROC Curve for KNN classifier under normal targeted attacks

49

Figure 4-11 ROC Curve for SVM classifier under normal targeted attacks

To observe the performance of discriminators under attacks of different levels, they were tested

on different attack levels, and the results are shown in Figure 4-12 to Figure 4-14. All classifiers

had a lower performance when the attack level was low because the low proportion of tampered

state variables changed measurement data too slightly to be detected, or the change was even

drowned in the noise.

From Figure 4-12, KNN and squared-error-vector-based discriminator ranked first in Precision.

SVM and the concatenation-based discriminator ranked second. The convolution-based

discriminator was at the third level above 0.98. The Precision for the Euclidean-distance-based

method changed dramatically from about 0.89 to around 0.94. Random Forest was the last

never more than 0.90.

50

From Figure 4-13, it can be seen that difference occurred at low attack levels. Even though

Random Forest achieved the highest Recall, it paid a great price that the Precision was the

lowest. To the contrast, KNN was the last due to its high Precision. The ANN-based

discriminators’ Recall was within 0.6 and 0.8 when 𝑘/𝑛 = 0.1 and then went up to 0.90 or

above when 𝑘/𝑛 > 0.1, among which the squared-error-vector-based one was the best. The

SVM joined the group of the ANN-based discriminators because of similar performance.

From Figure 4-14, with the tradeoff between Precision and Recall, the ANN-based

discriminators still performed well at all attack levels in F1-Score. Among them, the squared-

error-vector-based discriminator was the best, the convolution-based one was the second, and

the concatenation-based one was the last. When 𝑘/𝑛 was greater than 0.4, their F1-Score

approached close to 1. Although when 𝑘/𝑛 = 0.1, Random Forest achieved the best value of

0.9, its F1-score failed to exceed 0.95 when 𝑘/𝑛 > 0.2. Also, F1-Score of SVM exceeded the

concatenation-based discriminator when 𝑘/𝑛 was less than 0.4.

Figure 4-12 Precision for various classifiers under normal targeted attacks with different levels

51

Figure 4-13 Recall for various classifiers under normal targeted attacks with different levels

Figure 4-14 F1-Score for various classifiers under normal targeted attacks with different levels

52

4.2.2 Playback Targeted Attacks

Playback targeted attacks were from real load data 15 minutes ago, i.e., a delay of 3 time steps.

The performance of the proposed discriminators was analyzed under different attack levels.

The discriminators based on the neural network were trained three epochs. The classification

threshold was determined according to the algorithm in Chapter 3, and the metrics on the test

dataset are shown in Table 4-2. ROC curves are shown from Figure 4-15 to Figure 4-21. As

can be seen from Table 4-2, compared with the normal targeted attack scenario, all classifiers’

performance was improved. The ANN-based classifiers were top three in the comprehensive

metrics such as ROC-AUC and F1-Score, where particularly the convolution-based

discriminator was the champion. All ANN-based discriminators kept high in both Precision and

Recall while the other methods not.

ROC-

AUC
Precision Recall F1-Score

Training

Time/s

Test

Time/s

Concatenation 0.9964 0.9987 0.9742 0.9863 15.60 1.70

Convolution 0.9981 0.9987 0.9841 0.9913 28.97 2.79

Squared Error

Vector
0.9980 0.9967 0.9827 0.9897 15.83 1.74

Euclidean Distance 0.9638 0.9747 0.8601 0.9138 0 1.71

Random Forest 0.9635 0.9559 0.9879 0.9716 11.56 0.08

KNN 0.9694 0.9906 0.9508 0.9703 3.26 441.11

SVM 0.9455 1.0 0.8910 0.9424 1671.35 45.44

Table 4-2 Detection using Various Approaches under playback targeted attacks with mixed levels

53

Figure 4-15 ROC Curve for concatenation discriminator under playback targeted attacks

Figure 4-16 ROC Curve for convolution discriminator under playback targeted attacks

54

Figure 4-17 ROC Curve for Squared error vector discriminator under playback targeted attacks

Figure 4-18 ROC Curve for Euclidean distance method under playback targeted attacks

55

Figure 4-19 ROC Curve for random Forest under playback targeted attacks

Figure 4-20 ROC Curve for KNN under playback targeted attacks

56

Figure 4-21 ROC Curve for SVM under playback targeted attacks

Figure 4-22 to Figure 4-24 shows the performance of different classifiers under different attack

levels separately. It can be seen that all classifiers performed better than on the normal targeted

attacks dataset. Similar to the scenario of normal targeted attacks, the ANN-based

discriminators were still the best at any level of attacks and demonstrated a perfect balance

between Precision and Recall. Particularly, the convolution-based discriminator was the best.

57

Figure 4-22 Precision for various classifiers under playback targeted attacks with different levels

Figure 4-23 Recall for various classifiers under playback targeted attacks with different levels

58

Figure 4-24 F1-Score for various classifiers under playback targeted attacks with different levels

4.2.3 Further experiment

It is found that ANN-based discriminators could also achieve satisfactory results even if they

were trained on the normal targeted attack dataset but tested on the playback targeted attack

dataset, as shown in Table 4-1. Among them, discriminator that used squared error vectors as

features had the highest ROC-AUC and F1-Score. It also shows that playback targeted attacks

can be regarded as a subset of normal targeted attacks with random changes on state variables.

Thus, only the latter one needs to be focused in future research.

 ROC-AUC Precision Recall F1-Score

Concatenation 0.9955 0.9982 0.9745 0.9862

Convolution 0.9969 0.9964 0.9854 0.9858

Squared Error Vector 0.9973 0.9975 0.9790 0.9881

Table 4-3 Detection using discriminators when the dataset is changed

59

4.2.4 Analysis of The Difference Between Precited Data and

Actual Data

4.2.4.1 Normal Targeted Attacks

In order to explore the difference in discriminators’ performance under different attack levels,

this paper analyzed the distribution of the Euclidean distance between the predicted

measurements and the actual measurements. Figure 4-25 shows the distance distribution under

all attack levels. Figure 4-26 to Figure 4-35 show the distance distribution at different levels.

From Figure 4-25, actual measurements deviated from predicted ones in a wide range of about

0.5 to 5 in attacked cases, and in a small range of 0.5 to 1.5 in secure cases because of the

presence of prediction errors. Because of that, the distributions in the two cases overlapped,

making it difficult for various classifiers to make accurate judgments. However, because of the

powerful learning ability of neural networks, data in the overlap can be distinguished as much

as possible by proposed discriminators compared with other non-ANN -based classifiers.

It has been found from the distribution of distances under different attack levels that the lower

𝑘/𝑛 was, the more severe the overlapping was. When 𝑘/𝑛 = 1.0, data in the two cases were

almost entirely separated, which is why all classifiers performed perfectly when 𝑘/𝑛 was high

while not very well when 𝑘/𝑛 was low. In reality, an attacker is unlikely to control too many

devices, which means that the attack level may not be very high, and attacks are difficult to

detect. For this reason, ANN-based discriminators proposed in this paper are more

recommended.

60

Figure 4-25 Distribution of Euclidean distance between predicted data and actual data under normal

targeted attacks of mixed levels

Figure 4-26 Distribution of Euclidean distance between predicted data and actual data under normal

targeted attacks with k/n=0.1

61

Figure 4-27 Distribution of Euclidean distance between predicted data and actual data under normal

targeted attacks with k/n=0.2

Figure 4-28 Distribution of Euclidean distance between predicted data and actual data under normal

targeted attacks with k/n=0.3

62

Figure 4-29 Distribution of Euclidean distance between predicted data and actual data under normal

targeted attacks with k/n=0.4

Figure 4-30 Distribution of Euclidean distance between predicted data and actual data under normal

targeted attacks with k/n=0.5

63

Figure 4-31 Distribution of Euclidean distance between predicted data and actual data under normal

targeted attacks with k/n=0.6

Figure 4-32 Distribution of Euclidean distance between predicted data and actual data under normal

targeted attacks with k/n=0.7

64

Figure 4-33 Distribution of Euclidean distance between predicted data and actual data under normal

targeted attacks with k/n=0.8

Figure 4-34 Distribution of Euclidean distance between predicted data and actual data under normal

targeted attacks with k/n=0.9

65

Figure 4-35 Distribution of Euclidean distance between predicted data and actual data under normal

targeted attacks with k/n=1.0

66

4.2.4.2 Playback Targeted Attacks

At the same time, the playback targeted attacks data set was also analyzed. Figure 4-36 to

Figure 4-46 show distance distributions. For playback attacks, since the value of the state

variable was based on historical data rather than changed randomly, the deviation between the

actual value and the predicted value was much larger than that under normal targeted attacks.

The deviation almost exceeded 100 when the grid is attacked while mostly not exceeded five

when the grid is safe. This phenomenon accounts for why all classifiers performed better on

the playback dataset than the normal dataset. Of course, an overlap still existed at each level,

resulting in misclassification sometimes.

Figure 4-36 Distribution of Euclidean distance between predicted data and actual data under playback

targeted attacks of mixed levels

67

Figure 4-37 Distribution of Euclidean distance between predicted data and actual data under playback

targeted attacks with k/n=0.1

Figure 4-38 Distribution of Euclidean distance between predicted data and actual data under playback

targeted attacks with k/n=0.2

68

Figure 4-39 Distribution of Euclidean distance between predicted data and actual data under playback

targeted attacks with k/n=0.3

Figure 4-40 Distribution of Euclidean distance between predicted data and actual data under playback

targeted attacks with k/n=0.4

69

Figure 4-41 Distribution of Euclidean distance between predicted data and actual data under playback

targeted attacks with k/n=0.5

Figure 4-42 Distribution of Euclidean distance between predicted data and actual data under playback

targeted attacks with k/n=0.6

70

Figure 4-43 Distribution of Euclidean distance between predicted data and actual data under playback

targeted attacks with k/n=0.7

Figure 4-44 Distribution of Euclidean distance between predicted data and actual data under playback

targeted attacks with k/n=0.8

71

Figure 4-45 Distribution of Euclidean distance between predicted data and actual data under playback

targeted attacks with k/n=0.9

Figure 4-46 Distribution of Euclidean distance between predicted data and actual data under playback

targeted attacks with k/n=1.0

72

4.3 Prediction Based on Measurement Restoration

In the predicting process, once the discriminator sets an alarm, the damaged data is passed to

the restorer to repair. Then the repaired data participate in the prediction at the next moment.

Figure 4-47 shows the MSE of prediction with the aid of such a recovery mechanism. It is

found that the MSE trends to be higher than 0.0071, which is obtained using an utterly attack-

free dataset, and MSE gradually increases as 𝑘/𝑛 increases, but not greater than 0.0080, only

increasing by 0.0008 which is negligible to the discriminator and completely acceptable.

Figure 4-47 MSE of prediction under normal targeted attacks

73

CHAPTER 5 CONCLUSION AND FUTURE WORK

5.1 Conclusion

In this paper, a new prediction-based detector which aims to detect stealthy FDIAs against SE

in smart grids was proposed using deep learning techniques. It leverages both convolutional

neural networks, which excel in spatial feature extraction, and recurrent neural networks, which

excel in exploring temporal correlation. It features a separable architecture, i.e., predictor and

discriminator. The predictor learns behaviors from normal historical data. The discriminator

learns the deviation between prediction and actual measurements into which may be injected a

specific type of attack, for example, targeted attacks in this paper, to predict the probability of

being attacked. Additionally, three types of discriminators varying in feature extraction, such

as convolution, concatenation, and squared-error vector, were designed and evaluated in

comparison with the conventional Euclidean-based method and three common non-ANN

machine learning classifiers such as SVM, Random Forest, and KNN.

At last, a measurement restoration mechanism was proposed. Through replacing items with

high deviation by prediction, the actual damaged measurements can be repaired to reduce the

impact on the predictor, even though the discriminator can accommodate a slight prediction

error.

Experiments were carried on IEEE 39-bus power system with load profiles from the real world

to assess the performance of the proposed detection mechanism. With the consideration that

74

targeted FDIAs generated randomly may cover random FDIAs, targeted FDIAs and its

playback form were conducted respectively. No matter in normal or playback targeted attacks,

the proposed detector with any of three discriminators can achieve outstanding attack detection

performance, particularly better in playback form than in normal form due to the former one

lacks in randomness. It has also been found that the more devices are compromised, the easier

attacks are to be distinguished. Also, the results show that ANN-based discriminators

outperform non-ANN machine learning algorithms if time is ample. Particularly, the squared-

error-vector-based discriminator was the best under normal targeted attacks, and convolution-

based discriminator was the best under playback targeted attacks.

5.2 Future Work

1. Apart from linear stealthy FDIAs having been used in this paper, nonlinear stealthy FDIAs

can be applied to test the proposed detector.

2. More data can be collected to be investigated.

3. Fault events can be involved to make the problem more complicated.

4. Larger power systems, such as the 118-bus power system, can be studied to verify the

performance of the proposed model.

5. The slow injecting process can be considered.

75

REFERENCES

[1] A. S. Musleh, G. Chen, and Z. Y. Dong, “A Survey on the Detection Algorithms for False Data

Injection Attacks in Smart Grids,” IEEE Trans. Smart Grid, p. 1, 2019.

[2] Smart Grid Research: Power - IEEE Grid Vision 2050.

[3] M. Faheem et al., “Smart grid communication and information technologies in the perspective of

Industry 4.0: Opportunities and challenges,” Computer Science Review, vol. 30, pp. 1–30, 2018.

[4] Wikipedia, December 2015 Ukraine power grid cyberattack. [Online]. Available: https://

en.wikipedia.org/w/index.php?title=December_2015_Ukraine_power_grid_cyberattack&oldid=

946593004 (accessed: Apr. 14 2020).

[5] T. L. Hardy, Software and system safety: Accidents, incidents, and lessons learned. Bloomington, IN:

Authorhouse, 2012.

[6] POWER, “What You Need to Know (and Don’t) About the AURORA Vulnerability,” POWER

Magazine, 31 Aug., 2013. https://www.powermag.com/what-you-need-to-know-and-dont-about-the-

aurora-vulnerability/ (accessed: Apr. 14 2020).

[7] Z. Zhang, S. Gong, A. D. Dimitrovski, and H. Li, “Time Synchronization Attack in Smart Grid:

Impact and Analysis,” IEEE Trans. Smart Grid, vol. 4, no. 1, pp. 87–98, 2013.

[8] L. R. Phillips et al., “Analysis of operations and cyber security policies for a system of cooperating

Flexible Alternating Current Transmission System (FACTS) devices,” 2005.

[9] G. Liang, J. Zhao, F. Luo, S. R. Weller, and Z. Y. Dong, “A Review of False Data Injection Attacks

Against Modern Power Systems,” IEEE Transactions on Smart Grid, vol. 8, no. 4, pp. 1630–1638,

2017.

[10] Yang Weng, Rohit Negi, Christos Faloutsos, and Marija D. Ilic, “Robust Data-Driven State

Estimation for Smart Grid,” (in English (US)), IEEE Transactions on Smart Grid, vol. 8, no. 4, pp.

1956–1967, 2017.

[11] P. Eder-Neuhauser, T. Zseby, and J. Fabini, “Resilience and Security: A Qualitative Survey of Urban

Smart Grid Architectures,” IEEE Access, vol. 4, pp. 839–848, 2016.

[12] R. Khorshidi and F. Shabaninia, “A new method for detection of fake data in measurements at smart

grids state estimation,” IET Science, Measurement & Technology, vol. 9, no. 6, pp. 765–773, 2015.

[13] Y. Liu, P. Ning, and M. K. Reiter, “False data injection attacks against state estimation in electric

power grids,” ACM Transactions on Information and System Security (TISSEC), vol. 14, no. 1, p. 13,

2011.

[14] X. Liu and Z. Li, “Local Topology Attacks in Smart Grids,” IEEE Trans. Smart Grid, vol. 8, no. 6,

pp. 2617–2626, 2017.

[15] Wikipedia, Deep learning. [Online]. Available: https://en.wikipedia.org/w/index.php?title=

Deep_learning&oldid=949467054 (accessed: Apr. 14 2020).

[16] M. Ozay, I. Esnaola, F. T. Y. Vural, S. R. Kulkarni, and H. V. Poor, “Sparse Attack Construction and

State Estimation in the Smart Grid: Centralized and Distributed Models,” IEEE J. Select. Areas

Commun., vol. 31, no. 7, pp. 1306–1318, 2013.

[17] L. Liu, M. Esmalifalak, Q. Ding, V. A. Emesih, and Z. Han, “Detecting False Data Injection Attacks

on Power Grid by Sparse Optimization,” IEEE Trans. Smart Grid, vol. 5, no. 2, pp. 612–621, 2014.

[18] M. Ozay, I. Esnaola, F. T. Yarman Vural, S. R. Kulkarni, and H. V. Poor, “Machine Learning Methods

76

for Attack Detection in the Smart Grid,” IEEE transactions on neural networks and learning systems,

vol. 27, no. 8, pp. 1773–1786, 2016.

[19] Markus Goldstein and Seiichi Uchida, “A Comparative Evaluation of Unsupervised Anomaly

Detection Algorithms for Multivariate Data,” PLOS ONE, vol. 11, no. 4, e0152173, 2016.

[20] S. A. Foroutan and F. R. Salmasi, “Detection of false data injection attacks against state estimation in

smart grids based on a mixture Gaussian distribution learning method,” IET Cyber-Physical Systems:

Theory & Applications, vol. 2, no. 4, pp. 161–171, 2017.

[21] Murray Rosenblatt, “Remarks on Some Nonparametric Estimates of a Density Function,” Annals of

Mathematical Statistics, vol. 27, no. 3, pp. 832–837, 1956.

[22] S. McLaughlin, B. Holbert, A. Fawaz, R. Berthier, and S. Zonouz, “A Multi-Sensor Energy Theft

Detection Framework for Advanced Metering Infrastructures,” IEEE J. Select. Areas Commun., vol.

31, no. 7, pp. 1319–1330, 2013.

[23] ARNAV KUNDU, “DEEP LEARNING TECHNIQUES FOR DETECTION OF FALSE DATA

INJECTION ATTACKS ON ELECTRIC POWER GRID,” MASTER OF SCIENCE, August/2019.

[24] A. S. Musleh, M. Debouza, H. M. Khalid, and A. Al-Durra, “Detection of False Data Injection

Attacks in Smart Grids: A Real-Time Principle Component Analysis,” in IECON 2019 - 45th Annual

Conference of the IEEE Industrial Electronics Society: Convention Center, Lisbon, Portugal, 14 - 17

October, 2019, Lisbon, Portugal, 2019, pp. 2958–2963.

[25] S. Ahmed, Y. Lee, S.-H. Hyun, and I. Koo, “Unsupervised Machine Learning-Based Detection of

Covert Data Integrity Assault in Smart Grid Networks Utilizing Isolation Forest,” IEEE

Trans.Inform.Forensic Secur., vol. 14, no. 10, pp. 2765–2777, 2019.

[26] Y. Song, Z. Yu, X. Liu, J. Tian, and M. Chen, “Isolation Forest based Detection for False Data

Attacks in Power Systems,” in 2019 IEEE PES International Conference on Innovative Smart Grid

Technologies Asia (ISGT 2019): May 21-24, 2019, Chengdu, China, Chengdu, China, 2019, pp.

4170–4174.

[27] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection,” ACM Comput. Surv., vol. 41, no. 3,

pp. 1–58, 2009.

[28] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with deep convolutional

neural networks,” Commun. ACM, vol. 60, no. 6, pp. 84–90, 2017.

[29] J. Li et al., “Jasper: An End-to-End Convolutional Neural Acoustic Model,” 2019.

[30] R. Chalapathy and S. Chawla, “Deep Learning for Anomaly Detection: A Survey,” 2019.

[31] R. Chalapathy, E. Z. Borzeshi, and M. Piccardi, “An Investigation of Recurrent Neural Architectures

for Drug Name Recognition,” 2016.

[32] D. Wulsin, J. Blanco, R. Mani, and B. Litt, “Semi-Supervised Anomaly Detection for EEG

Waveforms Using Deep Belief Nets,” in 2010 International Conference on Machine Learning and

Applications, Washington, DC, USA, 2010, pp. 436–441.

[33] A. Tuor, S. Kaplan, B. Hutchinson, N. Nichols, and S. Robinson, “Deep Learning for Unsupervised

Insider Threat Detection in Structured Cybersecurity Data Streams,” 2017.

[34] Y. He, G. J. Mendis, and J. Wei, “Real-Time Detection of False Data Injection Attacks in Smart Grid:

A Deep Learning-Based Intelligent Mechanism,” IEEE Transactions on Smart Grid, vol. 8, no. 5, pp.

2505–2516, 2017.

[35] J. Wei and G. J. Mendis, “A deep learning-based cyber-physical strategy to mitigate false data

injection attack in smart grids,” in IEEE proceedings of the 2016 Joint Workshop on Cyber-Physical

Security and Resilience in Smart Grids (CPSR-SG): 11th April 2016, Vienna, Austria, Vienna, 2016,

77

pp. 1–6.

[36] H. Wang et al., “Deep Learning-Based Interval State Estimation of AC Smart Grids Against Sparse

Cyber Attacks,” IEEE Trans. Ind. Inf., vol. 14, no. 11, pp. 4766–4778, 2018.

[37] T. Schlegl, P. Seeböck, S. M. Waldstein, U. Schmidt-Erfurth, and G. Langs, “Unsupervised Anomaly

Detection with Generative Adversarial Networks to Guide Marker Discovery,” 2017.

[38] Jinwon An and Sungzoon Cho, “Variational Autoencoder based Anomaly Detection using

Reconstruction Probability,” 2015.

[39] A. Ayad, H. E. Z. Farag, A. Youssef, and E. F. El-Saadany, “Detection of false data injection attacks

in smart grids using Recurrent Neural Networks,” in 2018 IEEE Power & Energy Society Innovative

Smart Grid Technologies Conference (ISGT): 19-22 Feb. 2018, Washington, DC, 2018, pp. 1–5.

[40] S. Binna, S. R. Kuppannagari, D. Engel, and V. K. Prasanna, “Subset Level Detection of False Data

Injection Attacks in Smart Grids,” in 2018 IEEE Conference on Technologies for Sustainability

(SusTech), Long Beach, CA, USA, 2018, pp. 1–7.

[41] A. Kundu, “DEEP LEARNING TECHNIQUES FOR DETECTION OF FALSE DATA INJECTION

ATTACKS ON ELECTRIC POWER GRID,”

[42] J. J. Q. Yu, Y. Hou, and V. O. K. Li, “Online False Data Injection Attack Detection With Wavelet

Transform and Deep Neural Networks,” IEEE Trans. Ind. Inf., vol. 14, no. 7, pp. 3271–3280, 2018.

[43] Q. Deng and J. Sun, “False Data Injection Attack Detection in a Power Grid Using RNN,” in IECON

2018 - 44th Annual Conference of the IEEE Industrial Electronics Society: Omni Shoreham Hotel,

Washington DC, United States of America, 20-23 October, 2018 : proceedings, Washington, DC,

2018, pp. 5983–5988.

[44] X. Niu, J. Li, J. Sun, and K. Tomsovic, “Dynamic Detection of False Data Injection Attack in Smart

Grid using Deep Learning,” in 2019 IEEE Power & Energy Society Innovative Smart Grid

Technologies Conference (ISGT), Washington, DC, USA, 2019, pp. 1–6.

[45] Y. Wang, W. Shi, Q. Jin, and J. Ma, “An Accurate False Data Detection in Smart Grid Based on

Residual Recurrent Neural Network and Adaptive threshold,” in 2019 IEEE International Conference

on Energy Internet (ICEI), Nanjing, China, May. 2019 - May. 2019, pp. 499–504.

[46] Wikipedia, Convolutional neural network. [Online]. Available: https://en.wikipedia.org/w/index.php?

title=Convolutional_neural_network&oldid=950807179 (accessed: Apr. 13 2020).

[47] K. Fukushima, “Neocognitron,” Scholarpedia, vol. 2, no. 1, p. 1717, 2007.

[48] Blurring an Image | Apple Developer Documentation. [Online]. Available: https://

developer.apple.com/documentation/accelerate/blurring_an_image (accessed: Apr. 13 2020).

[49] Max-pooling / Pooling - Computer Science Wiki. [Online]. Available: https://computersciencewiki.org

/index.php/Max-pooling_/_Pooling (accessed: Apr. 14 2020).

[50] Daniel Gibert, “Convolutional Neural Networks for Malware Classification,” Master's thesis,

Polytechnic University of Catalonia; Rovira i Virgili University; University of Barcelona, Barcelona,

Spain, October 20/2016.

[51] Convolutional Neural Networks (LeNet) — DeepLearning 0.1 documentation. [Online]. Available:

http://deeplearning.net/tutorial/lenet.html (accessed: Apr. 14 2020).

[52] Wikipedia, Recurrent neural network. [Online]. Available: https://en.wikipedia.org/w/index.php?

title=Recurrent_neural_network&oldid=950614617 (accessed: Apr. 13 2020).

[53] FAVPNG.com, Recurrent Neural Network Artificial Neural Network Long Short-term Memory

Feedforward Neural Network Recursive Neural Network - PNG - Download Free (accessed: Apr. 13

2020).

78

[54] Ronald J. Williams and David Zipser, “Gradient-Based Learning Algorithms for Recurrent

Connectionist Networks,” April Dec. 1990.

[55] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton, “Deep learning,” (in En;en), Nature, vol. 521, no.

7553, pp. 436–444, 2015.

[56] R. J. Williams and D. Zipser, “A Learning Algorithm for Continually Running Fully Recurrent Neural

Networks,” Neural computation, vol. 1, no. 2, pp. 270–280, 1989.

[57] H. Salehinejad, S. Sankar, J. Barfett, E. Colak, and S. Valaee, “Recent Advances in Recurrent Neural

Networks,” 2017.

[58] I. Sutskever, Training Recurrent Neural Networks. Ottawa: Library and Archives Canada =

Bibliothèque et Archives Canada, 2014.

[59] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependencies with gradient descent is

difficult,” IEEE transactions on neural networks, vol. 5, no. 2, pp. 157–166, 1994.

[60] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation, vol. 9, no. 8, pp.

1735–1780, 1997.

[61] Q. V. Le, N. Jaitly, and G. E. Hinton, “A Simple Way to Initialize Recurrent Networks of Rectified

Linear Units,” 2015.

[62] Guillaume Chevalier, The LSTM cell. [Online]. Available: https://commons.wikimedia.org/w/

index.php?curid=71836793 (accessed: Apr. 13 2020).

[63] Wikipedia, Long short-term memory. [Online]. Available: https://en.wikipedia.org/w/index.php?title=

Long_short-term_memory&oldid=950477748 (accessed: Apr. 12 2020).

[64] F. A. Gers, J. Schmidhuber, and F. Cummins, “Learning to forget: continual prediction with LSTM,”

Neural computation, vol. 12, no. 10, pp. 2451–2471, 2000.

[65] David Martin Ward Powers, “Evaluation: From Precision, Recall and F-Factor to ROC,

Informedness, Markedness & Correlation,” Evaluation: From Precision, Recall and F-Factor to

ROC, Informedness, Markedness & Correlation, vol. 2, no. 1, pp. 37–63, 2011.

[66] A. Abur and A. G. Expósito, Power System State Estimation : Theory and Implementation: CRC

Press, 2004.

[67] S. H. WALKER and D. B. DUNCAN, “Estimation of the probability of an event as a function of

several independent variables,” Biometrika, vol. 54, 1-2, pp. 167–179, 1967.

[68] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,” 2014.

[69] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov,

“Dropout: A simple way to prevent neural networks from overfitting,” vol. 15, pp. 1929–1958, 2014.

[70] Wikipedia, Receiver operating characteristic. [Online]. Available: https://en.wikipedia.org/w/

index.php?title=Receiver_operating_characteristic&oldid=948137802 (accessed: Apr. 10 2020).

[71] Wikipedia, Sensitivity and specificity. [Online]. Available: https://en.wikipedia.org/w/index.php?title=

Sensitivity_and_specificity&oldid=948670532 (accessed: Apr. 10 2020).

[72] Wikipedia, Youden's J statistic. [Online]. Available: https://bioinfopublication.org/files/articles/2_1_

1_JMLT.pdf (accessed: Apr. 10 2020).

[73] Load Data - NYISO. [Online]. Available: https://www.nyiso.com/load-data (accessed: Apr. 22 2020).

[74] T. Athay, R. Podmore, and S. Virmani, “A Practical Method for the Direct Analysis of Transient

Stability,” IEEE Trans. on Power Apparatus and Syst., PAS-98, no. 2, pp. 573–584, 1979.

[75] R. D. Zimmerman, C. E. Murillo-Sanchez, and R. J. Thomas, “MATPOWER: Steady-State

Operations, Planning, and Analysis Tools for Power Systems Research and Education,” IEEE Trans.

Power Syst., vol. 26, no. 1, pp. 12–19, 2011.

	Detection of Stealthy False Data Injection Attacks Against State Estimation in Electric Power Grids Using Deep Learning Techniques
	Recommended Citation

	Microsoft Word - qingyu_thesis-FINAL.docx

