3,570 research outputs found

    Translation of EEG spatial filters from resting to motor imagery using independent component analysis.

    Get PDF
    Electroencephalogram (EEG)-based brain-computer interfaces (BCIs) often use spatial filters to improve signal-to-noise ratio of task-related EEG activities. To obtain robust spatial filters, large amounts of labeled data, which are often expensive and labor-intensive to obtain, need to be collected in a training procedure before online BCI control. Several studies have recently developed zero-training methods using a session-to-session scenario in order to alleviate this problem. To our knowledge, a state-to-state translation, which applies spatial filters derived from one state to another, has never been reported. This study proposes a state-to-state, zero-training method to construct spatial filters for extracting EEG changes induced by motor imagery. Independent component analysis (ICA) was separately applied to the multi-channel EEG in the resting and the motor imagery states to obtain motor-related spatial filters. The resultant spatial filters were then applied to single-trial EEG to differentiate left- and right-hand imagery movements. On a motor imagery dataset collected from nine subjects, comparable classification accuracies were obtained by using ICA-based spatial filters derived from the two states (motor imagery: 87.0%, resting: 85.9%), which were both significantly higher than the accuracy achieved by using monopolar scalp EEG data (80.4%). The proposed method considerably increases the practicality of BCI systems in real-world environments because it is less sensitive to electrode misalignment across different sessions or days and does not require annotated pilot data to derive spatial filters

    Bringing BCI into everyday life: Motor imagery in a pseudo realistic environment

    Get PDF
    Bringing Brain-Computer Interfaces (BCIs) into everyday life is a challenge because an out-of-lab environment implies the presence of variables that are largely beyond control of the user and the software application. This can severely corrupt signal quality as well as reliability of BCI control. Current BCI technology may fail in this application scenario because of the large amounts of noise, nonstationarity and movement artifacts. In this paper, we systematically investigate the performance of motor imagery BCI in a pseudo realistic environment. In our study 16 participants were asked to perform motor imagery tasks while dealing with different types of distractions such as vibratory stimulations or listening tasks. Our experiments demonstrate that standard BCI procedures are not robust to theses additional sources of noise, implicating that methods which work well in a lab environment, may perform poorly in realistic application scenarios. We discuss several promising research directions to tackle this important problem.BMBF, 01GQ1115, Adaptive Gehirn-Computer-Schnittstellen (BCI) in nichtstationären Umgebunge

    Classifying motor imagery in presence of speech

    Get PDF
    In the near future, brain-computer interface (BCI) applications for non-disabled users will require multimodal interaction and tolerance to dynamic environment. However, this conflicts with the highly sensitive recording techniques used for BCIs, such as electroencephalography (EEG). Advanced machine learning and signal processing techniques are required to decorrelate desired brain signals from the rest. This paper proposes a signal processing pipeline and two classification methods suitable for multiclass EEG analysis. The methods were tested in an experiment on separating left/right hand imagery in presence/absence of speech. The analyses showed that the presence of speech during motor imagery did not affect the classification accuracy significantly and regardless of the presence of speech, the proposed methods were able to separate left and right hand imagery with an accuracy of 60%. The best overall accuracy achieved for the 5-class separation of all the tasks was 47% and both proposed methods performed equally well. In addition, the analysis of event-related spectral power changes revealed characteristics related to motor imagery and speech

    The BciAi4SLA Project: Towards a User-Centered BCI

    Get PDF
    The brain–computer interfaces (BCI) are interfaces that put the user in communication with an electronic device based on signals originating from the brain. In this paper, we describe a proof of concept that took place within the context of BciAi4Sla, a multidisciplinary project involving computer scientists, physiologists, biomedical engineers, neurologists, and psychologists with the aim of designing and developing a BCI system following a user-centered approach, involving domain experts and users since initial prototyping steps in a design–test–redesign development cycle. The project intends to develop a software platform able to restore a communication channel in patients who have compromised their communication possibilities due to illness or accidents. The most common case is the patients with amyotrophic lateral sclerosis (ALS). In this paper, we describe the background and the main development steps of the project, also reporting some initial and promising user evaluation results, including real-time performance classification and a proof-of-concept prototype
    • …
    corecore