210 research outputs found

    Online throughput-competitive algorithm for multicast routing and admission control

    Get PDF
    We present the first polylog-competitive online algorithm for the general multicast problem in the throughput model. The ratio of the number of requests accepted by the optimum offline algorithm to the expected number of requests accepted by our algorithm is O((log n+log log M)(log n+log M)log n), where M is the number of multicast groups and n is the number of nodes in the graph. We show that this is close to optimum by presenting an _O_(log n log M) lower bound on this ratio for any randomized online algorithm against an oblivious adversary, when M is much larger than the link capacities. Our lower bound applies even in the restricted cause where the link capacities are much larger than bandwidth requested by a single multicast. We also present a simple proof showing that it is impossible to be competitive against an adaptive online adversary. As in the previous online routing algorithms, our algorithm uses edge-costs when deciding on which is the best path to use. In contrast to the previous competitive algorithms in the throughput model, our cost is not a direct function of the edge load. The new cost definition allows us to decouple the effects of routing and admission decisions of different multicast groups

    Live media production: multicast optimization and visibility for clos fabric in media data centers

    Get PDF
    Media production data centers are undergoing a major architectural shift to introduce digitization concepts to media creation and media processing workflows. Content companies such as NBC Universal, CBS/Viacom and Disney are modernizing their workflows to take advantage of the flexibility of IP and virtualization. In these new environments, multicast is utilized to provide point-to-multi-point communications. In order to build point-to-multi-point trees, Multicast has an established set of control protocols such as IGMP and PIM. The existing multicast protocols do not optimize multicast tree formation for maximizing network throughput which lead to decreased fabric utilization and decreased total number of admitted flows. In addition, existing multicast protocols are not bandwidth-aware and could cause links to over-subscribe leading to packet loss and lower video quality. TV production traffic patterns are unique due to ultra high bandwidth requirements and high sensitivity to packet loss that leads to video impairments. In such environments, operators need monitoring tools that are able to proactively monitor video flows and provide actionable alerts. Existing network monitoring tools are inadequate because they are reactive by design and perform generic monitoring of flows with no insights into video domain. The first part of this dissertation includes a design and implementation of a novel Intelligent Rendezvous Point algorithm iRP for bandwidth-aware multicast routing in media DC fabrics. iRP utilizes a controller-based architecture to optimize multicast tree formation and to increase bandwidth availability in the fabric. The system offers up to 50\% increase in fabric capacity to handle multicast flows passing through the fabric. In the second part of this dissertation, DiRP algorithm is presented. DiRP is based on a distributed decision-making approach to achieve multicast tree capacity optimization while maintaining low multicast tree setup time. DiRP algorithm is tested using commercially available data center switches. DiRP algorithm offers substantially lower path setup time compared to centralized systems while maintaining bandwidth awareness when setting up the fabric. The third part of this dissertation studies the utilization of machine learning algorithms to improve on multicast efficiency in the fabric. The work includes implementation and testing of LiRP algorithm to increase iRP\u27s fabric efficiency by implementing k-fold cross validation method to predict future multicast group memberships for time-series analysis. Testing results confirm that LiRP system increases the efficiency of iRP by up to 40\% through prediction of multicast group memberships with online arrival. In the fourth part of this dissertation, The problem of live video monitoring is studied. Existing network monitoring tools are either reactive by design or perform generic monitoring of flows with no insights into video domain. MediaFlow is a robust system for active network monitoring and reporting of video quality for thousands of flows simultaneously using a fraction of the cost of traditional monitoring solutions. MediaFlow is able to detect and report on integrity of video flows at a granularity of 100 mSec at line rate for thousands of flows. The system increases video monitoring scale by a thousand-fold compared to edge monitoring solutions

    Scheduling multicasts on unit-capacity trees and meshes

    Get PDF
    This paper studies the multicast routing and admission control problem on unit-capacity tree and mesh topologies in the throughput-model. The problem is a generalization of the edge-disjoint paths problem and is NP-hard both on trees and meshes. We study both the offline and the online version of the problem: In the offline setting, we give the first constant-factor approximation algorithm for trees, and an O((log log n)^2)-factor approximation algorithm for meshes. In the online setting, we give the first polylogarithmic competitive online algorithm for tree and mesh topologies. No polylogarithmic-competitive algorithm is possible on general network topologies [Bartal,Fiat,Leonardi, 96], and there exists a polylogarithmic lower bound on the competitive ratio of any online algorithm on tree topologies [Awerbuch,Azar,Fiat,Leighton, 96]. We prove the same lower bound for meshes

    Scheduling multicasts on unit-capacity trees and meshes

    Get PDF
    This paper studies the multicast routing and admission control problem on unit-capacity tree and mesh topologies in the throughput model. The problem is a generalization of the edge-disjoint paths problem and is NP-hard both on trees and meshes. We study both the offline and the online version of the problem: In the offline setting, we give the first constant-factor approximation algorithm for trees, and an O((log log n)2)-factor approximation algorithm for meshes. In the online setting, we give the first polylogarithmic competitive online algorithm for tree and mesh topologies. No polylogarithmic-competitive algorithm is possible on general network topologies (Lower bounds for on-line graph problems with application to on-line circuits and optical routing, in: Proceedings of the 28th ACM Symposium on Theory of Computing, 1996, pp. 531-540) and there exists a polygarithmic lower bound on the competitive ratio of any online algorithm on tree topologies (Making commitments in the face of uncertainity: how to pick a winner almost every time, in: Proceedings of the 28th Annual ACM Symposium on Theory of Computing, 1996, pp. 519-530). We prove the same lower bound for meshes

    IP multicast over WDM networks

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Framework for Content Distribution over Wireless LANs

    Get PDF
    Wireless LAN (also called as Wi-Fi) is dominantly considered as the most pervasive technology for Intent access. Due to the low-cost of chipsets and support for high data rates, Wi-Fi has become a universal solution for ever-increasing application space which includes, video streaming, content delivery, emergency communication, vehicular communication and Internet-of-Things (IoT). Wireless LAN technology is defined by the IEEE 802.11 standard. The 802.11 standard has been amended several times over the last two decades, to incorporate the requirement of future applications. The 802.11 based Wi-Fi networks are infrastructure networks in which devices communicate through an access point. However, in 2010, Wi-Fi Alliance has released a specification to standardize direct communication in Wi-Fi networks. The technology is called Wi-Fi Direct. Wi-Fi Direct after 9 years of its release is still used for very basic services (connectivity, file transfer etc.), despite the potential to support a wide range of applications. The reason behind the limited inception of Wi-Fi Direct is some inherent shortcomings that limit its performance in dense networks. These include the issues related to topology design, such as non-optimal group formation, Group Owner selection problem, clustering in dense networks and coping with device mobility in dynamic networks. Furthermore, Wi-Fi networks also face challenges to meet the growing number of Wi Fi users. The next generation of Wi-Fi networks is characterized as ultra-dense networks where the topology changes frequently which directly affects the network performance. The dynamic nature of such networks challenges the operators to design and make optimum planifications. In this dissertation, we propose solutions to the aforementioned problems. We contributed to the existing Wi-Fi Direct technology by enhancing the group formation process. The proposed group formation scheme is backwards-compatible and incorporates role selection based on the device's capabilities to improve network performance. Optimum clustering scheme using mixed integer programming is proposed to design efficient topologies in fixed dense networks, which improves network throughput and reduces packet loss ratio. A novel architecture using Unmanned Aeriel Vehicles (UAVs) in Wi-Fi Direct networks is proposed for dynamic networks. In ultra-dense, highly dynamic topologies, we propose cognitive networks using machine-learning algorithms to predict the network changes ahead of time and self-configuring the network

    19th SC@RUG 2022 proceedings 2021-2022

    Get PDF

    19th SC@RUG 2022 proceedings 2021-2022

    Get PDF

    19th SC@RUG 2022 proceedings 2021-2022

    Get PDF
    corecore