2,128 research outputs found

    Inter-individual variation of the human epigenome & applications

    Get PDF

    Undergraduate Catalog of Studies, 2023-2024

    Get PDF

    Graduate Catalog of Studies, 2023-2024

    Get PDF

    Flood dynamics derived from video remote sensing

    Get PDF
    Flooding is by far the most pervasive natural hazard, with the human impacts of floods expected to worsen in the coming decades due to climate change. Hydraulic models are a key tool for understanding flood dynamics and play a pivotal role in unravelling the processes that occur during a flood event, including inundation flow patterns and velocities. In the realm of river basin dynamics, video remote sensing is emerging as a transformative tool that can offer insights into flow dynamics and thus, together with other remotely sensed data, has the potential to be deployed to estimate discharge. Moreover, the integration of video remote sensing data with hydraulic models offers a pivotal opportunity to enhance the predictive capacity of these models. Hydraulic models are traditionally built with accurate terrain, flow and bathymetric data and are often calibrated and validated using observed data to obtain meaningful and actionable model predictions. Data for accurately calibrating and validating hydraulic models are not always available, leaving the assessment of the predictive capabilities of some models deployed in flood risk management in question. Recent advances in remote sensing have heralded the availability of vast video datasets of high resolution. The parallel evolution of computing capabilities, coupled with advancements in artificial intelligence are enabling the processing of data at unprecedented scales and complexities, allowing us to glean meaningful insights into datasets that can be integrated with hydraulic models. The aims of the research presented in this thesis were twofold. The first aim was to evaluate and explore the potential applications of video from air- and space-borne platforms to comprehensively calibrate and validate two-dimensional hydraulic models. The second aim was to estimate river discharge using satellite video combined with high resolution topographic data. In the first of three empirical chapters, non-intrusive image velocimetry techniques were employed to estimate river surface velocities in a rural catchment. For the first time, a 2D hydraulicvmodel was fully calibrated and validated using velocities derived from Unpiloted Aerial Vehicle (UAV) image velocimetry approaches. This highlighted the value of these data in mitigating the limitations associated with traditional data sources used in parameterizing two-dimensional hydraulic models. This finding inspired the subsequent chapter where river surface velocities, derived using Large Scale Particle Image Velocimetry (LSPIV), and flood extents, derived using deep neural network-based segmentation, were extracted from satellite video and used to rigorously assess the skill of a two-dimensional hydraulic model. Harnessing the ability of deep neural networks to learn complex features and deliver accurate and contextually informed flood segmentation, the potential value of satellite video for validating two dimensional hydraulic model simulations is exhibited. In the final empirical chapter, the convergence of satellite video imagery and high-resolution topographical data bridges the gap between visual observations and quantitative measurements by enabling the direct extraction of velocities from video imagery, which is used to estimate river discharge. Overall, this thesis demonstrates the significant potential of emerging video-based remote sensing datasets and offers approaches for integrating these data into hydraulic modelling and discharge estimation practice. The incorporation of LSPIV techniques into flood modelling workflows signifies a methodological progression, especially in areas lacking robust data collection infrastructure. Satellite video remote sensing heralds a major step forward in our ability to observe river dynamics in real time, with potentially significant implications in the domain of flood modelling science

    Graduate Catalog of Studies, 2023-2024

    Get PDF

    UMSL Bulletin 2022-2023

    Get PDF
    The 2022-2023 Bulletin and Course Catalog for the University of Missouri St. Louis.https://irl.umsl.edu/bulletin/1087/thumbnail.jp

    Undergraduate Catalog of Studies, 2022-2023

    Get PDF

    University bulletin 2023-2024

    Get PDF
    This catalog for the University of South Carolina at Beaufort lists information about the college, the academic calendar, admission policies, degree programs, faculty and course descriptions

    Stress detection in lifelog data for improved personalized lifelog retrieval system

    Get PDF
    Stress can be categorized into acute and chronic types, with acute stress having short-term positive effects in managing hazardous situations, while chronic stress can adversely impact mental health. In a biological context, stress elicits a physiological response indicative of the fight-or-flight mechanism, accompanied by measurable changes in physiological signals such as blood volume pulse (BVP), galvanic skin response (GSR), and skin temperature (TEMP). While clinical-grade devices have traditionally been used to measure these signals, recent advancements in sensor technology enable their capture using consumer-grade wearable devices, providing opportunities for research in acute stress detection. Despite these advancements, there has been limited focus on utilizing low-resolution data obtained from sensor technology for early stress detection and evaluating stress detection models under real-world conditions. Moreover, the potential of physiological signals to infer mental stress information remains largely unexplored in lifelog retrieval systems. This thesis addresses these gaps through empirical investigations and explores the potential of utilizing physiological signals for stress detection and their integration within the state-of-the-art (SOTA) lifelog retrieval system. The main contributions of this thesis are as follows. Firstly, statistical analyses are conducted to investigate the feasibility of using low-resolution data for stress detection and emphasize the superiority of subject-dependent models over subject-independent models, thereby proposing the optimal approach to training stress detection models with low-resolution data. Secondly, longitudinal stress lifelog data is collected to evaluate stress detection models in real-world settings. It is proposed that training lifelog models on physiological signals in real-world settings is crucial to avoid detection inaccuracies caused by differences between laboratory and free-living conditions. Finally, a state-of-the-art lifelog interactive retrieval system called \lifeseeker is developed, incorporating the stress-moment filter function. Experimental results demonstrate that integrating this function improves the overall performance of the system in both interactive and non-interactive modes. In summary, this thesis contributes to the understanding of stress detection applied in real-world settings and showcases the potential of integrating stress information for enhancing personalized lifelog retrieval system performance
    corecore