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ABSTRACT 

DETECTION OF STEALTHY FALSE DATA INJECTION ATTACKS AGAINST STATE 
ESTIMATION IN ELECTRIC POWER GRIDS USING DEEP LEARNING TECHNIQUES. 

by 

Qingyu Ge 

 

The University of Wisconsin-Milwaukee, 2020 
 Under the Supervision of Dr. Lingfeng Wang 

 

Since communication technologies are being integrated into smart grid, its vulnerability to false 

data injection is increasing. State estimation is a critical component which is used for 

monitoring the operation of power grid. However, a tailored attack could circumvent bad data 

detection of the state estimation, thus disturb the stability of the grid. Such attacks are called 

stealthy false data injection attacks (FDIAs). This thesis proposed a prediction-based detector 

using deep learning techniques to detect injected measurements. The proposed detector adopts 

both Convolutional Neural Networks and Recurrent Neural Networks, making full use of the 

spatial-temporal correlations in the measurement data. With its separable architecture, three 

discriminators with different feature extraction methods were designed for the predictor. 

Besides, a measurement restoration mechanism was proposed based on the prediction. The 

proposed detection mechanism was assessed by simulating FDIAs on the IEEE 39-bus system. 

The results demonstrated that the proposed mechanism could achieve a satisfactory 

performance compared with existing algorithms. 
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CHAPTER 1 INTRODUCTION AND LITERATURE REVIEW 

1.1 Introduction 

It is an inevitable trend to develop the smart grid in the 21st century. According to the IEEE 

Grid Vision 2050, the primary expectancy of the smart grid is to have the control and 

automation processes distributed over the whole power grid to enable efficient and reliable 

bidirectional power flow [1, 2]. This objective is realized through the integration of the 

Information and communication technologies (ICT) and supervisory control and data 

acquisition (SCADA) into the power grid, which is becoming a cyber-physical system (CPS) 

[1, 3]. ICT relies on common infrastructure like the internet, which may bring up a new 

challenge. Due to the strong coupling between the physical network and the communication 

network, attackers can extract and modify information flowing through the communication 

network, which may influence the physical network and further lead to severe accidents. Such 

cases have been seen throughout the last decades. On December 23, 2015, a wide blackout took 

place in Kyiv, Ukraine for several hours since attackers penetrated the SCADA system and 

opened several circuit breakers in the distribution system [4]. Similarly, there are instances of 

other attacks, such as the Slammer [5] and the Aurora [6]. There are various forms of attacks, 

for example, time synchronization attack [7], Denial of Service Attack (DOS) [8], which causes 

disruptions at the communication system, and False Data Injection Attacks (FDIA) [9], which 

causes disruptions at the physical system level. 

The smart grid relies heavily on SCADA. The most vulnerable part of SCADA systems is the 
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State Estimation (SE) [10]. The control center obtains real-time data from the SCADA system, 

estimates the state of the grid, and then takes appropriate actions to ensure regular and stable 

operation of the power grid peter [11]. However, the state estimator can be fooled by FDIAs to 

predict wrong states without getting detected [12, 13]. Generally, intruders need to know the 

complete configuration of the grid to launch such attacks, but recent researches have proven it 

is possible even if the information is incomplete [14]. 

Bad Data Detection (BDD) is currently deployed in power grids to secure the integrity of 

measurement data. BDD filters measurement errors caused by device fault or malicious attack, 

where it is assumed that bad data will necessarily lead to high residual error [9]. However, the 

residual error would keep the same as the usual case when a successful FDIA is launched. Thus, 

it passes by the BDD. 

Deep learning is part of a broader family of machine learning methods based on artificial neural 

networks. Deep belief networks and convolutional neural networks have demonstrated great 

potential in computer vision, speech recognition, and natural language recognition [15]. The 

reason why deep learning is so successful is that neural networks have the ability to learn 

complex structures, and data are exploding in this age. Deep learning is data-driven. It is an 

excellent function approximator trained using gradient descent algorithm over a specific dataset. 

Encouraged by its application and effectiveness in time series prediction and anomaly detection, 

its potential to detect false data injection attacks in the electric power grid is explored in this 

paper. 
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1.2 Literature Review 

1.2.1 Detection Mechanisms 

Since the stealthy FDIAs discussed in this paper are designed to bypass BBD during state 

estimation, conventional estimation-based methods fail to detect them [13]. With the 

assumption that the attack vector is sparse, sparse matrix reconstruction methods are employed 

to identify compromised devices [16, 17]. However, such methods cannot guarantee excellent 

performance for stealthy FDIAs in certain conditions [18]. Therefore, different approaches 

need to be explored for this problem. Ozay et al. [18] took the lead in applying machine learning 

techniques to tackle this anomaly detection problem by regarding it as a classification task. The 

author tested a group of machine learning algorithms, including Sparse Logistic Regression, k-

Nearest Neighbors (KNN), and Support Vector Machines (SVM), whose performance is 

impressive. However, these models are slow and not scalable for large power systems. Besides, 

these methods are supervised, which means various scenarios need to be considered as many 

as possible in the training phase. Therefore, semi-supervised SVM is also applied in [18], which 

is a good fit when labeled data is little. This approach would take into consideration unlabeled 

data when being training. Besides, it is mentioned in [19] that the probability density function 

of the regular classes can be modeled by any density estimation algorithm when only regular 

data is known, for example, Gaussian Mixture Models [20] or Kernel Density Estimation [21]. 

Unsupervised learning is another approach where unlabeled data are delivered to the machine 

for finding classification schemes and patterns, and it is assumed that anomalies are rare in a 

dataset compared to regular instances [19]. This approach has been applied in many practical 
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problems, such as network intrusion detection and fraud detection, and can be fit into the 

detection of FDIAs on power grids. Goldstein et al. [19] evaluated dozens of such algorithms. 

Most of these algorithms are based on density estimation using KNN or k-means clustering. 

Points lying outside the margin of density clusters are marked as anomalies [19]. KNN is the 

most straightforward global unsupervised anomaly detection algorithm. If one point is so far 

away from its k neighbors that it is classified as an outlier. K-means clustering is another basic 

algorithm, which is to separate observations into k clusters. If one point does not belong to any 

cluster, then it is an abnormal sample. This method has been applied to detecting FDIA in 

energy theft [22]. However, for a dynamic system like the power gird, non-anomalous points 

can exist in various clusters of density-clouds in an n-dimensional hyperspace. Thus, it is 

necessary to detect local anomalies [23]. Reference [19] discussed a series of local anomaly 

detection algorithms, for example, Local Outlier Factor (LOF) and Local Outlier Probability 

(LoOP). However, since these methods are based on KNN, they cost much time. Apart from 

that, another common techniques has been utilized in the detection of FDIAs, such as Principal 

component analysis (PCA) [24] and Isolation Forest [25, 26]. Additionally, one-class SVM can 

be trained unsupervisedly to address this problem with a soft-margin [27], but it is a challenge 

to find the best set of hyper-parameters.  

Artificial Neural Networks (ANN) have drawn enormous attention in recent years and achieve 

significant performance in fields of object recognition [28], speech recognition [29], and 

anomaly detection [30]. No matter in supervised [31], semi-supervised [32], or unsupervised 

manner [33], deep neural networks have proven itself in anomaly detection [23]. References 

[34, 35] proposed an extended DBN architecture called Conditional Deep Belief Network 
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(CDBN) to extract high-dimensional temporal features of FDIAs. Stacked auto-encoder is 

employed in [36] to extract the nonlinear and nonstationary features of electric load data, which 

facilitates detection. Apart from that, autoencoders can also be used to reconstruct input data, 

and then the similarity between original data and reconstructed ones determines whether the 

input is abnormal or not. Generative models like Generative Adversarial Networks (GANs) [37] 

and Variational Auto-Encoders (VAEs) [38] are also promising. The discriminator in GANs is 

a great detector to judge whether the new data are different from learned data. VAEs can 

transform new data into latent space to see whether they keep in accordance with the 

distribution of historical data.  

Recently, Recurrent Neural Networks (RNNs) are favored to capture the temporal correlations. 

References [39–41] trained an RNN in a supervised setting to predict the existence of 

anomalies, and reference [42] adopted the discrete wavelet transform (DWT) as spatial-

temporal features extraction tool before using an RNN to make a prediction. RNNs can also be 

built as autoencoders, and the reconstruction error is the metric of anomaly [41]. Additionally, 

RNNs are deployed in prediction-based detectors. For example, reference [43] used mean 

squared error (MSE) between estimated measurements by RNNs and actual measurements as 

the metric of an anomaly. An anomaly exists if MSE at specific measurements is unreasonably 

high. Niu et al. [44] followed this idea but added a CNN in front of RNN to adjust the 

dimensionality of data. Wang et al. [45] introduced the residual architecture into RNNs to 

improve the performance. The model in [45] divides input time series to the linear part which 

is predicted by RNNs, and the nonlinear part which is predicted by vector autoregressive 

processes (VAR). It employs the Weibull distribution to fit SSE between the predicted values 
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and the observed values to determine the detection threshold. In this paper, the detection 

mechanism is explored based on prediction using CNNs and RNNs. 

1.2.2 Convolutional Neural Networks  

Convolutional Neural Network (CNN), a category of feedforward Neural Network (FNN), has 

succeeded in processing video signals and images, for example, style transfer and recognition 

of objects. A critical point of CNNs is the local connectivity between neurons in adjacent layers, 

which are motivated by the structure of the animal visual cortex, whose individual neurons are 

organized in such a manner as to respond to overlapping regions of the visual field [46, 47]. 

Since CNNs currently are mainly focused on images, it is unrealistic to connect neurons to all 

neurons in the previous layer when coping with high-dimensional tensors. In CNNs, every 

neuron is linked to only a small region of the neurons of the last layer, and hence the network 

is capable of leveraging the spatially local structure of the data. Such functionality can be 

borrowed as a preceding procedure to provide spatial features to the following networks. 

CNNs are typically made up of three forms of layers: (1) fully-connected layer, (2) 

convolutional layer (3), and pooling layer. Various instances of CNNs can be roughly defined 

as the following process, as shown in Figure 1-1: 

1. Convolve the source image with a group of filters. 

2. Subsample the result of coevolution after being through activation functions. 

3. Repeat steps 1 and 2 until sufficiently high-level features are obtained.  
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4. Attach fully connected layers, a FNN, to the resulting features. 

 

Figure 1-1: An example of an architecture for image classification with a convolutional neural 

network [44, p. 2] 

1.2.2.1 Convolutional Layer 

Convolutional layers are critical to a CNN which serve as feature extractors. A convolutional 

layer is built on a group of learnable kernels, which are 1D or 2D arrays of numbers reflecting 

how a pixel’s neighbors impact on its convolution value. These kernels would be convolved 

across the input features during the forward propagation, producing a new feature map. Kernels 

do not need to keep the same height and width. A kernel can be 1D or 2D according to problems. 

However, dimensions, whether 1D or 2D, must be odd numbers to center the kernel over the 

region.  

Figure 1-2 reveals how convolution works. To calculate the value of each transformed pixel, 

add the products of each surrounding pixel value with the corresponding kernel value; for 

instance, in Figure 1-2, -8 is derived because the only product of right-bottom corners is non-
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zero. During a convolution operation, the kernel moves across every possible position in the 

image to repeat this procedure and put the effect to the whole image [48]. 

 

Figure 1-2: Convolution [48] 

1.2.2.2 Pooling Layer 

Pooling can be regarded as a nonlinear down-sampling, in which various nonlinear functions 

such as the maximum, the minimum, and the average are implemented. What is used the most 

common is the Max pooling, which parts the image into non-overlapping patches and picks up 

the maximum value as the final output for each patch. Figure 1-3 is an example of this 

procedure. 
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Figure 1-3: Max-pooling [49] 

There are three main reasons why max-pooling is useful [50, 51]:  

(1) It reduces the computational burden for the following layers by eliminating non-maximal 

values. 

(2) It provides a form of translation invariance so that robustness is assured.  

(3) It is a simple approach to reducing the dimensionality of intermediate representations. 

1.2.2.3 Fully-Connected Layer 

Fully connected layers, which connect every neuron between two layers, play a supporting role 

in CNN. It is the same as the conventional multi-layer perceptron (MLP) neural network. 

Generally, it is added between CNNs and other types of neuron networks where the 2D or 3D 

output would be flattened into a 1D shape. 
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1.2.3 Recurrent Neural Networks 

1.2.3.1 Simple Recurrent Neural Networks 

Recurrent neural network (RNN) is a class of artificial neural networks where connections 

between nodes form a directed graph along a temporal sequence, which is shown in Figure 1-

4. This structure allows it to exhibit temporal dynamic behavior [52].  

 

Figure 1-4 Diagram of an RNN [53] 

RNNs are fundamentally different from the FNN. For example, the neurons in each hidden 

layer are connected, and the input of the hidden layer includes not only the output of the input 

layer but also the output of itself at the previous moment. This structure allows RNNs to process 

sequence data better and has achieved great success and wide application in Natural Language 

Processing (NLP).  
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The training of RNNs is divided into two steps, which are forward propagation and 

backpropagation. The forward propagation is to calculate the output value. Outputs are 

generated through activation functions one by one as a time series, which depends on the 

current input and the previous hidden states. The following Equation illustrates how to 

calculate the output and hidden state at each time step. 

(2-1) 
ℎ௧ = 𝜎௛(𝑊௛ℎ௧ିଵ + 𝑊௜𝑥௧ + 𝑏௛) 
𝑜௧ = 𝜎௢(𝑊௢ℎ௧ + 𝑏௢) (1-1) 

The meaning of symbols is listed below: 

𝑥௧: input vector 

ℎ௧: hidden layer vector 

𝑜௧: output vector 

𝑊 𝑏: parameter matrices and vector 

𝜎௛ 𝜎௢: Activation functions 

Back-propagation uses the chain rule to propagate prediction-error gradients to modify all 

network weights [54]. An RNN can be seen as deep feedforward networks in which all the 

layers share the same weights when it is unfolded in time (Figure 1-5) [55]. 

 

Figure 1-5 An unrolled RNN cell [23] 
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When backpropagation is applied to this unrolled chain, it is referred to as Back Propagation 

Through Time (BPPT) [54, 56]. The loss function of RNNs is defined as an overall summation 

of losses in each time step [57, 58], as shown below. 

(2-1) ℒ(𝑦, 𝑜) = ෍ ℒ௧(𝑦௧, 𝑜௧)

்

௧ୀଵ

 (1-2) 

In Equation (1-2), 𝑦 is the target output. By considering the network parameters in Figure 1-

5(1-5 as the set 𝜃 = {𝑊௛, 𝑊௜, 𝑊௢, 𝑏௛, 𝑏ை} and ℎ௧ as the hidden state of the network at time 𝑡, 

gradients can be written as 

(2-1) 
𝜕ℒ

𝜕𝜃
= 𝑡 = ෍ ൬

𝜕ℒ௧

𝜕𝜃
൰

௧

௞ୀଵ

 (1-3) 

where the expansion of loss function gradients at time 𝑡 is 

(2-1) 

∂ℒ௧

∂𝜃
= ෍ ൬

∂ℒ௧

∂ℎ௧
⋅

∂ℎ௧

∂ℎ௞
⋅

∂ℎ௞

∂𝜃
൰

௧

௞ୀଵ

 

= ෍ ൭
∂ℒ𝓉

∂ℎ௧
⋅ ෑ

∂ℎ௜

∂ℎ௜ିଵ

௧

௜ୀ௞ାଵ

⋅
∂ℎ௞

∂𝜃
൱

௧

௞ୀଵ

 

= ෍ ൭
∂ℒ𝓉

∂ℎ௧
⋅ ෑ

∂ℎ௜

∂ℎ௜ିଵ

௧

௜ୀ௞ାଵ

⋅
∂ℎ௞

∂𝜃
൱

௧

௞ୀଵ

 

(1-4) 

It can be seen from Equation (1-4) that calculation of gradient involves calculating a product 

of gradients of all hidden states concerning their previous hidden states. Thus, RNNs may suffer 

a problem of vanishing gradients or exploding gradients with the association of nonlinear 

activation functions such as “tanh” and “sigmoid”, which nullifies the influence of initial inputs 

on the final output during the training phase [59]. This phenomenon causes memory of the 



 

13 
 

network to ignore long term dependencies and hardly learn the correlation between temporally 

distant events [57]. Fortunately, Long Short Term Memory (LSTM) [60] has been developed 

to get rid of this problem. 

1.2.3.2 Long Short-Term Memory 

LSTM is one of the most common and effective ways of reducing the effects of vanishing and 

exploding gradients [57, 60]. This approach changes the structure of hidden units from 

“sigmoid” or “tanh” functions to memory components, in which their inputs and outputs are 

managed by gates. Such gates control the stream of information to hidden neurons and retain 

features derived from previous time steps [57, 60, 61]. A typical LSTM cell is shown in Figure 

1-6. 

 

Figure 1-6 The LSTM cell[62] 

Compared with simple RNNs, LSTM networks have an extra state variable called cell state. A 

typical LSTM cell is made of an input gate, a forget gate, and an output gate, and a cell 
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activation component. The compact forms of the equations for the forward pass of an LSTM 

unit are: [60, 63, 64] 

(2-1) 

𝑓௧ = 𝜎௚൫𝑊௙𝑥௧ + 𝑈௙ℎ௧ିଵ + 𝑏௙൯ 
𝑖௧ = 𝜎௚(𝑊௜𝑥௧ + 𝑈௜ℎ௧ିଵ + 𝑏௜) 
𝑜௧ = 𝜎௚(𝑊௢𝑥௧ + 𝑈௢ℎ௧ିଵ + 𝑏௢) 
𝑐̃௧ = 𝜎௛(𝑊௖𝑥௧ + 𝑈௖ℎ௧ିଵ + 𝑏௖) 
𝑐௧ = 𝑓௧ ∗ 𝑐௧ିଵ + 𝑖௧ ∗ 𝑐̃௧ 
ℎ௧ = 𝑜௧ ∗ 𝜎௛(𝑐௧) 

(1-5) 

where the initial values are 𝑐଴ = 0 and ℎ଴ = 0 and the operator “∗” denotes the element-wise 

product. And other definitions are:  

𝑥௧: 

𝑓௧ : 

𝑖௧: 

ℎ௧: 

𝑜௧: 

𝑐̃௧: 

𝑐௧: 

𝑊, 𝑈, 𝑏: 
𝜎௚: 

𝜎௛: 

input vector to the LSTM unit 

forget gate’s activation vector 

input/update gate’s activation vector 

output gate’s activation vector 

hidden state vector also known as output vector of the LSTM unit 

cell input activation vector 

cell state vector 

weight matrices and bias vector parameters which need to be learned during training 

activation function for gates 

activation function for hidden state 

As known from Equation (1-5), if the forget gate is closed, i.e. 𝑓௧ = 0, the historical cell state 

cannot be involved in the current time step; if the forget gate is open, i.e. 𝑓௧ ≠ 0, the historical 

cell state can be remembered in the current time step; if the input gate is closed, i.e. 𝑖௧ = 0, the 

input cannot be passed down to the current cell state; if the input gate is open, i.e. 𝑖௧ ≠ 0, the 

input can be passed to the current cell state; if the output gate is closed, i.e. 𝑜௧ = 0, the hidden 

state of the current cell is prohibited from being passed down; if the output gate is open, i.e. 

𝑜௧ ≠ 0, the hidden state of the current cell can be passed down. LSTMs are fundamental blocks 

of our temporal predictor of the whole detector. 
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1.3 Anomaly Detection Metrics 

In general, for binary classification tasks such as anomaly detection, common metrics to judge 

the performance of a model are Accuracy, Precision, Recall, F1-Score, Receiver Operating 

Characteristics (ROC) curve and Area Under the Curve (AUC), and Precision-Recall curve 

[65]. Considering that the frequency of anomalies, in reality, is much smaller than the frequency 

of non-anomalous conditions, the data set itself is unbalanced. Therefore, metrics such as 

Accuracy will not be a good choice for evaluation, while Precision and Recall can better 

evaluate the performance of the model. Both ROC-AUC and Precision-Recall curves can 

evaluate the overall performance of a model and help to find the optimal threshold. However, 

the ROC curve is not sensitive to the imbalance of the dataset and can maintain stability when 

the proportion of positive and negative samples changes. Therefore, six metrics are used in this 

paper to verify the effectiveness and feasibility of the intrusion detection mechanism: Precision, 

Recall, F1-Score, ROC-AUC, training time, and test time. In this problem, anomalies are 

treated as positive cases, and normal samples are treated as negative cases. 

Definition: 

(1) TN (True Positive) indicates the number of normal data correctly identified as normal data. 

(2) FN (False Negative) indicates the number of normal data recognized as anomalies. 

(3) TP (True Positive) indicates the number of anomalies correctly identified as anomalies. 

(4) FP (False Positive) indicates the number of anomalies recognized as normal data. 
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Therefore, the first three metrics can be represented as follows: 

(1) Precision： 

(2-1) Precision =
TP

TP + FP
 (1-6) 

It represents the proportion of true anomalies in the samples predicted as anomalies. The higher 

the Precision is, the better the algorithm is. 

(2) Recall： 

(2-1) Recall =
TP

TP + FN
 (1-7) 

It represents the proportion of the abnormal samples that are correctly predicted. The higher 

the Recall is, the better the algorithm is. 

(3) F1 Score ： 

(2-1) F1 =
Precision × Recall × 2

Precision + Recall
 (1-8) 

It represents the harmonic mean of Precision and Recall. The larger the F1 Score is, the better 

the overall performance of the detector is. 

ROC curve and AUC will be discussed in Chapter 3, where the threshold determination will be 
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detailed. AUC, along with the F1 Score, is used to reflect the overall performance of the 

detector. 

1.4 Contribution and Roadmap 

The contribution of this paper is as follows, 

1. An FDIA detection framework, which includes a predictor and a discriminator, is proposed. 

2. Three ANN-based discriminators are developed for the FDIA detector. 

3. A measurement restoration mechanism is proposed along with a method to determine the 

optimal threshold for the proposed mechanism. 

The rest of this paper is composed as follows: The generation and implementation algorithm 

of FDIAs are discussed in Chapter 2. Then, the detection model and recovery methodology 

proposed in this paper are discussed in Chapter 3. Lastly, the experimental results are analyzed 

and summarized in Chapter 4, followed by a summary in Chapter 5. 
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CHAPTER 2 PROBLEM FORMULATION AND ATTACK 

MODELS 

2.1 State Estimation 

The key to maintaining the reliability of the power system is to monitor the power flows and 

voltages. The control center receives readings from redundant meters and estimates the state of 

power system variables from these meter measurements. For example, state variables include 

bus voltage angles and magnitudes and state estimation problem is to estimate power system 

state variables  𝐱 =  (𝑥ଵ, 𝑥ଶ, . . . , 𝑥௡)୘  based on meter measurements 𝐳 =  (𝑧ଵ, 𝑧ଶ, . . . , 𝑧௠)୘ , 

where 𝑛 and 𝑚 are positive integers and 𝑥௜ , 𝑧௝  ∈  𝑅 for 𝑖 =  1, 2, . . . , 𝑛 and 𝑗 =  1, 2, . . . , 𝑚 

[66]. To be more specifically,  𝐞 =  (𝑒ଵ, 𝑒ଶ, . . . , 𝑒௠)୘  with  𝑒௝  ∈  𝑅 , 𝑗 =  1, 2, . . . , 𝑚 , are 

measurement errors. Following formula connects state variables and related measurements. 

(2-1) 𝐳 = 𝐡(𝐱) + 𝐞  (2-1) 

In Equation (2-1), 𝐡(𝐱) = (ℎଵ(𝑥ଵ, 𝑥ଶ, … , 𝑥௡), ℎଶ(𝑥ଵ, 𝑥ଶ, … , 𝑥௡), …, ℎ௠(𝑥ଵ, 𝑥ଶ, … , 𝑥௡))୘  and 

ℎ௜(𝑥ଵ, 𝑥ଶ, … , 𝑥௡)  is a function of 𝑥ଵ, 𝑥ଶ, … , 𝑥௡ . The state estimation problem is finding an 

estimate 𝐱ො  to 𝐱  that is the best match of the measurement 𝐳  according to Equation (2-1). 

Furthermore, Equation (2-1) can be written as a linear regression formula with state estimation 

using DC power flow model, i.e., 

(2-1) 𝐳 = 𝐇𝐱 + 𝐞  (2-2) 

where 𝐇 =  ൫ℎ௜,௝൯
୫×୬

. Three common statistical estimation criteria have been used in state 
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estimation: the maximum likelihood criterion, the weighted least-square criterion, and the 

minimum variance criterion [66]. These three criteria lead to the same estimator with the 

following matrix solution (2-3), if meter errors are believed to be normally distributed with 

zero mean. 

(2-1) 𝐱ො = (𝐇T𝐖𝐇)ି𝟏𝐇T𝐖𝐳  (2-3) 

In Equation (2-4), 𝐖 is a diagonal matrix, which elements are reciprocals of the variances of 

meter errors, which means 

(2-1) 

𝐖 =

⎣
⎢
⎢
⎡
𝜎ଵ

ିଶ

𝜎ଶ
ିଶ

⋱
𝜎௠

ିଶ⎦
⎥
⎥
⎤

 (2-4) 

where σ௜
ଶ the variance of the 𝑖-th meter (1 ≤  𝑖 ≤  𝑚). 

2.2 Bad Data Detection 

Bad measurements can be caused for various reasons, for instance, meter failures or malicious 

attacks. Strategies for bad measurement detection have been established to secure the state 

estimation [66]. In general, measurements from regular sensors typically provide an 

approximation of state variables to their actual values. However, estimated state variables may 

be shifted away from their actual values by abnormal measurements, which means 

inconsistency generally exists between good and bad measurements. Because of that, some 

researchers proposed that the presence of bad measurements can be spotted by calculating the 

measurement residual 𝐳 − 𝐇𝐱ො between vector of estimated measurements and observed ones 

and its L2-norm ‖𝐳 − 𝐇𝐱ො‖. More precisely, the L2-norm ‖𝐳 − 𝐇𝐱ො‖ has to be compared with 
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a threshold 𝜏 which is set by humans, and the existence of bad measurements can be inferred 

when ‖𝐳 − 𝐇𝐱ො‖  >  𝜏. Now the problem is transmitted into another form, the selection of 𝜏, 

which is a critical part.  

Before solving this problem, some assumptions need to be set up: (1) all state variables are 

mutually independent, and (2) meter errors obey the normal distribution. Sequentially, 

‖𝐳 − 𝐇𝐱ො‖ଶ which is denoted as ℒ(𝐱), satisfies a χଶ(𝑣) distribution, where 𝑣 =  𝑚 − 𝑛 is the 

degree of freedom. Reference [66] gives out that the threshold 𝜏 can be determined through a 

hypothesis test with a significance level of 𝛼  which means the probability of ℒ(x) ≥ 𝜏  is 

equivalent to 𝛼. Thus, the existence of bad measurements is suggested by ℒ(x) ≥ 𝜏 with false 

alarm of probability 𝛼. 

The detection mechanism by the L-2 norm is widely used in power systems, which causes a 

loophole for attackers. A smart attacker can design false data deliberately to deceive the 

estimator without activating any alarm. Notably, the credibility of the state estimator is 

undermined by the attacker through compromising a subset of meters and then submitting 

modified readings [13]. Denoting 𝐜 as the deviation vector of the estimated state variables 

before and after the attack, the estimated state vector being hacked can be expressed as 𝐱ොୠୟୢ =

𝐱ො + 𝐜 . Additionally, denoting  𝐚 = (𝑎ଵ, … , 𝑎௠)୘  as the nonzero vector injected to the 

measurement data 𝐳 = (𝑧ଵ, . . . , 𝑧௠)୘, the measurement vector being hacked can be expressed 

as 𝐳ୠୟୢ =  𝐳 +  𝐚. 

With the DC power system model, the estimated state variables after FDIAs are as follows [66]: 
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𝐱ොୠୟୢ = (𝐇𝐓𝐖𝐇)ି𝟏𝐇𝐓𝐖𝐳ୠୟୢ

= (𝐇𝐓𝐖𝐇)ି𝟏𝐇𝐓𝐖(𝐳 + 𝐚)

= 𝐱ො + (𝐇𝐓𝐖𝐇)ି𝟏𝐇𝐓𝐖𝐚
= 𝐱ො + 𝐜

 (2-5) 

and the new ℒ(x) can be computed as: 

 

ℒ(x)ୠୟୢ = ‖𝐳ୠୟୢ − 𝐇𝐱ොୠୟୢ‖ଶ

= ‖𝐳 + 𝐚 − 𝐇(𝐱ො + (𝐇T𝐖𝐇)ିଵ𝐇T𝐖𝐚)‖ଶ

= ‖𝐳 − 𝐇𝐱ො + (𝐚 − 𝐇(𝐇T𝐖𝐇)ିଵ𝐇T𝐖𝐚)‖ଶ

= ‖𝐳 − 𝐇𝐱ො + (𝐚 − 𝐇𝐜)‖ଶ

 (2-6) 

If 𝐚 =  𝐇𝐜, then ℒ(x)ୠୟୢ = ℒ(x), which means bad data are successfully injected into meter 

measurements while leaving the residual value unchanged.  

2.3 False Data Injection Attack 

Yao Liu etc. proposed the concept of such stealthy FDIAs in [13] in 2011. He sorted the FDIAs 

as random FDIA and targeted FDIA, considering the possible attack goals. Random FDIA, in 

which the attacker seeks to find any attack vector as long as it is able to result in an inaccurate 

estimation of state variables. For targeted FDIA, the attacker seeks to find an attack vector 

which is able to inject a specific error into certain state variables. While the latter type of attack 

can potentially cause more damage to the system, the former one is easier to launch. In a 

targeted false data injection attack, two cases are considered: a constrained case and an 

unconstrained case. In the constrained case, the attacker wants to launch a targeted false data 

injection attack that only changes the target state variables but does not contaminate the other 

state variables. The constrained case reflects the situations where the control center has the 

ability to verify estimates of the other state variables. In the unconstrained case, the attacker 
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does not have any concern about the influence on the other state variables while compromising 

the chosen ones. All these situations are under the consideration of limited access to meter 

devices from the attacker’s perspective, which bothers attackers a lot, because attackers have 

to try many times to construct a satisfying attack vector. Whether easy or difficult to launch 

successful FDIAs depends on how many devices the attacker can approach. The more meters 

are accessed by the attacker, the larger the probability of success is.  

Since the detection mechanism focused on in this paper is to defend such attacks, a strong 

adversary is expected. Thus, assuming the attacker, who is eager to cause a severe impact on 

the system, has the best knowledge of the entire power system and construct attack vectors 

based on that. Therefore, targeted attacks under the constrained case are chosen in this paper 

to test the detection mechanism. In constrained case, the attacker can construct an attack 

vector 𝐚 by substituting fixed 𝐜 into the relation 𝐚 = 𝐇𝐜.  

2.4 Attack Generation Algorithms 

When generating targeted attack as training data, in order to make the simulation more realistic, 

the following factors need to be considered: 

1. The proportion of violated state variables 
௞

௡
, where 𝑘 is the number of compromised state 

variables, and 𝑛 is the total number of state variables. Typically, the ratio from 10% to 

100% with a 10% step is of interest. 

2. The duration of the attack 𝑡ଵ. An attack may last for a while, interfering with measurement 

data at several points of time. 
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3. The period between every attack 𝑡ଶ. The shorter the interval is, the more frequently the 

grid is hacked, while the longer the interval is, the safer the grid is, and fewer attacks occur. 

Furthermore, two forms of targeted attacks are considered, the normal targeted attacks and the 

playback targeted attacks. 

1. The normal targeted attacks: The attacker would change the states to any values he/she 

wants. It is impossible to guess the false data the attacker plans to inject, but the distribution 

of changes in state variables can be assumed beforehand. In this way, attacks of different 

intensities can be generated as many as possible. Normal distribution or uniform 

distribution is a common choice. 

2. The playback targeted attacks: False data can be constructed deliberately based on a real 

historical event and then injected into the system. Sequentially, such kind of attack may not 

be likely to be detected successfully only if a static method was applied [44]. 

At the same time, considering the extreme case, we assume that the attacker can access all the 

measurement devices and have a full understanding of the structure of the entire power grid. It 

is difficult to achieve this, because there are always some meters that are not easy to access, 

such as the measurement points in a substation [13], and the structural parameters of the power 

grid cannot be easily obtained by outliers. The advantage of considering extreme conditions is 

that it can cover all the situations that may occur in reality. The labels for measurements are set 

to 0 when it is safe while 1 when it is attacked. As for the obtainment of measurements, real-

world load curves are used in the simulation, and thus measurements can be generated at every 
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time step, and then the noise is added.  

Based on what is discussed before, the algorithm of the generation of attacks is designed as 

follows: 

Algorithm 1 Generation of Attacks 

1: Procedure GENERATE_ATTACK (𝑎𝑡𝑡𝑎𝑐𝑘_𝑡𝑦𝑝𝑒, 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡𝑠, 𝑠𝑡𝑎𝑡𝑒𝑠_𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠,  

2:          𝑘/𝑛, 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛) 

3:   for 𝑖 in range (size_of (𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡𝑠)) do 

4:    ℎ𝑎𝑐𝑘𝑒𝑑_𝑠𝑡𝑎𝑡𝑒 ← choice (𝑠𝑡𝑎𝑡𝑒𝑠, int (𝑘/𝑛 × size_of (𝑠𝑡𝑎𝑡𝑒𝑠))) 

5:   𝑛𝑜𝑖𝑠𝑒 ← Norm(𝜇, 𝜎ଶ) 

6:    𝑧[𝑖] ← 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑡𝑛𝑠[𝑖] + 𝑛𝑜𝑖𝑠𝑒  

7:    𝑡 = 0 

8:    if 𝑡 < (𝑡ଵ + 𝑡ଶ) do 

9:     if 𝑡 = 0 do 

10:      if 𝑎𝑡𝑡𝑎𝑐𝑘_𝑡𝑦𝑝𝑒 ≠ “playback” then 

11:       𝑎 ← get_normal_targeted_attack (ℎ𝑎𝑐𝑘𝑒𝑑_𝑠𝑡𝑎𝑡𝑒, 𝑡ଵ, 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛) 

12:      else 

13:       𝑎 ← get_playback_targeted_attack (ℎ𝑎𝑐𝑘𝑒𝑑_𝑠𝑡𝑎𝑡𝑒, 𝑡ଵ) 

14:      end if 

15:     end if 

16:     if 𝑡 ≤ 𝑡ଵ do 

17:      𝑧[𝑖] ← 𝑧[𝑖] + 𝑎  

18:      𝑙𝑎𝑏𝑒𝑙[𝑖] ←  1  

19:     else 

20:      𝑙𝑎𝑏𝑒𝑙[𝑖] ←  0  

21:     end if 

22:     𝑡+= 1  

23:    else 

24:     𝑡 = 0  

25:    end if 

26:    save (𝑧[𝑖]) 

27:   end for 

28: end procedure 
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CHAPTER 3 DETECTION AND RESTORATION 

3.1 Detection 

As mentioned earlier, FDIAs detection can be treated as a problem of detecting anomalies in a 

time series. It is because sparse attack vectors are added to the actual measurements [17], 

thereby violating the time structure of the data. Therefore, by predicting the measurement value 

at the next moment and comparing it with the actual measurement value, an abnormality can 

be detected. As shown in Figure 3-1, the detector in this paper consists of two parts. The first 

part is called predictor, which is based on the model proposed in [44], takes in measurements 

over a window of length 𝑘 in time step [𝑡 − 𝑘, 𝑡 − 1] to predict the measurement value at 

time step 𝑡. The second part is called discriminator, which compares the predicted measurement 

value with the actual one to judge the current condition of power system whether being hacked 

or not. Since predictor needs to be trained through unsupervised learning, that is, only historical 

measurement data are required to make predictor obtain the ability of prediction, while the 

discriminator needs to take in historical data and corresponding labels to learn the difference 

between predicted measurement value and the actual value, which is supervised learning. When 

two parts are combined, they make up a semi-supervised detector. 
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Figure 3-1 Architecture of Semi-Supervised Detector  

3.1.1 Predictor 

The predictor takes in the measurement data in the time steps [𝑡 − 𝑘, 𝑡 − 1]  as input, and 

outputs the predicted measurement value at time 𝑡. The predictor consists of two parts, the first 

half is a CNN, and the second half is a bidirectional LSTM network. The CNN extracts the 

features of the sequence by learning the spatial structure of the measurement data, which is 

hidden under the noise at every moment, and then compresses and maps the features into the 

low-dimensional latent space. It plays the role of dimensionality reduction during this process. 

The bidirectional LSTM network learns the temporal structure of the compressed data so that 

the data at the next moment can be inferred in the latent space according to the characteristics 

of the previous (𝑘 − 1) time steps. Finally, predicted data are upgraded from low dimension 

to the actual dimension through a linear layer. The architecture of the predictor is shown in 

Figure 3-2. 
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Figure 3-2 Architecture of the predictor 

The network is trained based on historical measurement data and does not need any labels. 

Therefore, it is unsupervised learning. Since it is a regression problem to predict future data 

based on historical data, mean square error (MSE) is selected as loss function, as shown in 

Equation (3-1), which is being minimized when the predicted value is approaching the actual 

value. 

(2-1) 𝐿(𝑦, 𝑦ො) =
1

𝑛
෍(𝑦௜ − 𝑦పෝ)ଶ

௡

௜ୀଵ

 (3-1) 

In Equation (3-1), 𝑦௜  is the 𝑖 -th actual value and 𝑦పෝ   is the 𝑖 -th predicted value, 𝑛  is the 

number of samples in a batch. 

3.1.2 Discriminator 

The discriminator is primarily a Multi-layer Perceptron (MLP). It is a feedforward artificial 
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neural network model that maps multiple input data sets to a single output data set. The MLP 

is fully connected between layers. The discriminator takes in the predicted value and the actual 

value, finds out differences between the two vectors, and then learns the nonlinear mapping 

relationship between the differences and the labels through the multiple hidden layers. Finally, 

a sigmoid function is used to calculate the probability of whether the system being hacked at 

the current moment or not. Figure 3-3 shows the architecture of the discriminator. 

 

Figure 3-3 architecture of the discriminator 

To be able to distinguish the difference between the predicted value and the actual value after 

the power grid being attacked, three designs of the neural network are proposed, which varies 

in the feature extraction part in the proceeding stage. They are concatenation-based 

discriminator, convolution-based discriminator, and square-error-vector-based discriminator. 

3.1.2.1 Concatenation-Based Discriminator 

The predicted vector and the actual vector are spliced together to obtain a new vector with a 

double-length, which is used as the feature vector to be further processed by the subsequent 

MLP, as shown in Figure 3-4. The MLP can automatically pair off each measurement with its 
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counterpart and recognize the correspondence between these pairs and final decision through 

training.  

 

Figure 3-4 Diagram of concatenation 

3.1.2.2 Convolution-Based Discriminator 

As mentioned earlier, one of the advantages of CNNs is feature extraction. Thus it is widely 

used in image processing. Inspired by this, CNNs are used to extract the difference between 

the two vectors. Since what is of interest is the difference between corresponding elements of 

the two vectors, rather than the difference between different elements, a special way is proposed 

in this paper to make the two vectors suitable for convolution processing. According to the 

format of an image, the elements of a vector are regarded as pixels, and the two vectors are 

regarded as two channels. The synthesized “image” is scanned by a kernel with the size of (1,1) 
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to perform the convolution, and the result goes through activation functions, which guarantees 

that only “channels” on a single “pixel” participate in each calculation. With the “image” 

passing through multiple convolutional layers, the number of channels increases. It should be 

noted that pooling is not required in this process. All channels need to be expanded into a one-

dimensional vector before going to the MLP. Figure 3-5 illustrates this process. In this way, the 

difference between the corresponding elements of the predicted vector and the actual vector 

can be extracted and stored in this flatten vector from which the MLP can figure out whether 

the system being attacked or not. 

 

Figure 3-5 Diagram of convolution  

3.1.2.3 Squared-Error-Vector-Based Discriminator 

This scheme is to directly calculate the squared errors of the predicted vector and the actual 

vector, which are used as features to be passed down to the following MLP. Through the 
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squaring operation, any error greater than one is amplified while the one less than one is 

reduced, making the difference more distinct. 

3.1.2.4 Difference Between Three Discriminators 

From the concatenation-based discriminator to the square-error-vector-based discriminator, the 

burden on the MLP is decreasing. In concatenation-based discriminator, the MLP shoulders the 

responsibility of analyzing concatenated vector and making the judgment. In convolution-

based discriminator, the CNN takes on the responsibility of analyzing the deviation between 

predicted vector and actual vector while the MLP focuses on making decisions. However, what 

features the CNN extracts are unclear, while in squared-error-vector-based discriminator, it is 

assumed that squared error can be a good fit that CNN can be removed. Additionally, CNN 

provides multiple features, while the squared error is a single feature. The performance of these 

three designs is presented in Chapter 4. 

3.1.2.5 Training for Discriminator 

Training discriminator is slightly complicated. First, the predictor gives out the predicted value 

at each moment to form a prediction data set, which is used as the training data set for the 

discriminator together with the actual data set and the labels obtained during the attack 

generating stage. For the 0-1 binary classification task, binary cross-entropy loss is the most 

appropriate estimator, which is presented in Equation (3-2) [67]. 

(2-1) 𝐿(𝑐, 𝑝) = −
1

𝑛
෍ 𝑐 𝑙𝑜𝑔(𝑝) + (1 − 𝑐) 𝑙𝑜𝑔(1 − 𝑝)

௡

 (3-2) 
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In Equation (3-2), 𝑐 is the true label (𝑐 = 1 for the attacked case and 𝑐 = 0 for secure case), 

and 𝑝 is the predicted label, which can also be seen as the probability of positive class (being 

attacked), 𝑛 is the number of samples in a batch. 

It should be noted that, during the training process, the neural network minimizes the empirical 

loss. Thus, unbalanced data set where the number of anomalies is much less than the normal 

ones will make the discriminator impossible to learn how to judge anomalies. Such occasions 

may happen when realistic labeled data is used as the training set, which needs particular 

attention when training network. However, the occurrence of such a situation can be avoided 

by weighting the loss function: the penalty can be increased when anomalies are missed (false 

negatives) to make loss larger than when discriminator fails to predict the normal situations 

(false positive) [41]. The weighted loss function, for example, is described in Equation (3-3), 

where 𝑎 is the penalty multiplier for false negatives. Also, Due to the neural network is trained 

using mini-batch stochastic gradient descent, another solution is to ensure that the normal data 

and the abnormal data are evenly distributed for the network to learn when constructing mini-

batches. However, this approach will distort the actual distribution of the data and cause 

deviations for the discriminator. 

 𝐿(𝑐, 𝑝) = −
1

𝑛
෍ 𝑎 𝑐 log(𝑝) + (1 − 𝑐) log(1 − 𝑝)

௡

 (3-3) 

However, in the training task of this paper, the data set can be carefully designed so that the 

number of positive and negative samples is roughly equal to ensure the balance of the data set. 

Even Equation (3-2) can still ensure that the discriminator is perfectly trained. 
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3.1.3 Measurement Restoration 

With the predicted measurements from the predictor at the current time point, if the alarm was 

triggered by the discriminator in which the power grid was under attack, the damaged 

measurements could be repaired by predicted ones. For the measurement vector that needs to 

be repaired, firstly, the element that has the largest error from the predicted one needs to be 

found out, then replaced by the corresponding predicted value. The MSE is required to be 

calculated after every substitution to see whether it is less than a certain threshold. If the 

predetermined accuracy is reached, the repair work is done. The key is to determine the proper 

threshold. First of all, the prediction results given by the predictor are not 100% perfect, 

including errors caused by the unpredictability of noise. Therefore, the average error in the safe 

state can be used as the threshold for restoration. Accordingly, Algorithm 2 is defined, and 

Figure 3-6 illustrates the process. 

Algorithm 2 Measurements Restoration 

1: Procedure REPAIR_MEASUREMENTS (𝑟𝑒𝑎𝑙_𝑧, 𝑝𝑟𝑒𝑑_𝑧, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑) 

2:   while mse_of (𝑟𝑒𝑎𝑙_𝑧, 𝑝𝑟𝑒𝑑_𝑧) > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 do 

3:    𝑖𝑛𝑑𝑒𝑥 ← arg_max( get_error (𝑟𝑒𝑎𝑙_𝑧, 𝑝𝑟𝑒𝑑_𝑧)) 

4:   𝑟𝑒𝑎𝑙_𝑧[𝑖𝑛𝑑𝑒𝑥] ← 𝑝𝑟𝑒𝑑_𝑧[𝑖𝑛𝑑𝑒𝑥] 

5:   end while 
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Figure 3-6 Flow chart of measurement restoration 

3.1.4 Detection and Restoration Mechanism 

The detection method and restoration method mentioned above are combined to obtain the 

comprehensive detection and restoration mechanism proposed in this paper. The real-time 

measurement data is continuously inputted into the detector, and the detector gives out the 

prediction of the current state of the power grid. If the grid is attacked, the alarm sets off, and 

the damaged data are handed over to the restorer for repair. After the repair is completed, the 

repaired measurement data are passed to the state estimator; If the power grid is safe, the 

measurement data are directly used for state estimation. In both branches, the measurement 
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data are stored for offline training of the detector. Figure 3-7 details the architecture of such an 

integrated mechanism.  

Since the structure of power grids and load characteristics are changing with time, it is 

necessary to train and update the detector periodically. In other words, short training time and 

prediction time are of importance, because the time required for training a neural network and 

prediction is directly related to the depth and scale of the network, which means that the 

detector cannot have a too complex structure. 

 

Figure 3-7 Architecture of detection and restoration mechanism 

3.1.5 Data Preparation and Training 

Since this is a many-to-one model of sequence prediction, batches of time series and the 

corresponding state of the system for the last time step of the series need to be prepared. A 

fixed-length rolling window has been used to create training pairs. The inputs for detector are 

the measurements within a time window (predictor’s input), and the measurement of the next 
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time step to the window (along with the predictor’s predicted measurement as the 

discriminator’s input). The output of the detector is the label corresponding to the system state 

at a single time step. The detector is trained by the ADAM [68] optimizer using mini-batch 

gradient descent. Dropouts are used to prevent the overfitting of the model [69]. The dropouts 

technique randomly drops out the neural connections between layers, thereby improving the 

generalization ability of the detector and making it more robust to noise. 

3.1.1 Optimal Threshold Determination 

The optimal threshold can be determined through the ROC curve and then be used to calculate 

Precision, Recall, and F1 Score for the proposed detector. 

ROC curve is a graphical plot which illustrates the diagnostic ability of a binary classifier 

system when its discrimination threshold varies. The ROC curve is defined by depicting the 

true-positive rate (TPR) against the false-positive rate (FPR) at various threshold settings, 

which plots relative tradeoff between false positives (costs) and true positives (benefits). The 

TPR is also known as the sensitivity, Recall, or probability of detection in machine learning. 

The FPR, also known as the probability of false alarm, is equal to (1 − specificity), where the 

specificity means true-negative rate (TNR), which measures the proportion of actual negatives 

that are correctly detected [70, 71]. 

In ROC space, a diagonal line from the left bottom corner to the top right corner, also known 

as the line of no-discrimination, represents points set by a random guess. Points under the 

diagonal represent poor classification results (worse than the random guess), while points 
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above the line indicate great results (better than the random guess). The best potential classifier 

would yield a point in the upper left corner or coordinate (0,1) of the ROC region, indicating 

100% sensitivity (no false negatives) and 100% specificity (no false positives). The (0,1) point 

is also called a perfect classification. It should be kept in mind that the output of a consistently 

bad classifier could simply be reversed to get a good classifier [70]. 

As a result, the point near the perfect classification should be picked up as an optimal cutoff 

point, which can be screened out by minimum Euclidean distance from (0,1) or maximum 

Youden index 𝐽, which is the vertical distance between the point on the ROC curve and the 

diagonal line. The formula to calculate Youden index 𝐽 is as follows [72], 

 𝐽 = sensitivity + specificity − 1 (3-4) 

which can be expanded as follows by notations in section 1.3 of Chapter 1, that is 

 𝐽 =
TP

TP + FN
+

TN

TN + FP
− 1 (3-5) 

Youden index is used to search out the best threshold in this paper. 

CHAPTER 4 EXPERIMENTS AND OBSERVATIONS 

4.1 Data Generation, Test Cases, and Model’s Parameters. 

In order to make the simulation more realistic, actual load data from the New York Independent 

System Operator (NYISO) [73] were used, which was a total of 9094 points sampled every 5 

minutes in a month. These load data were applied to the IEEE 39-bus case [74] (Figure 4-1), 
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and the AC power flow was calculated by MATPOWER [75]toolbox to obtain measurements. 

Since there were only 11 load profiles from the NYISO data set, all the curves were scaled and 

replicated to match the IEEE 39-bus system while inactive power injections kept unchanged. 

Part of the ideal operating conditions of bus 1 is shown in Figure 4-2. The obtained 

measurements include active power flow of 39 buses and 56 branches, 85 measurements in 

total. Besides, gaussian noise with a mean of zero and a standard deviation of 0.02 was added 

to obtained measurements.  

Based on the measurements, the algorithm discussed in Chapter 2 was used to generate attacks. 

For ordinary targeted FDIAs, changes with a uniform distribution [−10%, 10%] were applied 

to state variables; for playback FDIAs, a delay of 3 time steps was applied to state variables, 

i.e., real load data 15 minutes ago were used to generate attack vectors. Besides, the width of 

the rolling window to create training pairs was set to three time steps, along with the duration 

of each attack was four time steps, and the break between every attack was three time steps. 

The reason why it was set up in this way is that these parameters can simulate various scenarios 

where how many hacked measurement vectors account for each time window. For example, 

the grid being attacked at all time steps or only one time step in a window results in different 

errors for prediction. As mentioned before, different attack levels were considered, in which 

the number of attacked state variables increases from 10% to 100% by 10%. All measurements 

were repeatedly applied to each attack level. Additionally, assume all devices can be accessed 

by an attacker so that situations can be covered as many as possible.  

In this experiment, the detector was trained for only three epochs to avoid overfitting and tuned 
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up by Bayes Optimization. The predictor contained two convolutional layers with ReLU 

activation functions, which reduced the dimensionality of measurements from 85 to 32, and 3 

bidirectional RNN layers with LSTM cells along with a dense layer at the end to output 

predictions. The discriminator contained two hidden layers with ReLU activation functions. 

All dropout rates were set to 0.5 during tuning up. 

In order to verify the effectiveness of the proposed detection mechanism, results were 

compared with other machine learning algorithms, and the effectiveness of the detection 

mechanism was analyzed in different attack scenarios.
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Figure 4-1 IEEE 39-Bus Power System 



 

41 
 

 

Figure 4-2 Ideal Operating Conditions for Bus 1
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4.2 Analysis of Data Set 

The strength of the attack vectors depends on the value of the state change 𝐜. Random values 

of 𝐜 can cover various conditions of malicious data injection attacks, which can successfully 

bypass the traditional residual detection mechanism. After the test system being injected into 

the aforementioned normal targeted attacks and playback targeted attacks respectively with 

𝑘/𝑛 = 50%, histograms of the measurements of the test system before and after attacks are 

compared together, as shown in Figure 4-3 and Figure 4-4.  

  

Figure 4-3 Histograms of hacked and unhacked measurements of IEEE 39 bus system by normal 

targeted attacks 
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Figure 4-4 Histograms of hacked and unhacked measurements of IEEE 39 bus system by playback 

targeted attacks 

It can be seen from Figure 4-3 and Figure 4-4 that after stealthy attacks were injected into the 

test system, the probability distribution of the measurements changed, but the change was slight. 

Therefore, it is difficult to detect malicious data injection attacks through statistic methods. 

Later the proposed detector is tested for such attacks. 

4.1 Prediction 

70% of ideal baseline data, 6364 samples, were spilled to train the predictor, and the remaining 

30% was used as a test dataset. After being trained for three epochs, the MSE of prediction 

reached 0.0071 on the test dataset, and the training time was 39s, and the test time was 0.68s. 
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Next, the predicted data were used to train and test discriminators together with the attacked 

dataset. The performance of discriminators based on such a predictor was evaluated 

considering both mixed attack levels and each attack level, respectively. 

4.2 Detection 

Conventionally, samples are separated according to their Euclidean distance and a threshold. 

In this section, three ANN-based discriminators were compared with such a Euclidean-

distance-based approach, as well as three other common classifiers in machine learning: 

Random Forest, K-Nearest Neighbors (KNN), and support vector machine (SVM). It is worth 

noting that three non-ANN-based classifiers take in only attacked data, which means they have 

nothing to do with the predictor. The ratio between a training set and a test set was still 

70%/30%, and attacks were from different attack levels uniformly. 

4.2.1 Normal Targeted Attacks 

The ANN-based discriminators were trained for three epochs. With the classification threshold 

being determined by the algorithm in Chapter 3, the metrics on the test set are shown in Table 

4-1. The ROC curves are shown in Figure 4-5 to Figure 4-11.  

As can be seen from these figures and the table, the ANN-based discriminators had a robust 

performance compared to other methods, especially achieved both high Precision and Recall. 

The top three were occupied by them in ROC-AUC and top four in F1-Score, with acceptable 

training and detection time. Although SVM’s F1-Score exceeded convolution-based and 

squared-error-vector-based approaches, the time required by SVM in the training phase was 
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almost 43 times the average time 17.12s of the neural network classifiers, which was the longest 

training time among all classifiers. Similarly, the detection time required by the KNN was 

almost 209 times the average value 1.87s of the neural network classifiers, which was the 

longest detection time among all classifiers. Random Forest was the one with the shortest 

detection time, but its ROC-AUC was the lowest. The method based on Euclidean distance had 

the shortest training and detection time in total because it did not require training, but its F1-

Score was the lowest. 

At last, even if the time consumption caused by the predictor had been added, the proposed 

detector would be still tempting. However, the discriminator and the predictor do not have to 

be trained together. On the whole, if time cost is important, it is recommended to choose the 

Euclidean-distance-based method; if time is sort of ample, the discriminators based on neural 

networks demonstrate the best performance. 

 ROC-

AUC 
Precision Recall F1-Score 

Training 

Time/s 

Test 

Time/s 

Concatenation 0.9877 0.9945 0.9542 0.9739 11.94 1.39 

Convolution 0.9922 0.9856 0.9690 0.9773 25.22 2.58 

Squared Error Vector 0.9962 0.9976 0.9715 0.9844 14.22 1.64 

Euclidean Distance 0.9798 0.9419 0.9215 0.9316 0 1.39 

Random Forest 0.9202 0.8982 0.9904 0.9420 20.27 0.10 

KNN 0.9465 0.9979 0.8956 0.9440 2.86 390.16 

SVM 0.9787 0.9947 0.9643 0.9792 729.43 21.18 

Table 4-1 Detection using Various Approach under normal targeted attacks with mixed levels 
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Figure 4-5 ROC Curve for concatenation discriminator under normal targeted attacks 

 

Figure 4-6 ROC Curve for convolution discriminator under normal targeted attacks 
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Figure 4-7 ROC Curve for Squared error vector discriminator under normal targeted attacks 

 

Figure 4-8 ROC Curve for Euclidean distance method under normal targeted attacks 
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Figure 4-9 ROC Curve for random forest classifier under normal targeted attacks 

 

Figure 4-10 ROC Curve for KNN classifier under normal targeted attacks 
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Figure 4-11 ROC Curve for SVM classifier under normal targeted attacks 

To observe the performance of discriminators under attacks of different levels, they were tested 

on different attack levels, and the results are shown in Figure 4-12 to Figure 4-14. All classifiers 

had a lower performance when the attack level was low because the low proportion of tampered 

state variables changed measurement data too slightly to be detected, or the change was even 

drowned in the noise. 

From Figure 4-12, KNN and squared-error-vector-based discriminator ranked first in Precision. 

SVM and the concatenation-based discriminator ranked second. The convolution-based 

discriminator was at the third level above 0.98. The Precision for the Euclidean-distance-based 

method changed dramatically from about 0.89 to around 0.94. Random Forest was the last 

never more than 0.90.  
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From Figure 4-13, it can be seen that difference occurred at low attack levels. Even though 

Random Forest achieved the highest Recall, it paid a great price that the Precision was the 

lowest. To the contrast, KNN was the last due to its high Precision. The ANN-based 

discriminators’ Recall was within 0.6 and 0.8 when 𝑘/𝑛 =  0.1 and then went up to 0.90 or 

above when 𝑘/𝑛 >  0.1, among which the squared-error-vector-based one was the best. The 

SVM joined the group of the ANN-based discriminators because of similar performance.  

From Figure 4-14, with the tradeoff between Precision and Recall, the ANN-based 

discriminators still performed well at all attack levels in F1-Score. Among them, the squared-

error-vector-based discriminator was the best, the convolution-based one was the second, and 

the concatenation-based one was the last. When 𝑘/𝑛  was greater than 0.4, their F1-Score 

approached close to 1. Although when 𝑘/𝑛 =  0.1, Random Forest achieved the best value of 

0.9, its F1-score failed to exceed 0.95 when 𝑘/𝑛 > 0.2. Also, F1-Score of SVM exceeded the 

concatenation-based discriminator when 𝑘/𝑛 was less than 0.4. 

 

Figure 4-12 Precision for various classifiers under normal targeted attacks with different levels
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Figure 4-13 Recall for various classifiers under normal targeted attacks with different levels 

 

 

Figure 4-14 F1-Score for various classifiers under normal targeted attacks with different levels
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4.2.2 Playback Targeted Attacks 

Playback targeted attacks were from real load data 15 minutes ago, i.e., a delay of 3 time steps. 

The performance of the proposed discriminators was analyzed under different attack levels. 

The discriminators based on the neural network were trained three epochs. The classification 

threshold was determined according to the algorithm in Chapter 3, and the metrics on the test 

dataset are shown in Table 4-2. ROC curves are shown from Figure 4-15 to Figure 4-21. As 

can be seen from Table 4-2, compared with the normal targeted attack scenario, all classifiers’ 

performance was improved. The ANN-based classifiers were top three in the comprehensive 

metrics such as ROC-AUC and F1-Score, where particularly the convolution-based 

discriminator was the champion. All ANN-based discriminators kept high in both Precision and 

Recall while the other methods not. 

 
ROC-

AUC 
Precision Recall F1-Score 

Training 

Time/s 

Test 

Time/s 

Concatenation 0.9964 0.9987 0.9742 0.9863 15.60 1.70 

Convolution 0.9981 0.9987 0.9841 0.9913 28.97 2.79 

Squared Error 

Vector 
0.9980 0.9967 0.9827 0.9897 15.83 1.74 

Euclidean Distance 0.9638 0.9747 0.8601 0.9138 0 1.71 

Random Forest 0.9635 0.9559 0.9879 0.9716 11.56 0.08 

KNN 0.9694 0.9906 0.9508 0.9703 3.26 441.11 

SVM 0.9455 1.0 0.8910 0.9424 1671.35 45.44 

Table 4-2 Detection using Various Approaches under playback targeted attacks with mixed levels
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Figure 4-15 ROC Curve for concatenation discriminator under playback targeted attacks 

 

Figure 4-16 ROC Curve for convolution discriminator under playback targeted attacks 
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Figure 4-17 ROC Curve for Squared error vector discriminator under playback targeted attacks 

 

Figure 4-18 ROC Curve for Euclidean distance method under playback targeted attacks 
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Figure 4-19 ROC Curve for random Forest under playback targeted attacks 

 

Figure 4-20 ROC Curve for KNN under playback targeted attacks 
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Figure 4-21 ROC Curve for SVM under playback targeted attacks 

Figure 4-22 to Figure 4-24 shows the performance of different classifiers under different attack 

levels separately. It can be seen that all classifiers performed better than on the normal targeted 

attacks dataset. Similar to the scenario of normal targeted attacks, the ANN-based 

discriminators were still the best at any level of attacks and demonstrated a perfect balance 

between Precision and Recall. Particularly, the convolution-based discriminator was the best.
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Figure 4-22 Precision for various classifiers under playback targeted attacks with different levels 

 

 

Figure 4-23 Recall for various classifiers under playback targeted attacks with different levels 
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Figure 4-24 F1-Score for various classifiers under playback targeted attacks with different levels 

4.2.3 Further experiment 

It is found that ANN-based discriminators could also achieve satisfactory results even if they 

were trained on the normal targeted attack dataset but tested on the playback targeted attack 

dataset, as shown in Table 4-1. Among them, discriminator that used squared error vectors as 

features had the highest ROC-AUC and F1-Score. It also shows that playback targeted attacks 

can be regarded as a subset of normal targeted attacks with random changes on state variables. 

Thus, only the latter one needs to be focused in future research.  

 ROC-AUC Precision Recall F1-Score 

Concatenation 0.9955 0.9982 0.9745 0.9862 

Convolution 0.9969 0.9964 0.9854 0.9858 

Squared Error Vector 0.9973 0.9975 0.9790 0.9881 

Table 4-3 Detection using discriminators when the dataset is changed 
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4.2.4 Analysis of The Difference Between Precited Data and 

Actual Data 

4.2.4.1 Normal Targeted Attacks 

In order to explore the difference in discriminators’ performance under different attack levels, 

this paper analyzed the distribution of the Euclidean distance between the predicted 

measurements and the actual measurements. Figure 4-25 shows the distance distribution under 

all attack levels. Figure 4-26 to Figure 4-35 show the distance distribution at different levels. 

From Figure 4-25, actual measurements deviated from predicted ones in a wide range of about 

0.5 to 5 in attacked cases, and in a small range of 0.5 to 1.5 in secure cases because of the 

presence of prediction errors. Because of that, the distributions in the two cases overlapped, 

making it difficult for various classifiers to make accurate judgments. However, because of the 

powerful learning ability of neural networks, data in the overlap can be distinguished as much 

as possible by proposed discriminators compared with other non-ANN -based classifiers. 

It has been found from the distribution of distances under different attack levels that the lower 

𝑘/𝑛 was, the more severe the overlapping was. When 𝑘/𝑛 = 1.0, data in the two cases were 

almost entirely separated, which is why all classifiers performed perfectly when 𝑘/𝑛 was high 

while not very well when 𝑘/𝑛 was low. In reality, an attacker is unlikely to control too many 

devices, which means that the attack level may not be very high, and attacks are difficult to 

detect. For this reason, ANN-based discriminators proposed in this paper are more 

recommended. 
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Figure 4-25 Distribution of Euclidean distance between predicted data and actual data under normal 

targeted attacks of mixed levels

 

Figure 4-26 Distribution of Euclidean distance between predicted data and actual data under normal 

targeted attacks with k/n=0.1 
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Figure 4-27 Distribution of Euclidean distance between predicted data and actual data under normal 

targeted attacks with k/n=0.2 

 

Figure 4-28 Distribution of Euclidean distance between predicted data and actual data under normal 

targeted attacks with k/n=0.3 
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Figure 4-29 Distribution of Euclidean distance between predicted data and actual data under normal 

targeted attacks with k/n=0.4 

 

Figure 4-30 Distribution of Euclidean distance between predicted data and actual data under normal 

targeted attacks with k/n=0.5 
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Figure 4-31 Distribution of Euclidean distance between predicted data and actual data under normal 

targeted attacks with k/n=0.6 

 

Figure 4-32 Distribution of Euclidean distance between predicted data and actual data under normal 

targeted attacks with k/n=0.7 
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Figure 4-33 Distribution of Euclidean distance between predicted data and actual data under normal 

targeted attacks with k/n=0.8 

 

Figure 4-34 Distribution of Euclidean distance between predicted data and actual data under normal 

targeted attacks with k/n=0.9 
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Figure 4-35 Distribution of Euclidean distance between predicted data and actual data under normal 

targeted attacks with k/n=1.0
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4.2.4.2 Playback Targeted Attacks 

At the same time, the playback targeted attacks data set was also analyzed. Figure 4-36 to 

Figure 4-46 show distance distributions. For playback attacks, since the value of the state 

variable was based on historical data rather than changed randomly, the deviation between the 

actual value and the predicted value was much larger than that under normal targeted attacks. 

The deviation almost exceeded 100 when the grid is attacked while mostly not exceeded five 

when the grid is safe. This phenomenon accounts for why all classifiers performed better on 

the playback dataset than the normal dataset. Of course, an overlap still existed at each level, 

resulting in misclassification sometimes. 

 

Figure 4-36 Distribution of Euclidean distance between predicted data and actual data under playback 

targeted attacks of mixed levels 
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Figure 4-37 Distribution of Euclidean distance between predicted data and actual data under playback 

targeted attacks with k/n=0.1 

 

Figure 4-38 Distribution of Euclidean distance between predicted data and actual data under playback 

targeted attacks with k/n=0.2 
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Figure 4-39 Distribution of Euclidean distance between predicted data and actual data under playback 

targeted attacks with k/n=0.3 

 

Figure 4-40 Distribution of Euclidean distance between predicted data and actual data under playback 

targeted attacks with k/n=0.4 
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Figure 4-41 Distribution of Euclidean distance between predicted data and actual data under playback 

targeted attacks with k/n=0.5 

 

Figure 4-42 Distribution of Euclidean distance between predicted data and actual data under playback 

targeted attacks with k/n=0.6 
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Figure 4-43 Distribution of Euclidean distance between predicted data and actual data under playback 

targeted attacks with k/n=0.7 

 

Figure 4-44 Distribution of Euclidean distance between predicted data and actual data under playback 

targeted attacks with k/n=0.8 
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Figure 4-45 Distribution of Euclidean distance between predicted data and actual data under playback 

targeted attacks with k/n=0.9 

 

Figure 4-46 Distribution of Euclidean distance between predicted data and actual data under playback 

targeted attacks with k/n=1.0 
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4.3 Prediction Based on Measurement Restoration 

In the predicting process, once the discriminator sets an alarm, the damaged data is passed to 

the restorer to repair. Then the repaired data participate in the prediction at the next moment. 

Figure 4-47 shows the MSE of prediction with the aid of such a recovery mechanism. It is 

found that the MSE trends to be higher than 0.0071, which is obtained using an utterly attack-

free dataset, and MSE gradually increases as 𝑘/𝑛 increases, but not greater than 0.0080, only 

increasing by 0.0008 which is negligible to the discriminator and completely acceptable. 

 

Figure 4-47 MSE of prediction under normal targeted attacks 
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CHAPTER 5 CONCLUSION AND FUTURE WORK 

5.1 Conclusion 

In this paper, a new prediction-based detector which aims to detect stealthy FDIAs against SE 

in smart grids was proposed using deep learning techniques. It leverages both convolutional 

neural networks, which excel in spatial feature extraction, and recurrent neural networks, which 

excel in exploring temporal correlation. It features a separable architecture, i.e., predictor and 

discriminator. The predictor learns behaviors from normal historical data. The discriminator 

learns the deviation between prediction and actual measurements into which may be injected a 

specific type of attack, for example, targeted attacks in this paper, to predict the probability of 

being attacked. Additionally, three types of discriminators varying in feature extraction, such 

as convolution, concatenation, and squared-error vector, were designed and evaluated in 

comparison with the conventional Euclidean-based method and three common non-ANN 

machine learning classifiers such as SVM, Random Forest, and KNN.  

At last, a measurement restoration mechanism was proposed. Through replacing items with 

high deviation by prediction, the actual damaged measurements can be repaired to reduce the 

impact on the predictor, even though the discriminator can accommodate a slight prediction 

error. 

Experiments were carried on IEEE 39-bus power system with load profiles from the real world 

to assess the performance of the proposed detection mechanism. With the consideration that 
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targeted FDIAs generated randomly may cover random FDIAs, targeted FDIAs and its 

playback form were conducted respectively. No matter in normal or playback targeted attacks, 

the proposed detector with any of three discriminators can achieve outstanding attack detection 

performance, particularly better in playback form than in normal form due to the former one 

lacks in randomness. It has also been found that the more devices are compromised, the easier 

attacks are to be distinguished. Also, the results show that ANN-based discriminators 

outperform non-ANN machine learning algorithms if time is ample. Particularly, the squared-

error-vector-based discriminator was the best under normal targeted attacks, and convolution-

based discriminator was the best under playback targeted attacks.  

5.2 Future Work 

1. Apart from linear stealthy FDIAs having been used in this paper, nonlinear stealthy FDIAs 

can be applied to test the proposed detector. 

2. More data can be collected to be investigated. 

3. Fault events can be involved to make the problem more complicated. 

4. Larger power systems, such as the 118-bus power system, can be studied to verify the 

performance of the proposed model. 

5. The slow injecting process can be considered.  
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