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ABSTRACT

LIVE MEDIA PRODUCTION:
MULTICAST OPTIMIZATION AND VISIBILITY FOR CLOS FABRIC

IN MEDIA DATA CENTERS

by
Ammar Latif

Media production data centers are undergoing a major architectural shift to introduce

digitization concepts to media creation and processing workflows. Content companies

such as NBC Universal, CBS/Viacom and Disney are modernizing their workflows to

take advantage of the flexibility of IP and virtualization.

In these new environments, multicast is utilized to provide point-to-multi-point

communications. In order to build point-to-multi-point trees, Multicast has an

established set of control protocols such as IGMP and PIM . The existing

multicast protocols do not optimize multicast tree formation for maximizing network

throughput. This leads to decreased fabric utilization and decreased total number

of admitted flows. In addition, existing multicast protocols are not bandwidth-aware

and could cause links to over-subscribe leading to packet loss and lower video quality.

TV production traffic patterns are unique due to ultra high bandwidth

requirements and high sensitivity to packet loss that leads to video impairments.

In such environments, operators need monitoring tools that are able to proactively

monitor video flows and provide actionable alerts. Existing network monitoring tools

are inadequate because they are reactive by design and perform generic monitoring

of flows with no insights into video domain.

The first part of this dissertation includes a design and implementation of a

novel Intelligent Rendezvous Point algorithm iRP for bandwidth-aware multicast

routing in media DC fabrics. iRP utilizes a controller-based architecture to optimize

multicast tree formation and to increase bandwidth availability in the fabric. The



system offers up to 50% increase in fabric capacity to handle multicast flows passing

through the fabric.

In the second part of this dissertation, DiRP algorithm is presented. DiRP is

based on a distributed decision-making approach to achieve multicast tree capacity

optimization while maintaining low multicast tree setup time. DiRP algorithm

is tested using commercially available data center switches. DiRP algorithm

offers substantially lower path setup time compared to centralized systems while

maintaining bandwidth awareness when setting up the fabric.

The third part of this dissertation studies the utilization of machine learning

algorithms to improve on multicast efficiency in the fabric. The work includes

implementation and testing of LiRP algorithm to increase iRP ′s fabric efficiency.

This is done by implementing k-fold cross validation method to predict future

multicast group memberships for time-series analysis. Testing results confirm that

LiRP system increases the efficiency of iRP by up to 40% through prediction of

multicast group memberships with online arrival.

In the fourth part of this dissertation, The problem of live video monitoring is

studied. Existing network monitoring tools are either reactive by design or perform

generic monitoring of flows with no insights into video domain. MediaF low is a robust

system for active network monitoring and reporting of video quality for thousands of

flows simultaneously using a fraction of the cost of traditional monitoring solutions.

MediaF low is able to detect and report on integrity of video flows at a granularity of

100 mSec at line rate for thousands of flows. The system increases video monitoring

scale by a thousand fold compared to edge monitoring solutions.
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CHAPTER 1

INTRODUCTION

In summer 2012, the author visited his first media production data center (DC). The

facility was owned by a major broadcaster located in Washington, D.C. Metropolitan

area and it looked like a data center but was very different. To the surprise of the

author, there were plenty of thick coax cables in the facility. The cables carried live

video signal throughout the facility using Serial Digital Interface (SDI) format which

is neither Ethernet nor IP based. The facility did not have much Ethernet and fiber

cables. In addition, there were many purpose built devices with no server farms nor

virtualization. That visit triggered the author’s curiosity to understand the workflow

and study methods to modernize the technology stack which is the effort that lead

to this dissertation.

Figure 1.1 Serial Digital Interface.

1.1 Introduction to Media Workflows

Media production and processing workflows are going through massive digitization

wave driven by adoption of IP and virtualization technologies. This adoption is

1



enabling content providers to have more agile and responsive business in the internet

era. One of the main topics in media workflow digitization is the migration to IP-based

transport of uncompressed video from legacy non-IP infrastructure based on SDI

[101, 96, 97]. Utilising IP for transport of video signal would enable the content

providers to benefit from cloud and virtualization. In this work, we identify real life

challenges with this transition and propose solutions to address them [30, 55].

Global broadcasters such as NBC Universal, CBS/Viacom and Disney are

embracing IP and virtualization technology when building new media production

facilities. A good example is NBC10 TV station that was built in the Comcast

Technology Center in Philadelphia, USA [103]. The NBC10 TV station was one of

the first TV stations to utilize IP and virtualization technologies.

Figure 1.2 With the latest in IP infrastructure and storytelling technology,
NBCUniversal in Philadelphia has completed its on-air move into the Comcast
Technology Center.

In live media production workflows, multicast is widely deployed to provide

point to multi-point communications over IP networks. Multicast is popular in

transport of multimedia content [80, 68, 100, 65], as it allows the source to send

a single copy of the content and let the network handle the replication of the packets

to multiple destinations. This leads to lower host and bandwidth utilization usage in

the network. Multicast traffic is delivered from the source to multiple destinations

over a multicast tree [91]. Such trees are constructed using various methods depending
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on the desired outcome such as minimizing delay, maximizing bandwidth utilization

or increasing multicast tree scaling [87, 91, 71].

Multicast routing protocols attempt to find a path or a tree linking the source

to the set of destinations. Researchers are frequently interested in finding optimal

trees connecting sources and destinations while optimizing certain attributes such

as cost and/or delay. The resulting problem is called the multicast routing tree

problem (MRP) [91, 80, 65]. There are many cost functions to consider based

on the application requirements. Some of the popular cost functions are distance,

end to end delay, traffic concentration, bandwidth utilized and tree setup time

[87, 91, 71]. Multicast tree cost attribute reflects the combined cost metric to

establish the tree in the network. The end-to-end network delay attribute is important

for delay-sensitive applications such as live media production. Minimizing traffic

concentration in parts of the network is a useful measure in applications that do

not tolerate over-subscription of links and resulting packet loss [58, 100]. In such

environments, traffic concentration can lead to blocking scenarios in some parts of

the network while network capacity is available in other parts. Bandwidth utilization

is important in applications that require guaranteed quality of service through the

network. It is also reflective of total capacity in the network required to service the

multicast trees. Path setup time is important for real time applications such as video

conferencing or IPTV applications where the receiver needs to receive needed content

quickly after it sends a request for such content [24].

Multicast trees are classified into shared trees and source trees. In a shared

tree, a single tree is constructed to connect all nodes in a fabric [19, 92, 105, 74]. This

approach minimizes path setup time as the tree is already created. Core based trees

and Steiner trees are examples of shared trees where traffic from all multicast groups

flow through the same shared tree [113]. Shared trees lead to sub-optimal tree path

for each of the groups, higher delay and traffic concentration on main paths (trunk)
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of the shared tree. Source trees on the other hand are created for each source of a

group [74, 19]. They provide lower end to end delay, higher optimization and lower

concentration of traffic as groups do not need to share a path. source trees require

additional setup time per tree and put more demand on network resources to track

the state of each tree. Multicast routing problems are classified under the family of

Steiner trees. This set of problems have been extensively researched in the literature

[113, 74, 19]

Congestion and over-subscription in multicast networks lead to packet loss [71,

72]. Not all applications are able to handle packet loss in a multicast environment.

This is especially true since multicast communication is unidirectional and utilizes

connectionless protocols such as udp with no packet recovery mechanism [72]. Packet

loss is an important topic for real time multimedia applications because it leads to lost

video and audio frames. This loss cannot be recovered and impacts artistic content

creation process. In the literature, this problem is usually studied as a constrained

Steiner tree problem (CST). CST problem has been proven to be NP-Complete [113].

Multicast routing algorithms can be categorized into distributed or centralized

algorithms based on the decision-making process to create the multicast trees [87, 80].

In distributed algorithms, the multicast tree is constructed at the network nodes level

on a hop by hop basis. Popular algorithms include PIM [1] and MOSPF [76].

PIM is widely deployed in IP networks due to its versatility in creating multicast

trees [80, 65]. With the advancement of software defined networks (SDN) and SDN

controller concepts [82], there are proposed algorithms that utilize central controller

to maintain network state as well as build multicast trees based on its central view

of the network [10]. Distributed systems do not need to maintain network state in

a central node and can converge from error states faster. However, many of the

distributed systems focus on a single metric such as the shortest path and do not

take bandwidth nor delay requirements into consideration. Centralized systems can
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construct trees with optimization based on multiple factors such as end to end delay,

over-subscription of links and available bandwidth [22].

Optimization techniques for multicast tree calculation utilize well known graph

theories [9, 8, 90]. Multicast routing problems are known to be NP-Hard [108, 119].

As such, multicast algorithms use approximation techniques to address NP-hardness

attribute related to multicast routing. Multicast algorithms that utilize optimization

tools can be classified into online and offline algorithms based on methods used to

build a multicast tree. Offline methods assume that the multicast demand matrix

(groups and destinations) is known in advance and consider tree creation as an

optimization problem. Offline methods create the most optimal multicast tree for the

targeted metric [9]. The challenge with offline methods is that tree route calculation

is an NP hard problem. Even with approximation methods, calculation time is

exponential to both the size of the network and the required tree. This leads

to unacceptable response time for many applications. Assuming full knowledge of

demand matrix is also not realistic for many applications as multicast sources and

group members are dynamic in nature. Online optimization algorithms do not assume

full knowledge of Multicast traffic patterns and demand matrix. Rather, they attempt

to handle multicast routing as the sources and destinations arrive in an online fashion

[27, 66, 22, 47]. Online algorithms achieve lower performance compared to offline

optimization due to their lack of full knowledge.

1.2 Research Impact

A key motivation for this work is the transition happening in the uncompressed Video

transport technologies from legacy non-IP format based on Serial Digital Interface

(SDI) [98] to transport based on IP. Work in the standards bodies is currently

underway around defining standards and relevant encapsulations. The work in [30]

and [55] provide an overview of the live video industry’s current challenges, activities

and forward-looking direction to migrate to IP based video flows. Multicast is a key
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part of underlying infrastructure needed to support the industry activities. However,

current multicast implementations (specifically in PIM , which is the most widely

deployed multicast routing protocol) are not able to address the industry requirements

around maximizing overall number of flows and capacity of the fabric while avoiding

over-subscription of links.

The traffic patterns of uncompressed video within a Broadcast Studio (TV

stations, Sports Venues, etc.) consist of video flows that are very large in throughput

requirements. Table 1.1 shows the rates for uncompressed video which could have

throughput of 1.5Gbps, 3Gbps and 12Gbps. These requirements are expected to

grow as video formats are evolving [99]. With such high throughput, three or six of

these video streams (depending on rates) can saturate a 10G link. These video flows

do not tolerate packet loss as it severely impacts the delivered video quality leading to

image pixilation or total loss of image [58]. Another characteristic of an uncompressed

video flow is being long-lived with constant bit rate (CBR) profile [100]. Such flow is

usually based on UDP with no expectation for packet re-transmission as a late packet

is as good as a lost packet in live video applications.

Table 1.1 Uncompressed Video Data Rates

VIDEO FORMAT DATA RATES in Mbps [101]
Standard Definition SD-SDI 270
High Definition HD-SDI 1080i 1485
3G-SDI 1080p 2970

For multicast tree construction problem, a popular optimization focuses on

finding a routing path or a tree linking the source to the set of destinations, while

simultaneously minimizing some cost function. Researchers have been interested in

finding trees connecting sources and destinations with optimization for a network

attribute such as total path cost or delay. The resulting problem is called the

multicast routing tree problem (MRP) [91]. There are many cost functions that

are relevant depending on the application requirements. Some of the popular cost
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functions include distance [87], end to end delay [91], traffic concentration, bandwidth

utilized and/or tree setup time [71]. Tree total cost reflects the combined cost metric

to establish the tree in the network. End to end delay is important for delay-sensitive

applications [91]. Minimizing traffic concentration in parts of the network is a useful

measure in applications that do not tolerate over-subscription of links and resulting

packet loss. In such environments, traffic concentration can lead to blocking scenarios

in parts of the network while network capacity is available in other parts of the

network. Bandwidth utilization is important in applications that require guaranteed

quality of service through the network [91]. It is also reflective of total capacity in the

network to service the required multicast trees. Path setup time is important for real

time applications such as video conferencing or IPTV applications where the receiver

needs to receive needed content quickly after it sends a request for such content [24].

In state of the art data center (DC) deployments, multicast implementations

are based on Protocol Independent Multicast (PIM) defined in RFC7761 [35]. PIM

is a family of protocols that defines various delivery mechanisms for one-to-many and

many-to-many communications over IP. PIM Sparse mode (PIM−SM) is one of the

protocols in the PIM family that focuses on building shared trees as well as creating

source specific trees. PIM relies on existing unicast routing protocols such as OSPF

[77] for gathering routing information about the network. PIM − SM uses the pull

model where traffic is sent on a link only if we receive an explicit join on that interface.

PIM − SM guarantees that multicast traffic is limited to the part of the network

where receivers reside. In contrast to the PIM Dense-Mode (PIM −DM) [1] which

utilizes the push model, PIM − SM prevents flooding in the network. PIM − SM

requires the definition of a Rendezvous Point (RP) to play the role of the root of

the shared tree. Multicast shared tree allows both the senders and receivers to reach

the RP. However, almost all the actual multicast traffic is sent down a different tree

called the source tree which is the tree with the source as its root.
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Figure 1.3 PIM SM source tree creation example.

In Figure 1.3, we show a traditional source tree creation based on PIM − SM .

In this example, We skip the PIM shared tree creation process for brevity. In this

example, the IP fabric has five leafs and three spines. Leafs are connected to each

spine using two links. The source is connected to L5 and the receiver is connected

to L3. L3 joins the source tree by sending an IGMP join with specific source and

group (S,G). Request will be sent to the next hop switch towards the source based on

unicast routing information available on L3. In this example, L3 has six equal cost

paths towards L5 in its routing table: two paths for each of the three spines S1, S2

or S3 as shown in Figure 1.3b. First link of L3 towards S3 is selected as next hop

towards L5 based on a static hash function defined by the switch. S3 has two links

to L5 and selects Link2 towards L5 based on the same hash (Figure 1.3c). Traffic

will flow on the source tree (L5 > S3 > L3). Let’s assume a second receiver D2

joins the same source and group. L2 joins the source tree by sending (S,G) IGMP

join towards L5. L2 has six equal cost paths towards L5: two links to each of S1,

S2 or S3. Based on static hash, S1 Link2 is selected as next hop towards L5. S1

creates the last leg of the source tree towards L5 using the same logic and Traffic

will flow on the source tree ( L5 > S1 > L2). The example highlights issues with

PIM multicast trees around multicast load balancing, link bandwidth protection,
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optimized tree formation, multicast stream membership protection and admission

control. PIM algorithm suffers from the following limitations:

• Multi-pathing and load balancing Modern DC architectures are predominantly
based on folded Clos fabric [26] with a high cross section bandwidth that is built
using multiple equal cost links between leafs and spines. PIM based multicast
routing handles multi-path selection through a hash which is blind to bandwidth
requirements. This PIM property leads to unpredictable performance and
potential over-subscription of available links. In Chapter 4 Section 4.4,
system testing confirms that PIM hashing based load balancing leads to
over-subscription of a particular link while there is enough bandwidth in other
links. This leads to unpredictable behavior where a system is oversubscribed in
a link while enough bandwidth is available in alternative paths.

• Multicast tree formation: In IP fabric with multiple paths, PIM could
lead to source trees with branching close to the source and thus consuming
more bandwidth compared to source trees that branch closer to the receivers.
Figure 1.3 shows an example where S1 is originating a multicast flow with
two destinations subscribing to the multicast group connecting to Leafs L2

and L3. In this example, PIM based routing caused L5 to send the same
multicast stream to both S1 and S3. This source tree branching allocation is
not optimizing bandwidth being used on uplinks for L5 as it is doubling the
bandwidth used in L5 uplinks and lowering the overall bandwidth available to
other streams originating from L5. A better solution would be for L5 to send
the multicast stream to a single spine (S1 for example) and let S1 replicate the
multicast streams to both L2 and L3.

• Multicast admission control PIM based multicast do not provide an option
for multicast flow admission control. PIM could lead to over-subscription of
certain links in DC fabric and would impact existing and new flows that happen
to be going through that oversubscribed link based on the hash selection.

On the other hand, one of PIM key advantages is its distributed nature where

multicast path decision making is done at the local node level leading to faster setup

time.

As with other data centers (DC), media DC production environment contains

many network elements such as routers, switches and firewalls [18, 32]. Faults such

as silent packet drops, routing loops, high delay in packet buffering and bugs occur

frequently [48, 50, 123, 117]. Network packet losses can cause various temporal and
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spatial damages to the video being transported. The visual effect of an encoded video

packet loss can be severe and leads to a whole or partial video frame loss resulting

in video impairments, video frame pixelation or frame loss on the receiver [94, 4, 85].

The authors in [25] show that a single packet loss leads to visual impairment in a

video frame 94% of the time. In such live production environment, troubleshooting

and monitoring of video flow quality is very critical. As we show in Section 7.2 and

Chapter 2, commercial video monitoring tools rely on edge monitoring using devices

that are expensive and lack scale. As an example, monitoring an average size video

production facility with 3000 active flows would require 1000 servers which is very

expensive and not scalable.

1.3 Dissertation Outline

In this section, the organization and contributions of the dissertation are outlined.

In Chapter 2, we review related work in the field of live media production,

multicast optimization and video quality monitoring. In Chapter 3, we propose a

formulation for multicast tree offline optimization in a multi-spine fabric.

In Chapter 4, We study the online multicast optimization. We include

a design and implementation of a novel Intelligent Rendezvous Point algorithm

iRP for bandwidth-aware multicast routing in media DC fabrics. iRP utilizes a

controller-based architecture to optimize multicast tree formation and to increase

bandwidth availability in the fabric. iRP algorithm maintains the creation, expansion

and removal of source trees based on flow bandwidth and security requirements. The

system offers up to 50% increase in fabric capacity to handle multicast flows passing

through the fabric.

In Chapter 5, we study the problem of minimizing multicast tree setup time

through distributed approach. DiRP algorithm is presented utilizing distributed

decision-making architecture to optimize multicast tree formation while maintaining

low path setup time. The system is implemented using off-the-shelve commercially
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available switches. DiRP algorithm maintains the creation and removal of source

trees based on bandwidth requirements. DiRP algorithm is tested using Cisco’s

Nexus commercially available switches. Testing results confirm that the DiRP

algorithm is able to setup multicast tree paths based on available bandwidth while

maintaining distributed decision making in the fabric to lower path setup time. The

system offers substantially lower path setup time compared to centralized systems

while maintaining bandwidth awareness when setting up the fabric.

In Chapter 6, we study the utilization of machine learning algorithms to increase

multicast efficiency in the fabric. The work includes analysis of TV studio repetitive

traffic patterns to demonstrate the benefits of time series forecasting including

predicting multicast group membership and bringing online optimization efficiency

closer to offline optimization results. We introduce LiRP algorithm which increases

iRP ′s fabric utilization through machine learning. Machine learning is implemented

using k-fold cross validation method to predict future multicast group memberships

leading to optimized multicast tree placement. LiRP algorithm is implemented using

controller-based system and testing is done using Cisco Nexus data center switches.

Testing results confirm that LiRP system increases the efficiency of iRP by up to

40% through prediction of multicast group memberships with online arrival.

In Chapter 7, we study the problem of media relevant monitoring. In live

media production environment (such as TV studios and sports venues), IP networks

are utilized to carry live video using multicast for point to multi-point delivery. TV

production traffic patterns are unique due to ultra high bandwidth requirements and

high sensitivity to packet loss which causes video impairments. Existing network

monitoring tools are either reactive by design or perform generic monitoring of flows

with no insights into video domain. We introduce MediaF low, a robust system

for active network monitoring and reporting of video quality for thousands of flows

simultaneously using a fraction of the cost of traditional monitoring solutions. To
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the best of the authors’ knowledge, Mediaflow is the first of its kind to offer active

in-network monitoring of video flow quality. We implement MediaF low using data

center switches and our testing results confirm that MediaF low reduces video error

detection and correction time from minutes to milliseconds as compared to current

state-of-the-art methods. MediaF low is able to detect and report on integrity of video

flows at a granularity of 100 mSec at line rate for thousands of flows. The system

increases video monitoring scale by a thousand fold compared to edge monitoring

solutions.

The dissertation is finally concluded in Chapter 8 by providing a summary of

the dissertation as well as future directions for the research.
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CHAPTER 2

RELATED WORK

A key motivation for this paper is the transition happening in the uncompressed Video

transport from legacy non-IP format based on Serial Digital Interface (SDI) [98] to

transport based on IP. Work in the standards bodies is currently underway around

defining standards and relevant encapsulations. The work in [30] and [55] provide an

overview of the live video industry current challenges, activities and forward-looking

direction to migrate to IP based video flows.

The studies in [66], [22] and [47] rely on fabrics that require openflow support to

implement the optimization. In [66], the authors propose a controller system based

on openflow to address large scale multicast in switches with limited TCAM space

using controller-based optimization. Authors in [47] offer an algorithm for building

multicast tree that takes into consideration bandwidth requirements. The work in

[16] takes a decentralized approach to multicast ECMP problem rather than solving

it through a centralized controller approach. It proposes PIM extensions as well as

PIM Bundle concepts to achieve that. The work in [22] offers a multicast routing

algorithm based on flow stats provided by openflow.

Work in [27] describes the benefits of a media controller architecture and its

building blocks. Most of the recent research around multicast and SDN assume

that openflow [73] is the underlying protocol in data centers. Based on the authors

industrial experience, most of data center architectures continue to be based on

distributed routing protocols such as OSPF, ISIS and BGP rather than centralized

routing such as openflow. Most of enterprise and service provider data centers

continue to be built and operated based on traditional routing. As such, deployable

solutions would need to assume plurality of routing protocols inside data center to

work with.
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The studies in [66], [22] and [47] rely on fabrics that require openflow support to

implement the optimization. In [66], the authors propose a controller system based

on openflow to address large scale multicast in switches with limited TCAM space

using controller-based optimization. Authors in [47] offer an algorithm for building

multicast tree that takes into consideration bandwidth requirements. The work in

[16] takes a decentralized approach to multicast ECMP problem rather than solving

it through a centralized controller approach. It proposes PIM extensions as well as

PIM Bundle concepts to achieve that. The work in [22] offers a multicast routing

algorithm based on flow stats provided by openflow.

The study in [41] provides good model for multicast optimization in DC

networking, however it assumes batched arrival of flows in that the members for

a group all arrive at the same time which is not a realistic expectation for multicast

flows. The work in [64] addresses multicast reliability issues in DC but does not focus

on increasing fabric efficiency. [63] addresses load balancing of multicast streams in

Media DC but still requires openflow as protocol for implementation.

Online optimization of flows in a fabric has been studied in the literature.

In [8], capacity constrained algorithm selects a flow path based on existing link

utilization as well as potential profit using exponential function. Profit consideration

adds complexity to the algorithm and is not applicable to our use case as the flows

are all treated equally. Also, [8] does not take advantage of clos fabric structure

leading to more complicated utilization tracking criteria. The more recent work in [44]

and [21] tackles multicast optimization in capacity constrained SDN environments.

[44] suggests an online algorithm for unicast and multicast optimization with

incorporating TCAM utilization in the optimization scheme. However, the paper

does not consider existing multicast tree structure in online optimization algorithm.

[21] proposes OBSTA algorithm to optimize multicast throughput through taking

into consideration temporal correlations between trees which is a novel approach.
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However, the proposed algorithm depends on rerouting of existing multicast trees

which would lead to interruption of traffic and is not acceptable to many industrial

use cases such as live video production in media data centers.

Recent research has offered new approaches to active network troubleshooting

and diagnosis and can be classified into two main categories: data sampling and

selective reroute of data for off-network processing.

The work in EverFlow [123] utilizes selective rerouting concept allowing

operators to select traffic samples to be monitored. While sampling approach

minimizes bandwidth overhead, it fails to capture bursty network failures. Also,

EverFlow is reactive in nature and requires a failure to happen to trigger an

investigation which lags in time and leads to much higher MTTD compared to

MediaF low. Everflow builds on sampling approach that is implemented using Sflow

[84]. FlowRadar [67] offers a netflow implementation using sketches inside switches

to support flow queries in order to lower bandwidth overhead.

The work in 007 [7] and Confluo [49] is based on sending sampled network

data to an edge receiver for further processing. Pingmesh [40] approach is based on

sending probes to detect failures in the path. This approach of probing can lead

to gaps in detection as probes are inherently sampling-based which leads to gaps

in detecting errors. Also, since it uses out-of-band probes, it cannot detect failures

that affect in-band data. At end-hosts, existing monitoring tools often focus on a

specific type of information, require access to VMs or use too much of a resource. For

example, HONE [104] and SNAP [121] Handles performance diagnoses by monitoring

TCP-level statistics.

To summarize the challenges with the work above, the focus is towards generic

network failure or focused on specific tcp related diagnostics that are not actionable

for video flows.
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As we focus on video production workflow, literature has broad coverage on the

topic of Video transmission over reliable and unreliable networks. The study in [57]

provides an FEC based solution to handle bursty errors in the network. with focus

on FEC based solutions implemented at the end-point level. The work in [33, 42, 78]

research video quality monitoring towards the end users by utilizing the fact that

video delivery is wrapped with HTTP headers using TCP transport protocol. This

approach is not applicable to our use case as the video is transported using UDP as

a transport protocol. The solutions above focus on end point monitoring and thus

lack scalability as well as ability to locate a network problem timely. In contrast,

MediaF low framework provides specific and actionable insight that is relevant to

video production application by using in-network monitoring approach and focus on

monitoring RTP statistics.
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CHAPTER 3

MULTICAST OFFLINE PROBLEM FORMULATION

In this chapter, we formulate the multicast tree offline optimization in a multi-spine

fabric. For System modeling, we consider a fabric carrying traffic for video production

system where the underlying fabric is CLOS fabric with L leafs and S spines. Video

sources such as a video camera (1 <vs <VS) are attached to Leafs (1 <l <L) and

generate video content that is transported using multicast trees. The video receivers

such as video editing stations (1 <vr <VR) are attached to one of the leafs and

subscribe to multicast streams. As this system is based on CLOS fabric, it can

be modeled as a directed graph with V vertices and E edges. Each vertex could

be an end-point or leaf/spine. Each edge represents a network link between two

vertices. The edge capacity represents available bandwidth between the vertices. For

simplicity, we will assume that all multicast streams require same throughput of 1

unit. We assume that the demand matrix for sources and destinations for each of the

trees is known in advance. We can use integer linear programming (ILP ) to optimize

the distribution of the trees to increase overall fabric utilization while maintaining

the constraints of not exceeding available bandwidth on each of the links

Let Xgs be the state of the path between the source of the multicast group and

one of the spines. The state is equal to 1 if the path is utilized for a group or equal

to 0 if the link is not utilized for that group. Similarly, let Yrs be the state of the

path between a receiver of the multicast group and one of the spines with the state is

equal to 1 if the path is utilized or equal to 0 if the link is not utilized for that group.

With the notations defined above, we mathematically formulate the offline

optimization function as:
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minimize
∑
g

∑
s

Xgs (3.1)

s.t. ∑
g

∑
s

Xgs 6 BW, ∀l ∈ [L],∀s ∈ [S] (3.2)

∑
r

∑
s

Yrs 6 BW, ∀l ∈ [L],∀s ∈ [S] (3.3)

∑
s

Xgs > 1,∀l ∈ [L], ∀g ∈ [G] (3.4)

∑
s

Yrs = 1,∀l ∈ [1, L],∀r ∈ [R] (3.5)

Yrs −Xgs 6 0,∀s ∈ [S],∀r ∈ [R] (3.6)

Xgs > 0,∀s ∈ [S], ∀g ∈ [G] (3.7)

Yrs > 0,∀s ∈ [S],∀r ∈ [R] (3.8)

The objective is to minimize the total number of uplinks from the source

leafs Xgs while creating the multicast trees to achieve the desired connectivity

between multicast sources and destinations. The constraints in equation (3.2)

and equation (3.3) ensure that the total number of flows Xgs or Yrs mapped

through an edge do not exceed the total bandwidth of that edge BW . Constraint

set equation (3.4) ensures that the source is mapped to one of the spines while

equation (3.5) ensures that total links towards a receiver is 1. Constraint set

equation (3.6) ensures that the receiver is mapped to a spine where the needed source

is mapped to. i.e., ensure that ILP takes into consideration the source to spine

mapping when selecting the destination to spine mapping.

Theorem 1. The problem represented by equation (3.1) is NP-complete.

Lemma 1. The problem represented by equation (3.1) is NP.

Proof. The number of constraints is polynomial in terms of the number of sources,
number of receivers per source and number of spines. Given any solution for our
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problem, we can check the solution’s feasibility in polynomial time; then, the problem
is NP.

Lemma 2. The problem represented by 3.1 is NP-Hard.

Proof. To prove that the problem is NP-Hard, we reduce the bin packing problem,
which is NP-hard [54] to a special case of our problem. In the bin packing problem,
we have a set of items G = {1,2,...,N}, in which each item has volume Zn , where
n ∈ G. All items must be packed into a finite number of bins (b1,b2,...,bB), each of
volume VB in a way that minimizes the number of bins used. The reduction steps are
as follows:

• The b-th bin in the bin packing problem is mapped to the j-th multicast tree
in our problem, where the volume VB for each bin is mapped to the maximum
throughput capacity of a spine.

• The n-th item is mapped to the i-th multicast group, where the volume for each
item n is mapped to the fan-out requirement for each of the multicast groups.

• All spines in the fabric have the same maximum forwarding capacity P .

If there exists a solution to the bin packing problem with cost C, then the
selected bins will represent the spines that are selected for a group, and the items in
each bin will represent the multicast groups that will be covered by the fabric and
the total cost of our problem is C. This concludes our proof that equation (3.1) is
NP-Complete.

Figure 3.1 Optimal to actual flow count ratio for the same number of flows: Lower
utilization reflects less efficient multicast trees.

Figure 3.1 shows Optimal to Actual flow count ratio for the same number of

flows across the fabric where the performance of PIM is being compared to that
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of the offline optimization algorithm. PIM shows much lower ratio leading to poor

fabric utilization compared to optimized multicast tree placement. This observation

can be explained by the random nature of PIM traffic hashing across multiple spines

which leads to multicast tree going over multiple spines to carry the same multicast

group leading to sub-optimal multicast touring and poorer fabric utilization.

Multicast offline optimization assumes that multicast demand matrix is known

ahead of time which is not realistic for many of the workflows that rely on multicast

to carry traffic. Much of the existing research, reviewed in Chapter 2, assumes full

knowledge of demand matrix. As such, it utilizes offline optimization techniques for

building multicast trees. In real world deployments of multicast, demand matrix is

not known ahead of time and multicast requests arrival is done in an online fashion.

To address these limitations with offline optimization, the next two chapters

will discuss two proposed algorithms that optimize multicast tree creation assuming

online arrival of multicast requests with unknown demand matrix.
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CHAPTER 4

IRP : INTELLIGENT RENDEZVOUS POINT FOR MULTICAST
CONTROL PLANE

In this chapter, we focus on multicast online optimization problem specific to media

data center requirements1.

Intelligent Rendezvous Point (iRP ) Algorithm is a greedy online algorithm for

multicast tree optimization in a Clos fabric. The algorithm assumes online arrival

of multicast flows and does not assume full knowledge of the demand matrix. The

core concept of the algorithm is to select the least utilized link from the short list of

available links that can service the request.

4.1 iRP System Architecture

iRP system architecture is shown in Figure 4.1. iRP SDN controller is the central

point for multicast control plane and is responsible for setting up the required source

trees between source and destinations for a multicast group. iRP does not mandate

the implementation of special protocols such as openflow, and it is designed to work

with existing IP Fabrics that are utilizing known routing protocols (OSPF, BGP,

etc.). Leafs are responsible for forwarding IGMP signaling to iRP controller for

further processing.

iRP Controller creates a central view of the available bandwidth in each

link and connectivity between leafs. iRP controller creates source trees with the

intention to maximize the overall served bandwidth in the fabric while preventing

over-subscription of links. For multicast signaling inside the fabric, the system utilizes

REST APIs to communicate signaling between the switches and iRP controller. iRP

protocol is described below:

1The work has been published in [60]
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• iRP controller is made aware of the bandwidth requirements for a multicast
flow. This can be done through API calls by the operator and using default
value for a catch-all entry. This metadata information about flow bandwidth
requirements will be used by iRP controller in the bandwidth calculation and
setup of source multicast trees. This bandwidth metadata can also be used
to police the flow to avoid mis-configuration or rogue end points that are not
adhering to flow bandwidth requirements.

• Host IGMP request is intercepted by the first-hop leaf switch. The request is
then forwarded to iRP controller

• In addition to IGMP signaling, source trees for multicast flows can be pre-
provisioned in the fabric through API calls to iRT controller. This is useful for
end points that do not support IGMP signaling natively but still require access
to multicast flows.

• DC fabric is built as a fully meshed spine leaf fabric where a leaf would be
connected to all spines in the fabric using one or more links. It is possible that
even though fabric is set up as fully meshed, at the runtime some of the links
or nodes are operationally down. iRP controller is resilient enough to handle
link or node failures.

• iRP controller utilizes lazy bandwidth allocation approach for efficient use of
fabric bandwidth. As iRP controller is aware of every sender and interested
receivers.

(a) Data center
fabric

(b)
Sources,compute
nodes and iRP
controller

(c) iRP system architecture

Figure 4.1 iRP and LiRP system racks.

When iRP receives multicast requests, it runs iRP (line 1) against the multicast

request and then instructs relevant spine and leafs to establish multicast tree

accordingly using API calls to the relevant switches.
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4.2 iRP Algorithm Details

Inspired by existing online routing algorithms such as in [8, 44, 44], iRP evolves the

link cost based on its utilization and prefers links with lower utilization. In addition,

iRP algorithm design considers the structured nature of clos fabric. Compared to

mentioned algorithms, iRP simplifies source tree formation by focusing on minimizing

the branching of the multicast tree. iRP also simplifies the decision process of

assigning an uplink by always selecting the uplink with most bandwidth within a

set of links.

Pseudocode for iRP Algorithms is shown in Algorithm 1. In line 2, the

algorithm checks if the multicast group is already provisioned in the fabric. In line 3,

we check if there is enough bandwidth from existing assigned spine to the receiver leaf

and if true, we proceed with the same selected spine and continue with setting up the

path in line 19. If the above is not true, algorithm tries to pick a viable spine from

list of available spines by confirming bandwidth availability on the spines both to the

receiver leaf and from sender leaf in line 15 and line 16. The list of compliant spines

is parsed and the spine with the highest bandwidth is selected in line 20. similar

approach is taken for selecting the link with most available bandwidth in line 21 and

then the tree is setup across the fabric in line 25.

iRP algorithm executes in polynomial time O(S) where S is the number of

spines in the fabric. As a comparison, time complexity for recent SDN algorithms are

proportional to the complete fabric size (all leafs and spines). In [44], time complexity

is O(Kεlog(n)) where n is the network size, K is multicast request members, and 0 <

ε < 1. Complexity function in [21] is O(|V |2|D|2) where V is number of vertexes in

the fabric and D is the number of multicast destinations. As S << n in a Clos fabric,

iRP complexity is much lower and has faster execution time compared to [44, 21]

without utilizing openflow.
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Algorithm 1 iRP Algorithm Pseudocode
Inputs
1: Input Spines[] , Leafs[] . list of Spines and Leafs
2: Input SourceLeaf , RecieverLeaf . Leafs where Source and Receivers are connected
3: Input Bandwidth . Required Bandwidth
4: Input GroupSpine . If the multicast group assigned to a Spine, list Spine here
Steps
1: procedure iRP
2: if GroupSpine 6= Empty then
3: if Spine to RecieverLeaf Bandwidth > Bandwidth then
4: SelectedSpines[]← Spine
5: else
6: SelectedSpines[]← SpinesList

7: else
8: SelectedSpines[]← SpinesList

9: if SelectedSpines[] = 0 then
10: return Unavailable BW Error Code
11: else
12: SetupTree . Setup needed tree
13: function SpineList . shortlist spines with BW
14: for each S in Spines[] do
15: if S to RecieverLeaf Bandwidth > Bandwidth then
16: if SourceLeaf to S Bandwidth > B then
17: SelectedSpines[]← Spine

18: return SelectedSpines[]
19: function SetupTree . establish source tree
20: SelectedSpine← SpinewithmostBWtoRecieverLeaf
21: ReceiverLink ← linkwithmostBWtoRecieverLeaf
22: SourceLink ← linkwithmostBWfromSourceLeaf
23: RecieverLink ← RecieverLink −Bandwidth
24: SourceLink ← SourceLink −Bandwidth
25: Setup Source Tree
26: return
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4.3 System Implementation

iRP system testing was done initially using an IP fabric with two spines and four leafs.

The setup was then expanded to 32 Leafs and 6 Spines to reflect testing conditions

with a scalable fabric. The switches used to build the fabric are commercially available

data center switches that run traditional unicast routing protocol to build routing

tables and reachability in the fabric. iRP system does not require switches to support

openflow or other specialized SDN protocols. The leafs are Cisco’s Nexus 93180

switches running NxOS 9.2(1) firmware and the spines are Cisco Nexus 9236 switches

running same firmware [106]. Each leaf is connected to all spines using 100Gbps fiber

links. For multicast sources and destinations, the setup contains 30 nodes to each leaf

for a total of 960 nodes. Commercial grade video nodes that generate uncompressed

video streams are used in this setup. During the testing phase, we introduce multicast

senders and receivers gradually through automation using python code and capturing

testing results accordingly. iRP controller software is running inside a VM using

ESXi hypervisor running on Cisco UCS C240-M4 server x86 based server. A picture

of the actual racks that contain IP fabric as well as server equipment is in Figure 4.1

4.4 Experimental Results

In this section, we compare the performance results of traditional PIM SM to iRP

controller system in a real folded clos fabric using commercial off the shelf (COTS)

Cisco switches. All tests are done using two test sets, one test set using fabric running

PIM control plane. The same test suite is then run against the fabric running iRP

controller system.

In Figure 4.2, we compare standard deviation (SD) of multicast flow distribution

across available equal cost multi paths (ECMP) on leafs and spines. We selected SD

as a parameter to show the evenness of distribution of the flows between available

ECMP paths where larger SD indicates uneven load balancing between ECMP links.

Test sets for PIM on both Spine1 and Spine2 shows high SD values while the same
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Figure 4.2 Standard deviation to show evenness of flow distribution across ECMP
links between spines and leafs in Clos fabric.

tests with iRP system show consistently negligible and close to 0 SD values which

confirms iRP ability to evenly distribute flows across ECMP links.

Figure 4.3 Comparing highest link utilization amongst ECMP links between PIM
and iRP for the same number of active flows.

Figure 4.3 compares highest link utilization for PIM and iRP on Spine S1 for

a similar set of multicast flows. iRP system shows around 50% lower utilization

than PIM based system for the same number of multicast streams. The lower

link utilization with the same set of multicast flows leads to higher fabric multicast

capacity.

Figure 4.4 shows the total number of tree segments as the number of multicast

flows increases for both PIM and iRP based systems. For the same number of flows
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Figure 4.4 Total source tree segments in the fabric: higher number of segments for
the same number of flows indicate branching closer to the source leading to more
fabric bandwidth utilization.

and distribution of receivers, the lower number of tree segments indicates a more

efficient source tree structure in that the multicast branching is happening closer

to the receivers. In Figure 4.4, we clearly see the difference in the total number of

source tree segments between PIM and iRP . Total segments in iRP is lower by

about 50% compared to PIM for the same fabric and the same number of multicast

groups running in the fabric which increases overall multicast capacity in the fabric.

In Chapter 2, we discussed how PIM lacks awareness of existing multicast flows as

well as bandwidth requirements for the flow when building or modifying source tree

structure and how that leads to inefficient tree structure.

Figure 4.5 Comparing PIM and iRP systems for availability of a link with needed
bandwidth for future streams.

The test results in Figure 4.5 compare PIM and iRP systems for the number

of multicast streams that was forwarded by Leaf1 before starting to oversubscribe one

or more of the uplinks to the spines. Due to the random nature of hash-based flow
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distribution, PIM shows lower number of flows before the system gets into blocking

state. This is because while there is enough capacity in the system overall, hash based

load balancing in PIM would lead to some links getting oversubscribed while others

having available capacity. iRP based system offers higher flow capacity before the

system reaches the blocking state. This is because of the deterministic nature of flow

distribution over ECMP links and bandwidth aware admission control offered by iRP

system. Figure 4.5 shows an increase of 70% or more in guaranteed available system

capacity compared to PIM .

Figure 4.6 iRP system multicast flow setup time.

As an SDN controller system , iRP ’s system scalability is an essential part of

analyzing its performance. Figure 4.6 shows testing results for multicast path setup

time utilizing single iRP controller. Results in Figure 4.6 are based on testing with a

single iRP instance with about 100 requests per second which is sufficient for Media

DC use case. Testing system hardware details are described in Section 4.3. Scaling

up SDN controller system capacity to handle increased flow requests is a topic that

has been studied extensively ([56, 43, 120]). We note that path calculation portion of

iRP is stateless thus scaling of the system can be achieved using distributed system

approach by running multiple instances with a shared database backend such as Onix

[53].

Our test results confirm the observations that were discussed in Chapter 2.

Even distribution of flows over ECMP routes as well as intelligent placement of source
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trees, both offered by iRP system, translate to a significant increase in the number

of multicast flows that can be allowed through the fabric without over-subscription

for the same system bandwidth.
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CHAPTER 5

DIRP : DISTRIBUTED INTELLIGENT RENDEZVOUS POINT FOR
MULTICAST CONTROL PLANE

In this chapter, we focus on multicast online optimization problem with flow setup

delay as an additional constraint 1.

Path setup time is important for real time applications such as Video confer-

encing or IPTV applications where the receiver needs to receive needed content

quickly after it sends a request for such content. Many of the proposed algorithms

to address PIM limitations such as iRP in Chapter 4 as well as [66, 22, 22] and [47]

utilize a centralized decision making with an SDN controller for bandwidth calculation

and setting up the path. One of the main limitations to centralized systems is the

higher delay in path setup time compared to distributed systems such as PIM as

well as scaling of the system to handle thousands of flows.

In this chapter, We provide the following contributions:

1. Propose DiRP Algorithm for creation of efficient multicast trees for online
group arrivals to ensure optimal tree creation as well as ensure multicast flow
bandwidth requirements are met in a deterministic way.

2. Implement the proposed algorithms using COTS switches and utilizing tradi-
tional routing protocols based on Cisco Nexus DC switch family.

3. Present test results using HD Video flows comparing DiRP with PIM and iRP
algorithms results. Test results confirm that DiRP algorithm lowers by 10x the
observed path setup time as compared to iRP . This is done while maintaining
accurate admission of multicast flows based on bandwidth requirements.

5.1 DiRP Algorithm

In this section, we provide an overview of proposedDiRP algorithm. DiRP algorithm

is based on a simple idea of using a deterministic hash function to define which spine

1The work has been published in [62]
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to choose for multicast routing. The hash function takes as an input source host

IP address and multicast group. The output of the hash function is a list of spines

to send traffic to or receive traffic from in ascending order. This hash function is

then implemented on all Leafs in the fabric as part of the spine selection process.

Algorithm 3 provide the pseudocode for DiRP algorithm.

Algorithm 2 DiRP Algorithm Pseudocode
Inputs
1: Input Spines[] . list of Spines
2: Input SourceIP , MulticastGroup . Source IP and Multicast Group Address
3: Input Bandwidth . Required Bandwidth
Steps
1: function SpineHash(S,G) . hash function for spines
2: HashedSpines[]← Hash(S,G)

return SelectedSpines[]
3: procedure DiRP On Source Leaf
4: if GroupSpine 6= Empty then
5: SelectedSpines[]← Spine
6: else
7: SelectedSpines[]← SpineHash(S,G)

8: while Spine is empty do
9: select spine in SelectedSpines if there is BW to spine
10: if SelectedSpines[] = 0 then
11: return Unavailable BW Error Code
12: elseSend stream to spine

13: procedure DiRP On Receiver Leaf
14: if GroupSpine 6= Empty then
15: SelectedSpines[]← Spine
16: else
17: SelectedSpines[]← SpineHash(S,G)

18: while Spine is empty do
19: select spine in SelectedSpines if there is BW to spine
20: if SelectedSpines[] = 0 then
21: return Unavailable BW Error Code
22: elseSend PIM Join to spine

23: procedure DiRP On Spine(PIM Join message)
24: if Spine BW to sender 6= 0 then
25: Spine establishes link to Source Leaf
26: else
27: Spine send PIM ECMP redirect message to Leaf
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Figure 5.1 shows an example of DiRP in a fabric with three spines. When L5

receives traffic from source S1, it would calculate a hash function using the associated

source IP address and multicast group to arrive at a preferred spine. L5 will use local

bandwidth calculation to choose the best interface to send traffic to the spine that

has enough bandwidth. In the example, we show that the hash function is hashing

towards S3. When S3 starts receiving traffic from L5, It will reduce utilized bandwidth

from available bandwidth to keep account of link utilization on its own links.

Figure 5.1 DiRP example.

When L3 gets an IGMP join from receiver D1, L3 will use the same hash

algorithm to determine which spine to request traffic from, and update utilized

bandwidth for link utilization. Both S1 and D1 will be calculating the same hash

result independently, and hence reach the same spine for establishing a flow.

If the available bandwidth between a spine and a leaf cannot accommodate the

bandwidth requirements of an incoming flow, the sender leaf shall calculate the hash

for next best spine from the list produced by the hash algorithm and send traffic over

to the selected spine .

At this point, when a receiver arrives, it shall still hash to original spine and

request traffic from it. Since the spine will not have available bandwidth to reach the

requested source, it will send a PIM ECMP redirect to the receiver leaf. Receiving
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a PIM ECMP redirect message, the receiver leaf shall trigger a recalculation of

RPF towards RP address, where it’d look for the next best spine and since the hash

algorithms shall be the same on both sender Leaf and receiver Leaf, they would again

end up on the same spine.

A port on a switch sees the incoming traffic and chose a link to send the traffic

to the Spine. Receivers that are interested, join the source using regular multicast

protocols like IGMP. When a receiver shows interest in a traffic, it also looks for an

uplink with available bandwidth and requests the traffic from the primary spine 2.

In summary, DiRP algorithm utilizes a deterministic hash algorithm to ensure

that all nodes through the network attempt to send or receive multicast traffic through

same spine leading to synchronized tree setup mechanism that is distributed to allow

for faster setup time. This algorithm allows the system to benefit from distributed

architecture to scale the capacity to process join and leave message using the capacity

of the whole fabric when compared to a centralized architecture where the control

could become the processing bottleneck.

5.2 Experimental Results

In this section, we compare the performance results of DiRP with PIM and IRP

systems in a real folded Clos fabric using Commercial Off the Shelve (COTS) Cisco

switches.

Figure 5.2 DiRP System.
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System testing was done using an IP fabric with 10 Leafs and 3 Spines.

The switches used to build the fabric are commercially available Cisco Nexus data

center switches. The leafs are utilizing Cisco Nexus 93180 switches running NxOS

9.2(1) firmware and the spines are using Cisco Nexus 9336 Switches running same

firmware[106]. Each of the leafs are connected to each of the spines using 6x100Gbps

fiber links as shown in Figure 5.2. The setup utilized a combination of Commercial

grade video nodes that generate Uncompressed HD Video streams as well as traffic

generators. During the testing phase, we introduce multicast senders and receivers

gradually through automation using python code and capturing testing results

accordingly. A picture of the actual racks that contain IP Fabric as well as server

equipment is in Figure 5.3.

In Figure 5.4, we compare path setup time between PIM , iRP and DiRP for

request arrival rate of 40 requests per second evenly distributed. The figure shows

thatDiRP has much lower path setup time compared to centralized systems like iRP .

This is expected as centralized systems require multicast requests to be sent to the

central controller for further processing. This path usually adds tens of milliseconds

to the processing time. processing the request locally on the leafs cut down the overall

processing time without compromising the bandwidth awareness when setting up the

path.

Same observations can be seen in Figure 5.5 and in Figure 5.6 where the

processing time for DiRP is much lower compared to iRP .

In Figure 5.7, we compare standard deviation (SD) of multicast flow distribution

across available equal cost multi paths (ECMP) on leafs and spines. We selected SD

as a parameter to show the evenness of distribution of the flows between available

ECMP paths where larger SD indicates uneven load balancing between ECMP links.

Test sets for PIM on both Spine1 and Spine2 show high SD values while the same

tests with DiRP and iRP system show consistently negligible and close to 0 SD
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Figure 5.3 DiRP testing rack.

Figure 5.4 Maximum flow setup time for 40 pps IGMP arrival rate.
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values. These observations confirm that DiRP can evenly distribute flows across

ECMP links leading to higher fabric capacity for multicast streams.

Figure 5.5 Maximum flow setup time for 10 pps IGMP arrival rate.

Figure 5.6 Maximum flow setup time for 1 pps IGMP arrival rate.

Our test results confirm the observations that were discussed in Chapter 2. Even

distribution of flows over ECMP routes as well as intelligent placement of source trees,

both offered by iRP system, translate to significant increase of the number of multicast

flows that can be allowed through the fabric without over-subscription for the same

system bandwidth.
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Figure 5.7 Standard deviation to show evenness of flow distribution across ECMP
links between spines and leafs in Clos fabric.

5.3 Conclusion

Multicast is widely used to deliver point to multi-point traffic such as real-time

audio and video traffic. Multicast protocols such as PIM suffer from performance

limitations as it is not bandwidth-aware. In this chapter, we propose DiRP algorithm

to enhance multicast capacity in a fabric. Multicast routing in DiRP is handled

in a distributed model across the fabric while maintaining bandwidth awareness

when making routing decisions. DiRP Algorithm ensures efficient tree formation

and load-balancing of multicast flows across ECMP links and implements multicast

admission control based on bandwidth availability in the network. We implement

DiRP system using fabric built on Cisco Nexus COTS switches. The testing results

confirm increased fabric utilization compared to PIM while maintaining similar path

setup time as compared to PIM . Test results also confirm that DiRP provides

performance that is 60% higher than PIM while maintaining similar path setup

delay times.
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CHAPTER 6

LIRP : LEARNING-BASED ENHANCED IRP

In this chapter, we research the benefits of utilizing machine learning to further

optimize multicast tree placement in an online environment 1.

In Chapter 4, we show that iRP algorithm achieves better fabric utilization

compared to PIM . However, Figure 3.1 shows that iRP is less efficient than offline

optimization. This is expected because iRP does not have foresight or complete

knowledge of all the members of a multicast group in advance. That could lead

to situations where the spine selected for a group does not have enough bandwidth

needed for future members of a multicast group.

Figure 6.1 provides an example of the impact of local optimization provided by

online algorithms such as iRP . In Figure 6.1a, the first receiver D1 for multicast

group Sr1 arrives into leaf L3. iRP online algorithm selects spine S3 and a multicast

tree is established L5 >S3 >L3. In Figure 6.1b, second receiver D2 arrives to leaf L2.

Due to other existing multicast groups, spine S− 3 does not have enough capacity in

its link to L2. This forces the iRP algorithm to select a second spine to connect the

source to D2 which in this case is S1 and the multicast tree now has two paths L5

>S3 >L3 and L5 >S1 >L2. This leads to L5 having to service the same multicast

tree through two different uplinks, one towards S3 and another towards S1. This

leads to lower overall fabric capacity and utilization for the same number of multicast

groups.

In summary, one of the main challenges for online optimization of multicast

traffic is the lack of knowledge of full demand matrix. It is also expected that receivers

change group subscriptions in a specific time frame.

1The work has been published in [61]
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(a) Arrival of initial receiver for group Sr1, multicast tree is
established though spine S3 based on available capacity

(b) Arrival of second receiver for group Sr1, L3-S3 Link is
already at capacity, tree will need to go through another spine
S1 that has capacity towards L2

Figure 6.1 Multicast tree placement problem with online arrival pattern.
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In the next few sections, we describe Learning based Intelligent Rendezvous

Point LiRP Algorithm to incorporate prediction in the optimization. Like iRP , LiRP

algorithm assumes online arrival of multicast flows and utilizes past observations of

multicast flow patterns to predict future multicast membership. LiRP utilizes time

series forecasting to be able to predict the multicast group membership and utilize

the information during the path selection phase in order to optimize multicast tree

placement.

6.1 The Case for LiRP

SDN Controller architecture allows for utilization of traffic analytics in forwarding

decisions and made it easier to apply machine learning algorithms [118, 115]. The

core idea behind LiRP algorithm is to utilize machine learning to predict future

group memberships based on past occurrences of such membership, This is done

through exploiting repetitive traffic patterns in multicast group membership. Once

group membership is predicted, that information can be utilized to optimize multicast

tree placement while maintaining online arrival of multicast receivers. We start

by analyzing control logs captured from a TV production studio to identify traffic

patterns that can be analyzed by machine learning to optimize multicast tree

formation. The logs being analyzed represent the takes that a TV Studio operator

would execute as part of his/her workflow.

A take represents a control command to route a source (e.g., a TV camera) to

a destination (e.g., a production switcher). Figure 6.2 shows four samples of such

operator action or takes over 87 day period in an actual TV studio.

Each of the four samples represent a time series of the daily membership of

a receiver to a multicast group using true/false binary representation for an 87 day

duration. Elements in the time series represent a TV station operator action either

connecting (represented by logical 1 or true) or disconnecting (represented by logical 0

or false) a receiver to a group. The take would translate to a multicast join hitting the
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switch from the receiver and triggering the fabric to create a multicast tree towards

the source.

(a) Sample one (b) Sample two

(c) Sample three (d) Sample four
Figure 6.2 Time series of operator activities in a TV studio over 87 days where “1”
represents a take or a receiver joining a group and “0” represents a leave from that
multicast group.

These takes are delivered in sequence, either manually by an operator or through

an automation system that generates the commands based on a schedule. This online

behavior means that the multicast group membership is not known or provided ahead

of time but rather a single receiver is connected to the source of multicast group in each

of these control sequences. To simplify the analysis of the logs, we will assume a 24h

time cycle in a studio where the workflow is a cycle of 24 hours which is a reasonable

assumption given the daily nature of TV production and program schedule.

To analyze the arrival patterns of these operator commands, we utilize

autocorrelation function analysis. Autocorrelation function calculates the correlations

between the time series and its shifted copies at different points in time. The

autocorrelations are usually calculated for the specific range of lags (shifts) and are

expressed in the form of correlogram graph or autocorrelation plot [116].
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(a) Sample one (b) Sample two

(c) Sample three (d) Sample four

Figure 6.3 Autocorrelation of 4 samples of operator takes over 79 days period.
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Figure 6.3 shows correlogram graphs with autocorrelation analysis of four

samples of the operator actions represented by time series. Each of these four samples

shows strong but unique autocorrelations around specific intervals unique to each

receiver. Sample in Figure 6.3a shows a strong autocorrelation around days 5, 7

and 13 which is a reasonable pattern that matches 5 business week days as well as

7 week days. This is not true for all-time series though. Sample in Figure 6.3b

shows strong correlation around days 20 and 25. From these samples, we can

see that the multicast group membership time series shows clear autocorrelation

attributes or strong seasonality. This is expected as the workflow inside the TV

studio plant exhibit seasonality itself. Workflows have daily or weekly patterns.

Sources and destinations would have clear association patterns that are repeated

over time. Another observation is that the seasonality or autocorrelation parameters

vary between different time series. i.e., the autocorrelation parameters would vary

between samples. This leads us to have to define these parameters per a pair of

sender/receiver than generalizing to a group or to the whole fabric.

We use kernel density estimation (KDE) in our statistical analysis of TV studio

traffic. KDE is a non-parametric density estimator requiring no assumption that the

underlying density function is from a parametric family. KDE will learn the shape

of the density from the data automatically [20]. Figure 6.4a shows KDE of multicast

tree size (number of unique receivers in a group) daily with each line representing

a day. The graph shows that majority of the multicast tree sizes has less than four

unique receivers. Actual distribution shows that trees with up to two flows constitute

to 60% or more of flows. These observations confirm that while the multicast fabric

allows for all-to-all type communication, the ratio of receivers to a sender in such

fabric is much less that the total number of possible receivers. This allows us to build

a fabric that is less likely to be blocking.
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(a) Number of unique receivers per
tree per day

(b) Total number receivers per tree
per day

Figure 6.4 KDE graph representing number of unique receivers per tree per day.

Figure 6.4b shows the same KDE but using number of all receivers that belong

to a specific multicast tree throughout the day. If a receiver leaves a tree and joins it

back, it will be counted again. This graph shows the maximum number of all receivers

as the day progresses. We can observe that for majority of the trees, the maximum

number of all receivers including changes is less than 10.

6.2 Predicting Multicast Group Membership Using Neural Networks

As presented in Section 6.1, Multicast groups memberships in media data centers can

be represented by time series that exhibits repeated traffic patterns. These traffic

patterns have strong autocorrelation characteristics that vary between various time

series. These characteristics allow us to use time series forecasting techniques to

achieve one step forecasting of time series to predict group membership for a specific

day.
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Neural Networks (NN) has been used in the literature for time series forecasting

[11, 23, 52, 12, 83, 122, 2]. LiRP utilizes neural networks supervised learning based

on K-fold cross validation to implement one step time series forecasting of multicast

group time series. Supervised local learning has been studied in the literature [11,

45, 37]. K-fold cross validation has been studied in the literature for its effectiveness

in estimation [3, 31].

Advantages of using NN local learning for time series forecasting are:

Fewer assumptions: Neural Network local learning does not assume a priori

knowledge on the process underlying the data. For example, it makes no assumption

on the existence of a global function describing the data and no assumption on the

properties of the noise. The only available information is represented by a finite

set of input/output observations. This feature is relevant in real datasets where

problems of missing features, non-stationary and measurement errors make appealing

a data-driven and assumption-free approach [12].

Online learning capability: The local learning method can easily deal with

online learning tasks where the number of training samples increase with time. In

this case, local learning simply adds new points to the dataset and does not need

time-consuming re-training when new data become available [12].

We will start NN Analysis of multicast time series by modeling it as a univariate

time series:

st = g(t) + φt (6.1)

The model consists of a systematic part g(t), also called signal or trend, which

is a deterministic function of time and a stochastic sequence and a residual term φt

or noise. More specifically to a univariate time series, the model can be constructed

as :
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st = f(st−l, st−l−1, . . . , st−l−n+1) + φt (6.2)

where f(st−l, st−l−1, . . . , st−l−n+1) is the embedding vector which is a finite

window of the time series l called the lag time and n (order) is the number of past

windows that are being taken into consideration for future prediction.

LiRP utilizes the historical data of multicast group membership in a TV studio

that were discussed earlier. The historical data is used to create the required training

and testing sets for input into K-fold cross validation algorithm. For the forecasting,

the training set is derived by the historical series by creating the [(N-n-1) x n] input

data matrix M . We have selected n = 14 and N = 30 based on expected patterns of

two weeks and a month.

M =



sN−1 sN−2 . . . sN−n−1

sN−2 sN−3 . . . sN−n−2
...

...
...

...

sn sn−1 . . . s1


(6.3)

MatrixM shown in (6.3) represents the training set that will be used as an input

to machine learning one step forecasting. Matrix Y in (6.4) represents the output of

the training set.

Y =



yN

yN−1
...

yn+1


(6.4)

In LiRP , We utilize a multi-layer perceptron (MLP ) model [6] with two layers

as show in Figure 6.5b. Where the group memberships for the last 14 days get fed

into MLP model with two layers and the output is the predicted multicast group
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(a) LiRP approximation function

(b) Deep neural network

Figure 6.5 One-step forecasting. The approximation function f̂ returns the
prediction of the value of the time series at time t+1 as a function of the n previous
values (the rectangular box represents a unit delay operator, i.e., yt−1 = z−1 . yt).

membership that feeds into LiRP algorithm line 3. The prediction for a multicast

group is done for a specific time duration. We assume a time epoch of 24 hours.

Figure 6.6 LiRP system modules.
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6.3 Algorithm and System Architecture

LiRP algorithm adds a neural networks module in iRP controller and utilized for

multicast group prediction information to influence the placement of multicast groups.

The additionalNN module is implemented inside the LiRP controller as shown in the

system architecture diagram in Figure 6.6. LiRP introduces a link utilization virtual

weight to track anticipated utilization of the link based on anticipated multicast

receivers. LiRP pseudocode is shown in Algorithm 3. LiRP algorithm augments

iRP through the inclusion of group prediction in line 5 and virtual trackers of link

utilization in line 6 as inputs. Group prediction in line 5 is the output of MLP

function reviewed in the previous section and illustrated in Figure 6.5.

In LiRP , the spine selection is influenced by both the available bandwidth to

accommodate the existing multicast request as well as virtual utilization of the links

that takes into account the anticipated demand from future receivers that we expect

to belong to the same group but did not receive the request yet. This is reflected

in the algorithm line 20 and line 21. As the receivers arrive in online fashion, the

spine selection will be influenced by virtual utilization of links rather than only actual

utilization leading to better selection of spines for a new tree being setup.

6.4 System Implementation

LiRP system testing was done using an IP fabric with 16 leafs and 4 spines. The test

bed was then scaled up to 32 leafs and 6 spines to reflect testing conditions with a

scalable fabric. The switches used to build the fabric are commercially available data

center switches that run traditional unicast routing protocols to build routing tables

and reachability in the fabric. The system does not require switches to support

OpenFlow or other specialized SDN protocols. The leafs are Cisco’s Nexus 93180

switches running NxOS 9.2(1) firmware and the spines are Cisco Nexus 9236 switches

running same firmware [106] as shown in Figure 4.1. The leafs are connected to

the spines using 6x100Gbps fiber links distributed evenly between the spines. For
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Algorithm 3 LiRP Algorithm Pseudocode
Inputs
1: Input Spines[] , Leafs[]
2: Input SourceLeaf , RecieverLeaf
3: Input Bandwidth
4: Input GroupSpine
5: Input PredictGroup . ML Predicted Group Membership
6: Input AnticipatedLoad . Anticipated Link Load Tracker
Steps
1: procedure LiRP
2: if GroupSpine 6= Empty then
3: if Spine to RecieverLeaf Bandwidth > Bandwidth then
4: SelectedSpines[]← Spine
5: else
6: SelectedSpines[]← SpinesList

7: else
8: SelectedSpines[]← SpinesList

9: if SelectedSpines[] = 0 then
10: return Unavailable BW Error Code
11: else
12: SetupTree
13: function SpineList . shortlist spines with BW
14: for each S in Spines[] do
15: if S to RecieverLeaf Bandwidth > Bandwidth then
16: if SourceLeaf to S Bandwidth > B then
17: SelectedSpines[]← Spine

18: return SelectedSpines[]
19: function SetupTree . establish source tree
20: SelectedSpine ← Spinewithmostvirtual

BWtoRecieverLeaf
21: ReceiverLink ← linkwithmostvirtual

BWtoRecievLeaf
22: SourceLink ← linkwithmostvirtual

BWfromSourceLeaf
23: RecieverLink ← RecieverLink −Bandwidth
24: SourceLink ← SourceLink −Bandwidth
25: RecieverLink ← RecieverLink − virtualBandwidth for all anticipated receivers
26: SourceLink ← SourceLink − virtualBandwidth for all anticipated receivers
27: Setup Source Tree
28: return
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(a) Day 1 (b) Day 2

(c) Day 3 (d) Day 4
Figure 6.7 Histogram showing forecasting accuracy - Neural Network one-step
forecasting in 4 different days from TV studio traces - Y axis represent number of
groups in a bin.
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(a) Day 1 (b) Day 2

(c) Day 3 (d) Day 4
Figure 6.8 CDF showing forecasting accuracy - Neural Network one-step forecasting
in 4 different days from TV studio traces - Y axis represent percent accuracy of
prediction.

multicast sources and destinations, the setup contains 30 nodes connected to each

leaf for a total of 960 nodes serving both as sources and as destinations. The setup

utilizes a combination of commercial grade video nodes that generate Uncompressed

HD video streams as well as traffic generators. During the testing phase, we introduce

multicast senders and receivers gradually through automation using python code and

we capture testing results accordingly. LiRP controller software is running inside a

VM which is running on top of ESXi hypervisor on Cisco UCS C240-M4 server x86

based server with Intel Xeon Processor E5-2699v4 and 256G of memory. A picture of

the actual racks that contain IP Fabric as well as server equipment is in Figure 4.1.

6.5 Experimental Results

We will start by analyzing accuracy of NN prediction algorithm utilized. For the

analysis, we utilize actual traffic patterns captured in a TV studio and applying these

patterns as training and testing sets in the NN algorithm used. Figure 6.7 shows
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one-step forecasting histogram and Figure 6.8 shows one-step forecasting empirical

CDF. The results utilize real TV studio traces results of the one step forecasting NN

algorithm discussed in Section 6.1. The results show very high accuracy of group

membership prediction for a certain receiver where more than 70% of the group

membership is 100% accurate and the group with 0% accuracy is a small percentage.

This confirms the intuition that the multicast traffic patterns are repetitive enough

to allow for highly reliable one step forecasting.

Once prediction algorithm performance is reviewed, we move to compare the

multicast tree setup performance results of Multicast PIM , ILP , IRP and LiRP

systems in a real folded Clos fabric using COTS switches from Cisco systems. All tests

are done using four test sets, one test set using the Fabric with PIM control plane.

The same test suite is then run against a fabric running iRP and LiRP controller

systems. Offline optimization ILP results are obtained utilizing a simulator built

using Python. To increase the scale of the test, we generate traffic patterns that are

like the TV studio traces observed with expanded set of sources and receivers. The

test sets generated vary in the fan-out size per group which is a uniformly distributed

variable between one and the max number of leafs. The accuracy of group membership

prediction matches patterns seen in captures from real media DCs described in section

6.1 while scaling out to match the number of leafs in the system setup.

In Figure 6.9, we compare average spine utilization for the same number of

multicast groups serviced using iRP , LiRP and ILP . Higher spine utilization

indicates less optimized multicast tree positioning leading to lower fabric capacity.

Figure 6.9a provides results assuming 100% accurate prediction by LiRP while

Figure 6.9b and Figure 6.9c provides the same results with 10% and 33% LiRP

prediction error. ILP providing a benchmark for the highest fabric capacity through

ability to optimize by having access to full demand matrix. LiRP ’s performance

is very close to that of ILP while maintaining online arrival pattern of multicast
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(a) 100% accurate ML prediction of group membership

(b) 90% accurate ML prediction of group membership

(c) 67% accurate ML prediction of group membership

Figure 6.9 Average spine utilization for same number of groups among iRP , LiRP
and ILP with various prediction rates.
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requests and offering higher fabric utilization compared to both PIM and iRP . LiRP

is showing up to 40% improvement over iRP .

Our test results confirm the observations that were discussed in Chapter 2 that

Machine Learning and Neural networks can be utilized to learn and apply learning

towards multicast placement optimization. Even distribution of flows over ECMP

routes as well as intelligent placement of source trees, both offered by LiRP system,

translate into significant increase of the number of multicast flows that can be allowed

through the fabric without over-subscription for the same system bandwidth.
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CHAPTER 7

MEDIAFLOW : PROFESSIONAL MEDIA IN-NETWORK VIDEO
FLOW MULTICAST MONITORING

In live media production environment (such as TV studios and sports venues), IP

networks are utilized to carry live video using multicast for point to multi-point

delivery. TV production traffic patterns are unique due to ultra high bandwidth

requirements and high sensitivity to packet loss that cause video impairments.

Existing network monitoring tools are either reactive by design or perform generic

monitoring of flows with no insights into video domain. In this chapter, we

introduce MediaF low, a robust system for active network monitoring and reporting

of video quality for thousands of flows simultaneously using a fraction of the cost of

traditional monitoring solutions. To the best of authors knowledge, Mediaflow is

the first of its kind to offer active in-network monitoring of video flow quality. We

implement MediaF low using data center switches and our testing results confirm

that MediaF low reduces video error detection and correction time from minutes to

milliseconds as compared to current state-of-the-art methods. MediaF low is able to

detect and report on integrity of video flows at a granularity of 100 mSec at line rate

for thousands of flows. The system increases video monitoring scale by a thousand

fold compared to edge monitoring solutions.

7.1 Introduction

As discussed in Chapter 1, packet-based transport networks are widely utilized in

media industry for professional content production [107] such as in TV stations,

newscasts and live sports events. This trend is supported by the rapid increase in

bandwidth availability, increased reliability as well as steep decline in IP transport

price per bit [14]. This is in-line with industry projections (Cisco’s Network Visual
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Index study [107]) where 82% of all IP traffic is forecasted to be video traffic by 2022

with annual growth rate of 34%.

In professional media production, a video flow from a sender might be consumed

by multiple receivers leading to the need for point-to-multipoint communications [69,

99, 102]. Multicast family of protocols offers an efficient mechanism for delivering

point-to-multi-point communications for multimedia and real time video delivery [34].

Reliable delivery in packet networks is often based on the re-transmission at the

cost of longer end-to-end delay. This approach does not work for real-time video

applications as they require low latency for delivery (e.g., news and sports content).

Such applications utilize multicast for point to multi-point delivery that does not

easily support automatic error recovery. State of the art video delivery methods

utilize unreliable transport protocols such as RTP (real-time transport Protocol) [93].

As Multicast is unidirectional in nature, RTP provides end-to-end network transport

functions suitable for applications transmitting real-time data, such as audio and

video. RFC 6792 [86] describes the current framework for video quality monitoring

using RTP metrics. Figure 7.1 represents RFC 6792 framework which relies on edge

monitoring of video flow quality leading to expensive specialized monitoring tools

that do not scale well.

Edge monitoring [89] has been utilized to monitor video quality. However,

in-network monitoring of video quality received no attention due to limitations in

switching hardware that can only support sampled flow capture. Sampling of video

flows for monitoring leads to information loss and is not able to detect granular per

flow information. New generations of programmable DC ASICs (Application Specific

Integrated Circuits) are made available that are capable of deeper packet inspection

without impacting throughput of the switch. A popular example of such ASICs is the

Tofino ASIC [111] that has implemented P4 [13] programmable capabilities. Cisco’s

Cloudscale ASICs [28] offer capabilities for packet header inspections that is utilized
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in this work. Cisco’s ASICs are widely deployed in DC switching environments with

varying estimates of more than 50% market share [29].

To the best of authors knowledge, MediaF low is the first system to implement

in-network monitoring of video flows using RTP sequence tracking to generate insight

into the quality of the video domain.

Figure 7.1 RFC 6792 : Example showing RTP monitoring framework.

To this end, we design and implementMediaF low, a robust system for real-time

monitoring and reporting of video quality for thousands of flows at a fraction of the

cost of existing network monitoring solutions. Mediaflow is first in its kind to utilize

unique packet processing features in DC switching ASICs and combine that with a

controller implementation to achieve scalable real-time monitoring and reporting of

media flows. The unique implementation achieves this mentoring scale at a fraction

of the cost of traditional edge monitoring solutions [17, 70, 51, 114].

In this chapter, we provide the following contributions:

1. We introduce a novel video flow quality metric that tracks video quality per
flow on each edge in the fabric.

2. We developMediaF low, an active in-switch video quality monitoring algorithm
that can identify packet loss impacting a particular video flow and reroute traffic
to recover.

3. We implement MediaF low system using COTS switches. We present test
results using HD Video flows comparing MediaF low results against existing
monitoring solutions. Test results confirm that MediaF low Algorithm is able
to lower detection and recovery measurements by up to 99% while ensuring
accurate admission of multicast flows based on bandwidth requirements.
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7.2 The Case for MediaF low

TV and broadcast video production is one of the last domains that is not fully IP

enabled and where Serial Digital Interface (SDI) [101] continues to be widely deployed

as a transport protocol. This work is inspired by the technology transition happening

in the uncompressed Video transport technologies from legacy non-IP format based on

Serial Digital Interface (SDI) [101] to transport based on IP and the emergence of new

set of standards, namely SMPTE ST2110 suite of protocols that target Professional

Media Over Managed IP Networks [81]. The work in [30] and [55] provide an overview

of the live video industry current challenges, activities and forward looking direction

to migrate to IP based video flows.

SMPTE ST2110 protocol [81] provides a pathway to carry uncompressed video

flows over IP networks. The migration to IP for broadcasters and content providers

brings great business value as it unlocks productivity and allows to benefit from

economies of scale that IP and Ethernet offer. However, such architecture comes

with risk as operations and monitoring of such infrastructure is not well defined.

Professional video content originates from the capture point (a professional

video camera) and goes through various stages of processing and storage (e.g.,

professional video editing software) that lead to the creation of a final product in

the form of a sports game, live news or an episode of a popular show.

In such workflow, video quality is of the highest importance as video is the final

product being produced and packet loss is not tolerated well as it impacts the quality

of the created video. Figure 7.2 represents a contribution network use case for a

live sports production in a sports venue such as a stadium where the sports content

is processed locally and then sent back to Media DC for further processing. Video

traffic is carried using multicast with very high bandwidth requirements driven by

video format used and can be in uncompressed or compressed format. The processed

(yet still live) content would then be sent over wide area IP networks (WAN) to central
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video production studios for final production before sending out to consumers. The

WAN network is usually managed by a third party service provider and the content

provider might not have visibility nor control on the WAN network. From the WAN,

live video traffic makes it to the central production facility (TV studio) for final

processing before sending the sports show to air to be watched by consumers. Video

flows continue to be carried using multicast and are usually in uncompressed format

with throughput rates described in Table 7.1.

There are multiple places in the described production chain where video quality

could be impacted. Problems can be outside the network such as errors during camera

capture or artifacts due to video compression and transmission link imperfections

[57, 95, 109]. Operating IP networks in such environments is very challenging

as the network is the first to be blamed for imperfections seen in video quality.

Network operators need deep network visibility and an efficient way to quickly and

effectively locate video problems and their root causes if packets are being dropped

from video streams or if the video quality issues are due to other factors [86, 110].

The deterioration of video quality is often observed on the receiver side as pixelation

and impurities in the reconstructed video images.

Figure 7.2 Packet loss in different parts of the production chain.

Existing commercial monitoring solutions are based on reactive selective

monitoring where the impact on a video flow needs to be detected visually by an
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operator using a visual monitoring station. The monitoring station monitors a subset

of the flows based on level of business impact of the video flow (to-air video signals

are clearly more important than others). When the operator notices a visual artifact,

the impacted flow is then cloned to another deep inspection station to analyze the

health of video flow and try to take corrective measure. This reactive approach takes

long time to execute, is prone to errors and does not scale to thousands of flows.

State-of-the-art solutions like [123, 75, 67] are not focused on video quality

monitoring but rather a generic packet flow error tracking which do not provide

actionable video-related insight. To address scalability issues in tracking flows, they

utilize either sampling approach or selective routing of flows to a monitoring station

based on a trigger. Both approaches are clearly not adequate to proactively locate

and rectify network issues affecting video flows at scale.

Mean time to detect (MTTD) and Mean time to repair (MTTR) are key

operational metrics for network operators. MTTD represents the time it takes for

an operator to detect an error in a particular video flow, while MTTR is the total

time needed to recover the flow from errors.

As shown in Figure 7.2, The issue with Video QoS monitoring is more

challenging when parts of the network is not managed by the organization (WAN

circuit, VPN circuit, etc). This is a popular deployment model especially in live

sports production environment at sports leagues to transport the production video

signal from the sports venue (stadium, ball park or field) back to the Media DC

for further processing before sending the final video content out. The impact of

packet drops in or between switches can not be correlated to the video flows going

through the link or switch. This leads to a very high MTTD and MTTR resulting in

video and audio artifacts in high quality productions ultimately impacting customer

quality of experience (QoE). In real-time video production and delivery domain,

sub-second measurements are the expected norm. State of art MTTD and MTTR
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are in magnitudes of minutes which do not satisfy business requirements of the video

application real time monitoring and high availability.

7.3 Definitions and Problem Description

Most of the work in the literature is focused on the delivery of an already produced

and final content to end users [33, 78, 5, 10]. In contrast, the work in this chapter is

focused on professional multimedia content generation such as in TV studios, News

production and Sports production where handling live video traffic puts demand

on the fabric to achieve high availability and low latency for the traffic flows going

through the fabric.

Figure 7.3 Media functions in a live broadcast facility.

In a video production environment, SMPTE ST2110 flows can be carried within

the production facility (intra-facility) but also in between geographically separated

production locations (inter-facility). The workflow requires the content to be

transferred between many video processing end points that perform a media function

(which is very similar to a network function concept) as depicted in Figure 7.3.

Table 7.1 Video Data Rates In Broadcast Facility

VIDEO FORMAT DATA RATES in Mbps [101]

Standard Definition SD-SDI 270
High Definition HD-SDI 1080i 1485
3G-SDI 1080p 2970

The traffic patterns of uncompressed video within a broadcast studio (TV

stations, sports venues, etc.) consist of thousands of video flows that are very large in

throughput requirements as they carry uncompressed video. Table 7.1 shows the rates

for Uncompressed video which could be 1.5Gbps, 3Gbps, 12Gbps and growing as video
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formats are evolving [99]. Carrying uncompressed video format allows professional

video environments to achieve high quality video distribution while meeting strict

latency requirements [112, 88, 59].

This means that three to six of these video streams can fill up a 10G link.

Such Video flows do not tolerate packet loss as packet loss severely impacts the

delivered video quality leading to image pixelation or total loss of image. Another

characterization of the uncompressed video flows is that they are long lived in nature

and utilize best-effort UDP transport protocol for delivery.

Within this context, MediaF low focus is on minimizing the detection time

(MTTD) and resolution (MTTR) time of packet loss affecting video flows.

MTTD = Tr + Ts + Td (7.1)

To calculate MTTD we measure the time interval from the start of the network

fault to the time the fault is reported and localized properly when an operator gets

an alarm identifying the location of network errors. Equation (7.1) describes the

components included in MTTD calculation where Tr is the reporting time for human

eye to detect an issue with a video on monitoring screens, Ts is the time it takes to

route the impacted flow to an edge device for monitoring and Td is the time needed for

edge device to analyze and detect video flow issues. Of these values, Tr is the dominant

factor as it is usually human driven. MediaF low reduces MTTD significantly because

it utilizes in-network monitoring leading to both Tr and Ts being almost zero.

MTTR =MTTD + Tl + Treroute (7.2)

MTTR represents the total time interval from the start of the network fault to

the time it is successfully mitigated. Equation (7.2) extends (7.1) where the additional

parameters are Tl which is the time needed to localize the link where the packets
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were lost in the fabric and Treroute is the time needed to reroute an impacted flow

around a problematic link. Similar to MTTD, MediaF low reduces MTTR in orders

of magnitude because in addition to lower MTTR, Tl is significantly lower and very

close to zero.

Typical multicast flow scale varies depending on the facility sizing and could

range from a couple of hundreds of flows to hundreds of thousands of flows. Authors

own measurements of multicast flows in a major live sports production facility (based

in North America) show 24,100 active multicast flows at any one point in time during

video production cycles. These flows represent a mix of video, audio and ancillary data

as described in SMPTE ST2110 protocol [81]. A typical Inter- and Intra- facilities

system architecture is depicted in Figure 7.2.

For System modeling, we consider a fabric carrying traffic for video production

system where the underlying fabric is CLOS fabric with L leafs and S spines

(Figure 7.4). Video sources such as a video camera (1 <vs <V S) are attached to

Leafs (1 <l <L) and generate video content that is transported using multicast trees.

The video receivers such as video editing stations (1 <vr <V R) are attached to one

of the leafs and subscribe to multicast streams. Production facilities might be spread

geographically and would be interconnected via wide area network (WAN) links

connecting border leafs. Such facilities would vary in size depending on production

requirements and might consist of a single switch or a larger CLOS fabric.

Let Xgs be the state of the path between the source of the multicast group and

one of the spines. The state is equal to 1 if the path is utilized for a group and

zero otherwise. Similarly, let Yrs be the state of the path between a receiver of the

multicast group and one of the spines with the state is equal to 1 if the path is utilized

and zero otherwise.

As this system is based on CLOS fabric, it can be modeled as a directed graph

with V vertices and E edges. Each vertex could be an end-point or leaf/spine. Each
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edge represents a network link between two vertices. The edge capacity represents

available bandwidth between the vertices. Clos fabric modeling tracks edge utilization

Ut where 0 <Ut <Umax and Umax is maximum link utilization.

Without loss of generality, we assume that all multicast streams require same

throughput of 1 unit. We assume that the demand matrix for sources and destinations

for each of the trees is known in advance. We assume online arrival and departure of

video flows as this reflects a typical professional video production environment where

flows are routed through the facility depending on the actual needs of the producers

at that particular time.

We also introduce flow state metric Ff to track video flow quality (or lack of

it) in a particular edge. For simplicity, we set Ff to zero when errors were reported

on that edge and we set Ff to 1 when no errors are reported for that flow on that

particular edge.

We formulate the off-line problem of optimizing the distribution of the trees

to increase overall fabric utilization while satisfying the constraints of not exceeding

available bandwidth on each of the links using integer linear programming (ILP ) as

follows:

minimize
∑
g

∑
s

Xgs (7.3)

s.t. ∑
g

∑
s

Xgs 6 BW, ∀l ∈ [L],∀s ∈ [S] (7.4)

∑
r

∑
s

Yrs 6 BW, ∀l ∈ [L],∀s ∈ [S] (7.5)

Frs = 1,∀s ∈ [S], ∀r ∈ [R] (7.6)
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∑
s

Xgs > 1,∀l ∈ [L],∀g ∈ [G] (7.7)

∑
s

Yrs = 1,∀l ∈ [1, L],∀r ∈ [R] (7.8)

Yrs −Xgs 6 0, ∀s ∈ [S],∀r ∈ [R] (7.9)

Xgs > 0,∀s ∈ [S],∀g ∈ [G] (7.10)

Yrs > 0,∀s ∈ [S], ∀r ∈ [R] (7.11)

The optimization objective is to minimize the total number of uplinks from the

source leafs Xgs when creating the multicast trees to achieve the desired connectivity

between multicast sources and destinations while tracking both bandwidth and flow

error constraints. The constraints in (7.4) and (7.5) ensure that the total number of

flows Xgs or Yrs mapped through an edge do not exceed the total bandwidth of that

edge BW . Constraint set (7.6) tracks the flow error reporting status per edge and

ensures edges with reported errors are not utilized. Constraint set (7.7) ensures that

the source is mapped to one of the spines while (7.8) ensures that total links towards

a receiver is one. Constraint set (7.9) ensures that the receiver is mapped to a spine

where the needed source is mapped to. i.e., ensure that ILP takes into consideration

the source to spine mapping when selecting the destination to spine mapping.

The above optimization problem assumes that multicast demand matrix is

known ahead of time which is not realistic for many of the workflows that rely on

multicast to carry traffic. Much of the existing research reviewed in Chapter 2 assume

full knowledge of demand matrix and thus utilizes offline optimization techniques for

building multicast trees. In real world deployments of multicast, demand matrix is

not known ahead of time and multicast requests arrive in an online fashion.
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In the next section, we discuss MediaF low algorithm that optimizes multicast

tree creation assuming online arrival of multicast requests with unknown demand

matrix while taking into consideration network errors that affect video flow quality.

7.4 MediaFlow Algorithm

In this section, we describe Professional Media In-Network Video Flow Multicast

Monitoring MediaF low Algorithm. MediaF low algorithm extends our work in

Chapter 4 to incorporate video error detection and recovery in the optimization.

MediaF low algorithm assumes online arrival of multicast flows.

MediaF low algorithm consists of two main components, (i) In-network error

detection of video flows and (ii) Video flow error recovery utilizing SDN concepts to

reroute video flows around areas where the error or loss occurs. Both components are

described in the following sections:

7.4.1 Video Flow Error Detection

For Video Flow Error Detection, MediaF low algorithm utilizes the switch ability

to report on gaps in rtp flow sequences as described in Section 7.1. MediaF low

algorithm utilizes real time video error detection capabilities available in Cisco’s Nexus

9000 switching platform [79] namely the Media Flow Analytic capabilities [36]. These

capabilities rely on Cisco’s Cloudscale ASICs that are able to read first 128 bytes of

packet headers, monitor RTP sequences and report on any gaps in sequences. ASIC

provides a unique ability to monitor video flows inline as they cross the network

and does that at scale. ASIC is widely deployed in enterprise networks however

MediaF low is the first system to utilize the above unique ASIC ability.

iRP algorithm, described in Chapter 5, is able to achieve better fabric utilization

compared to the standard, namely PIM . However, iRP focuses on bandwidth and

distance for defining flow path and does not track video flow quality as part of its

metrics.
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MediaF low algorithm extends iRP algorithm by adding a module for flow state

metric tracking as shown in line 1 of Algorithm 4. The module introduces a new metric

Ff to report flow state on edges and track inMediaF low controller through complete

visibility into the fabric. MediaF low monitors flow errors reported by all switches in

the fabric. This is done by correlating error reporting for a particular stream between

the sender switch and receiver switch that are located on both sides of a link. If the

upstream switch is not reporting errors for a particular flow while the downstream or

receiver switch is reporting errors for the same flow then the algorithm flags the link

and flips the value of the Ff metric from 1 to 0 for that particular flow. This would

trigger a notification to the operator through notification APIs. An API sample of

notifications is described in Table 7.3

Figure 7.4 Multicast in a CLOS fabric (a) Initial flow state without errors. (b)
Reporting of RTP flow errors on spine S3. (c) Recalculation Of flow path towards
spine S2.

Figure 7.4 provides an example of flow error detection. Figure 7.4 (a), Source

Sr1 is sending a video flow with two receivers D1 and D2 utilizing Spine S3 in the

path. S3, L2 and L3 start reporting RTP errors for this particular flow while L5 does

not report errors. This allows MediaF low controller to localize the problematic edge
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to the edge connecting L5 to S3. MediaF low controller would lower metric Ff for

this edge to zero indicating an impact to the flow. Algorithm 4 shows the psudeocode

for MediaF low algorithm.

7.4.2 Video Flow Error Recovery

MediaF low algorithm utilizes a centralized controller to perform multicast path

calculation. MediaF low extends iRP algorithm, by adding capability to reroute

traffic based on reported flow state metric Ff on a specific edge. MediaF low module

incorporates the metric in the online multicast path calculation. As described in

Section 7.4.1, a change in Ff metric for a particular edge triggers MediaF low

Algorithm to recalculate multicast path.

Multicast flow state includes the list of edges and vertices representing the

fabric. MediaF low starts by checking if there is enough bandwidth in other edges

that connect the two vertices (the upstream and downstream switches). It is likely

that there is another edge that has enough bandwidth to handle the needed bandwidth

for the flow. The algorithm would move the flow to the identified link to recover

service. the selected edge bandwidth metric would be reduced to reflect the added

bandwidth utilization of the new flow. This would be the least impactful option to

the rest of the flows and the overall topology. The calculation has local scope (to the

uplink switch) and thus has minimal execution time and minimal complexity.

If there is not enough bandwidth in any of the remaining links between the

two vertices identified (the spine and the leaf), MediaF low would go through a full

algorithm cycle to move the flow to another vertex (spine). It will pick a viable spine

from list of available spines by confirming bandwidth availability on the spines both

to the receiver leaf and from sender leaf in line 19 and line 20. The list of compliant

spines will then be parsed and the spine with the highest bandwidth will be selected

in line 24. The same is done for selecting the link with most available bandwidth in

line 25 and then the tree is setup across the fabric in line 29. The algorithm will result
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Algorithm 4 MediaFlow Algorithm
Inputs
1: Input Spines[] , Leafs[] . list of Spines and Leafs
2: Input SourceLeaf , RecieverLeaf . Leafs where Source and Receivers are connected
3: Input Bandwidth . Required Bandwidth
4: Input GroupSpine . If the multicast group assigned to a Spine, list Spine here
5: Input FlowState . Tracks flow state metric
Steps
1: procedure FlowStateUpdate
2: if New FlowState 6= Current FlowState then
3: Current FlowState ← New FlowState . Update for each edge
4: return UpstreamSwitch , DownstreamSwtich . return upstream and

downstream switches with error link
5: procedure MediaFlow
6: if GroupSpine 6= Empty then
7: if Spine to RecieverLeaf Bandwidth > Bandwidth then
8: SelectedSpines[]← Spine
9: else
10: SelectedSpines[]← SpinesList

11: else
12: SelectedSpines[]← SpinesList

13: if SelectedSpines[] = 0 then
14: return Unavailable BW Error Code
15: else
16: SetupTree . Setup needed tree
17: function SpineList . shortlist spines with BW
18: for each S in Spines[] do
19: if S to RecieverLeaf Bandwidth > Bandwidth then
20: if SourceLeaf to S Bandwidth > B then
21: SelectedSpines[]← Spine

22: return SelectedSpines[]
23: function SetupTree . establish source tree
24: SelectedSpine← SpinewithmostBWtoRecieverLeaf
25: ReceiverLink ← linkwithmostBWtoRecieverLeaf
26: SourceLink ← linkwithmostBWfromSourceLeaf
27: RecieverLink ← RecieverLink −Bandwidth
28: SourceLink ← SourceLink −Bandwidth
29: Setup Source Tree
30: return
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in moving the flow to another spine and is done based on the available bandwidth and

flow state metrics with the intention to bypass the impacted edge. The calculation is

done from the impact point onward towards the receivers to minimize the impact on

other receivers who are not affected by that particular edge.

In line 5, algorithm checks availability of alternate local links with available

bandwidth to accommodate the impacted flow. If a link is found, flow is moved to

the new link in line 23. If the above is not true, the algorithm tries to pick a viable

spine from the list of available spines by confirming bandwidth availability on the

spines both to the receiver leaf and from sender leaf in line 19 and line 20. The list of

compliant spines will then be parsed and the spine with the highest bandwidth will

be selected in line 24. The Same is done for selecting the link with the most available

bandwidth in line 25 and then the tree is setup across the fabric in line 29.

Continuing the example in Figure 7.4 from previous section, and following the

reporting by S3, L2 and L3 of RTP errors for this particular flow, MediaF low

controller would lower metric Ff for the problematic edge connecting L5 to S3 to

0 indicating an impact to the flow. MediaF low algorithm would recalculate a new

path for the impacted flow utilizing available metrics for all edges including available

bandwidth and Ff for that particular flow as described in line 4. Spine S2 would now

be hosting the impacted flow and forwarding to both receivers.

MediaF low algorithm executes in polynomial time O(S + L) where S is the

number of spines and L is the number of leafs in the fabric. This is because

MediaF low algorithm takes advantage of CLOS fabric structure where leafs are

connected to all spines thus MediaF low decision is to select a new link in one

of the spines as the path criteria. As a comparison, time complexity for offline

optimization is proportional to the complete fabric size (all leafs and spines). In [44],

time complexity is O(Kεlog(n)) where n is the network size, K is multicast request

members, and 0 < ε < 1. The complexity of the algorithm in [21] is O(|V |2|D|2) where
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V is number of vertexes in the fabric and D is the number of multicast destinations.

As S << n in a Clos fabric, MediaF low complexity is much lower and has faster

execution time compared to [44, 21] without utilizing specialized protocols such as

OpenFlow that is required in the algorithms above. OpenFlow does not have wide

commercial adoption despite its life span of more than ten years [82] which limits

the possibility of deploying such algorithms in actual enterprise networks. We show

performance and testing results in Section 7.6.

Figure 7.5 MediaFlow controller architecture.

MediaF low controller internal architecture is shown in Figure 7.5. The

controller stores flow connectivity, statistics and failures/drop information into

persistent database (ElasticSearch). MediaF low controller’s API Gateway module
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exposes flow, RTP traffic information–statistics, and packet drops via HTTP REST

interface. Flow life-cycle events as well as any drops/failures can be received in real

time fashion by subscribing to AMQP channel hosted by the controller.

MediaF low Controller exposes HTTP(s) REST API to provide insight into

media flow traffic integrity for external systems. Structure of the main APIs is shown

in Table 7.2. MediaF low controller tracks end to end flow in the network and actively

monitors them for any glitches. If there is a packet loss, MediaF low controller

identifies affected flows and pinpoints node/device and involved incoming interface

where drops are observed. Information can be retrieved via REST API as well as client

can subscribe to real time notifications of video flow status. Structure of notification

message is shown in Table 7.3.

Table 7.2 MediaFlow Controller Sample External API

API DESCRIPTION
GET
/rtp/fabrics/all/active

Returns active flows using 3 tuples of
stream, traffic counters and incoming
interface

GET
/rtp/fabrics/all/error

Returns flows with packet drops using 5
tuples of stream, traffic counters, incoming
interface, loss start time and packet drop
count

7.5 System Implementation

MediaF low system architecture is shown in Figure 4.1. Following SDN principles,

MediaF low algorithm utilizes a centralized controller approach to collect RTP flow

statistics generated by switches in the network. Collection is done using streaming

telemetry process running on network nodes using gRPC protocol [39]. The statistics

are received by MediaF low SDN controller that analyzes RTP flow statistics of each

flow to identify and localize network locations where a particular video flow starts to

experience errors.

MediaF low SDN controller is the central point for multicast control plane and is

responsible for tracking flow metrics and setting up the required source trees between
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Table 7.3 MediaFlow Controller Sample Notification Payload

KEY VALUE
message-id Message Identifier
delivery-mode Sync or Async
Event Switch name and Event ( add or delete)
Operation Real Time Notification
Operation-Status Success or Failure
Sent-At Date and Time
Severity Severity level Critical or Information
Type Switch
User Internal
content-encoding UTF-8
content-type application/json
Payload "Switch":"node-name", "id":"fault-id",

"LossStart":12:18:19PST Apr 06
2020, "SourceIP":"10.33.56.10",
"DestinationIP":"232.200.255.29",
"LossStart":"12:18:19 PST Apr
06 2020", "PacketLoss":"450959",
"SourcePort:33002,
"DestinationPort":31002,
"BitsPerSec":246998, "Protocol":17,
"PacketCount":674537,
"IFName":"Ethernet1/8/2",
"status":"created"

source and destinations for a multicast group. Streaming telemetry is utilized to

stream video flow state changes from each switch to the controller. MediaF low

controller utilizes API calls to drive multicast flow stitching through the fabric driven

by online arrival of sources and receivers.

MediaF low SDN controller tracks RTP flow statistics reported by each node

and calculates flow state metric Ff for each of the edges in the network where the

controller compares the old state and new state of flow state metric reported on a

particular edge based on change trigger. The change trigger could be reported by the

switches in intervals of 100 uSec.

MediaF low controller has a built-in gRPC receiver to collect streaming

telemetry from all switches in the fabric. Network periodically pushes flow data

and statistics and any flow failures/packet drops in real time via telemetry channel

using gRPC protocol with JSON encoding. Using link layer discovery protocols and
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Figure 7.6 MediaFlow system architecture.

collating flow information from all switches, MediaF low controller can establish end

to end path for all flows.

MediaF low controller software is implemented using Python and runs in a

Centos 7 VM with 8 cores and 24GB of memoery. The VM is running on top of ESXi

6.5 hypervisor on Cisco UCS C240-M4 x86 based server with Intel Xeon Processor

E5-2699v4 and 256G of memory.

MediaF low system testing is executed using an IP fabric with 16 leafs and 4

spines. This scale is representative of industry deployments for this use case. The

testbed is then scaled up to 32 leafs and 6 spines to reflect testing conditions with a

scalable fabric. The switches used to build the fabric are commercially available DC

switches that are widely deployed in enterprise DCs. These switches run traditional

unicast routing protocols to build routing tables and reachability in the fabric. The

system does not require switches to support OpenFlow or other specialized SDN

protocols to ensure wider scope of deployment. The leafs are Cisco’s Nexus 93180

switches running NxOS 9.3(3) firmware and the spines are Cisco Nexus 9336 switches

with 36x100G ports and are also running NxOS 9.3(3) [79] as shown in Figure 7.6.

The leafs are connected to the spines using 6x100Gbps fiber links distributed evenly
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(a) WAN Captures

(b) Normal Distribution

(c) Poison Distribution
Figure 7.7 Video flow error detection time : Comparing mean time to detection of
MediaF low to edge monitoring methods.

75



(a) WAN Captures

(b) Normal Distribution

(c) Poison Distribution
Figure 7.8 Video flow stream recovery time : comparing mean time to recover of
MediaF low to edge monitoring methods.
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between the spines. For multicast sources and destinations, the setup contains 30

nodes connected to each leaf for a total of 960 nodes serving both as sources and

destinations. The setup utilizes a combination of commercial grade video nodes

that generate Uncompressed HD video streams as well as traffic generators. During

the testing phase, we introduce multicast senders and receivers gradually through

automation using python code and we capture testing results accordingly. Main

testing involves measuring packet loss detection times as well as recovery times. For

that, we introduce packet loss by injecting packet loss for particular flows in edges.

This is done through introducing traffic shaping applied directly to switch interfaces

that would lead to some packet policing and thus packet loss. Figure 7.9 shows the

actual racks that contain equipment used in MediaF low testing including IP Fabric

as well as server equipment.

7.6 Experimental Testing Results

(a) Nexus Fabric (b) Sources, compute
nodes and MediaFlow
Controller

Figure 7.9 MediaF low system testing racks.

In this section, we compare the performance results of MediaF low with those

from state-of-the-art video monitoring solutions which we call SelectiveReroute

method in the figures. SelectiveReroute utilizes reactive selective routing as described
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in Chapter 2. To approximate selective routing method, and without loss of generality,

we developed a python code that takes a specific multicast flow data from an operator

and clones the flow to a monitoring station at the edge of the network. If the video

error is confirmed by the station, the flow is rerouted using API calls to the switches.

Our testing utilizes three sets of error patterns to induce packet loss errors

needed for testing. The first set is based on actual packet traces captured using

Multicast video transfer between Amazon Web Services Ohio and North Virginia

availability zones to represent traffic that transits unmanaged networks. The other

two sets of captures are generated using errors with Gaussian as well as Poison

distributions. This is represented in both Figure 7.7 and Figure 7.8.

Figure 7.7 compares error detection time (MTTD) of MediaF low to selective

reroute video monitoring solutions. As discussed in Section 7.1, MTTD component

Tr is the reporting time for human eye to detect an issue, Ts is the time it takes to

route the impacted flow to an edge device for monitoring and Td is the time needed for

edge device to analyze and detect video flow issues. Using mediaF low, Tr is lowered

drastically to 100 uSec and both Tr and Ts will be negligible. As such, MTTD with

MediaF low will be below a second while MTTD without MediaF low will be in the

tens of seconds or more. Testing results confirm the above and show that MTTD

for MediaF low is 100 times lower than that for edge monitoring. This is true for all

threetraffic patterns tested.

Figure 7.8 compares flow recovery time (MTTR) of MediaF low to traditional

solutions based on edge monitoring of video quality. The MTTR equation (7.2)

extends MTTD calculation in (7.1) by adding two additional parameters: 1) Tl

represents the time needed to localize the particular edge where the packets were

lost in the fabric. MediaF low lowers Tl to zero compared to traditional methods

which would require tens of seconds. 2) Treroute which represents reroute time for an

impacted flow around a problematic link. MediaF low reduces MTTR by 1000% or
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(a) Total source tree segments in the Fabric where higher
number of segments for the same number of flows indicate
branching closer to the source leading to more fabric bandwidth
utilization

(b) Comparing availability of a link with needed bandwidth for
future streams

Figure 7.10 Video flow stream recovery time : Comparing mean time to recover of
MediaF low to edge monitoring methods.
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(a) Total source tree segments in the Fabric where higher
number of segments for the same number of flows indicate
branching closer to the source leading to more fabric bandwidth
utilization

(b) Standard deviation to show evenness of flow distribution
across ECMP links between spines and leafs in clos fabric

Figure 7.11 Video flow stream recovery time : Comparing mean time to recover of
MediaF low to edge monitoring methods.
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more because in addition to lower MTTR, Tl is significantly lower and very close to

zero. Similar to MTTD testing results, testing confirms that MTTR withMediaF low

is orders of magnitude lower than that of edge monitoring for all tested traffic patterns.

This observation is explained in equation (7.2).

Key consideration for in-network monitoring advantage is the higher scalability.

The high scalability is achieved because video quality is being monitored in-network.

A leaf or a spine can monitor up to 32000 flows simultaneously. This is in contrast

to 10 to 20 simultaneous flows that can be monitored at the edge using traditional

monitoring methods.

Figure 7.12 shows testing results for scale testing whereMediaF low monitoring

is able to scale to thousands of flows simultaneously. For actual flow generation we

use 100 virtual machines to generate video flows representing actual video flows. Our

test results confirm the ability to monitor 1000 simultaneous flows and identify issues

in real time. We contrast that with ability of the legacy existing monitoring methods

to monitor at the edge for up to 10-20 flows per device which is much lower in scale.

Figure 7.12 Number of edge monitoring devices needed vs. number of switches
needed for in-network monitoring based on flow scale.
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The test results in Figure 7.10 compare MediaF low to PIM for scale and

fabric capacity. Figure 7.10a shows the total number of tree segments as the number

of multicast flows increases for both PIM and MediaF low based systems. For the

same number of flows, total segments inMediaF low is lower compared to PIM which

leads to increased multicast capacity in the fabric. Figure 7.10b compares the number

of multicast streams that was forwarded by a leaf before starting to oversubscribe one

or more of the uplinks to the spines. PIM shows lower number of flows before the

system gets into blocking state.
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CHAPTER 8

SUMMARY AND FUTURE DIRECTIONS

Live media production, such as in TV studios or sports production, is being

transformed through IP and virtualization adoption. This change is allowing media

businesses to adopt workflows for higher video resolutions and better agility in the

internet era.

In live video production environments, Multicast is widely used to deliver point

to multi-point traffic such as real-time audio and video traffic. Multicast protocols

such as PIM−SM suffer from performance limitations as it is not bandwidth aware.

In addition, they lack the ability to build multicast trees that can minimize overall

traffic inside the network.

In Chapter 4, iRP algorithm is presented which is based on a controller-based

multicast routing. iRP algorithm ensures efficient tree formation and load-balancing

of multicast flows across links. In addition, iRP algorithm implements multicast

admission control based on bandwidth availability in the network. We implement

iRP system using fabric built on Cisco Nexus data center switches. Our testing

results confirm optimized distribution of flows as well as up to 50% improvement in

fabric multicast capacity with efficient tree formation.

Chapter 6 presents LiRP algorithm that increases the efficiency of iRP

algorithm by utilizing neural networks to predict multicast group memberships. LiRP

utilizes these predictions to further optimize multicast routing in order to increase

fabric efficiency. Testing results show that LiRP provides performance that is close

to the optimal offline optimization while maintaining online arrival of flows.

In Chapter 5, we present DiRP distributed algorithm to enhance multicast

capacity in a fabric. Multicast routing in DiRP is handled in a distributed model

across the fabric while maintaining bandwidth awareness when making routing
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decisions. DiRP Algorithm ensures efficient tree formation and load-balancing of

multicast flows across multi-path links. Also, DiRP implements multicast admission

control based on bandwidth availability in the network. We implement DiRP system

using fabric built on Cisco Nexus data center switches. Test results confirm that

DiRP provides performance that is 60% higher than PIM while maintaining similar

path setup delay times.

In Chapter 7, Monitoring and diagnostics of professional media delivery over IP

is critical due to very high impact of packet loss on video production. When video

flow experiences packet loss, there will be noticeable artifacts in the video image

affecting production quality. Video monitoring solutions have focused on monitoring

at the edge of the network making MTTD and MTTR very high. In this chapter, we

propose MediaF low algorithm that performs in-network video integrity monitoring

at a very high scale. MediaF low utilizes SDN based controller system to handle

multicast routing as well as video quality monitoring. MediaF low aggregates switch

reported video quality and tracks that by introducing flow state metric Ff . The

metric is then used, as part of MediaF low algorithm, to reroute multicast path for

a particular video flow around a faulty link to recover impacted video flow. We

implement MediaF low system using fabric built on DC switches and our testing

shows reduction in MTTD from minutes to milliseconds and reduction in MTTR

from minutes to seconds as compared to state of the art monitoring methods.

8.1 New Realities of Remote Media Production - Global Pandemics
Impact on Media Workflows

COVID-19 pandemic has impacted how media companies go about doing their

business. On the one hand, consumption of media content has increased by 38%

to 41% depending on the demographics [46] with huge focus on online streaming of

content. In a new survey by Leichtman Research Group [38], 53% of American adults

agreed (selecting 8, 9 or 10 on a 1-10 scale) that they spend more time watching
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TV during the pandemic. Just 16% selected 1, 2 or 3 that they disagreed that they

were spending more time watching TV. A good example of that is Disney+ streaming

offering by The Walt Disney Company which reached 54.5 million subscribers within

6 months of launching [15].

On the other hand, COVID-19 pandemic is already driving a new wave of

digitization being introduced to media production and how content is produced.

Work-from-home and social-distancing rules are affecting how content production is

done with the shift to work from home. Live news production is being done from home

using remote production tools. Minimal onsite presence of technical personnel and

talent is another challenge that these companies need to handle. Content production

workflows is already starting to consume cloud resources as part of the workflow.

This is accelerated by the sudden change to workflow imposed by COVID-19 and the

need to burst capacity for remote workers to do their function of video editing and

content producing.

Current work can be extended to cloud offering as media workflows requirements

around end to end capacity management, monitoring and reporting of flow quality.

As public clouds start to embrace multicast, our work can be extended to managing

multicast streams in a public cloud environments. It can also be extended to establish

consistent monitoring and reporting of video streams in the public cloud. The task of

monitoring and reporting is especially important as public cloud is a managed service

and media customers would require standardized and relevant reporting on their key

production workflow.

8.2 Future Direction

With continued focus on digitization of media workflows, some of the future directions

for this work are:
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1. Multicast optimization in Data Center overlay networks. Overlay networks are
utilized to carry VLANs over fully routed fabrics. Multicast optimization in
overlay networks is a challenge due to the tree nature of the overlay networks
which complicates multicast tree formation.

2. Network optimization techniques for placement of compute nodes to handle
video compression algorithms using CPU cycles vs sending uncompressed video
and utilize high bandwidth in the network. This is a new topic driven by the
advancement of uncompressed video transport protocols such as SMPTE 2110.

3. This work can be expanded to investigate utilizing machine learning for
prediction of flow errors based on error patterns. This learning can be utilized
to learning how to minimize the impact to video quality and maintain higher
service level agreements (SLAs).

4. Cloud production of media workflows is accelerating. This work can be
expanded to investigate needed extensions for expansion of multicast into public
cloud environments. Areas of focus can be to address the increase in expected
error when utilizing a mix of managed and unmanaged networks and how to
minimize the impact to video quality.
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