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Abstract

This thesis focuses on the development of adaptive data-driven single channel

and multichannel filtering methods for brain-computer interface (BCI) systems.

Magnetoencephalography (MEG) and electroencephalogram (EEG) neuroimaging

recording techniques are considered to measure neurophysiological activity. The

inherent nonstationarity and nonlinearity in MEG/EEG and its multichannel

recording nature require a new set of data-driven single and multichannel filtering

techniques to estimate more accurately features for enhanced operation of a BCI.

Empirical mode decomposition (EMD) and Multivariate EMD (MEMD) are fully

data-driven adaptive techniques. These techniques are considered to decompose

the nonstationary and nonlinear MEG/EEG signals into a group of components

which are highly localised in the time and frequency domain. Also, it is shown that

MEMD based filtering can exploit common oscillatory modes within multivariate

(multichannel) data. It may be used to more accurately estimate and compare

the amplitude information among multiple sources which serves as a key for the

feature extraction of a BCI system. These simple filtering techniques are done at

the preprocessing stage which helped to reduce the effect of the nonstationarity to

a large extent across the sessions for both binary class and multi-class classification

problems and identify features which are somewhat invariant against the changes

across sessions. Different features such as Hjorth, bandpower, common spatial

pattern (CSP), sample entropy and covariance matrix are extracted in the feature

extraction stage for comparative evaluation. A novel subject specific MEMD based

filtering and covariance matrix as a feature set approach is introduced to classify

themultiple classes using Riemannian geometry framework. This approach helped

to achieve high kappa value and classification accuracy when evaluated on BCI

competition IV dataset 2a. This novel type of filtering can be applied without

initial calibration and has the potential to drastically improve the applicability of

BCI devices for daily use. Finally, a novel tangent space based transfer learning

approach is proposed which utilizes the shared structure across multiple subjects

and is an important step towards zero training time for BCI systems.
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Chapter 1

Introduction

1.1 Background

The human brain controls the entire functioning of the body parts. It holds re-

sponsibility for cognition, memory, perception, emotion, action and attention

(Carlson, 2005; Purves et al., 2004). If a person performs any action such as watch-

ing television, reading, thinking, the different regions of the brain gets stimulated.

This stimulus creates magnetic/electrical signals, which collectively trigger the

chemical reactions which allow communication among parts of the body. These

magnetic/electrical signals may be observed with various scientific technologies

such as magnetoencephalography (MEG), electroencephalogram (EEG), magnetic

resonance imaging (MRI), functional magnetic resonance imaging (fMRI), elec-

trocorticography (ECoG) and positron emission tomography (PET). These tech-

nologies help to provide a better insight of how the activities are triggered in the

human brain when a user is performing specific tasks.

EEG is the most commonly used modality to capture brain signals activity because

of non-invasive nature and low set-up prices. It provides good temporal resolution,

and usability (Blankertz et al., 2008; Wolpaw et al., 2000). It helps to know the state

of mind to some extent an individual is in and may be measured when awake,

2



1.1. Background 3

sleeping, and whilst anaesthetized because of the difference in electrical potentials

for a specific pattern for each of these mind states.

These days EEG is extensively used for the diagnosis and treatment of brain neu-

rodegenerative disorders, abnormalities, andmental disorders. Themain challenge

is how to extract specific information corresponding to a specific problem. So, we

need to have some mechanism for the analysis and classification of recorded EEG

signals. These essential steps allow for the development of a system which has the

potential to diagnose brain diseases and to provide a better insight into associated

cognitive tasks.

MEG is another noninvasive neurophysiological method which may be used to

measure the magnetic fields outside the head. This technique gives more precise

magnetic fields signal recorded to the femto tesla (1fT = 10−15 tesla) unit as

compared to EEG but its use has been limited by setup cost of MEG machine. Both

these noninvasive recording methods are used to study the brain dynamics. They

also provide the temporal changes in the sequences and activation patterns. The

main difference lies in the spread of the electric field and magnetic field generated

from the same electric dipole in the human brains.

EEG signals provide valuable information for differentiating among various physi-

ological states of the brain. However, the manual interpretation of these signals is

a very cumbersome and tedious task. Additionally, diagnosis of these EEG signals

requires extensive skill and experience. There is a possibility that this analysis may

suffer from inter-observer variability towards decision making and so there is a

need to develop new techniques for automated classification systems which can

expedite the automatic discrimination among these different brain states using

these signals. A popular examplemay be brain-computer interface (BCI), which is a

systemwhich facilitates ameans of communication for individuals to communicate

with external assistive devices utilizing brain signals such as EEG (Wolpaw et al.,

2002). In BCI, the aim is to translate the intent of a user into control command by

EEG signals for a neuroprosthetics or a computer application. A popular example
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of a BCI modality is motor imagery (MI) based BCI (Pfurtscheller et al., 2006, 1997).

The user is expected to imagine the execution of a movement of a particular limb.

The rhythmic activity is seen in the sensorimotor cortex of the brain for a specific

movement in MI based BCI (Gandhi et al., 2014; Herman et al., 2008). The BCI

systems identify these changes in the rhythmic activities and translate them into

desired command. One of the major problems in EEG- based BCI systems is the

non-stationarity which arises when EEG signals are originating from different

sources. In addition, the recorded EEG signals have a low signal-to-noise ratio

(SNR)(Nicolas-Alonso and Gomez-Gil, 2012). The low SNR may be due to artifacts

resulting from electrooculogram (EOG) or electromyogram (EMG) interference

and electrical power lines. To increase the SNR, a useful step would be to remove

these distortions or artifacts from raw EEG signals before extracting the features for

classification of multiple class MI tasks. Thus, this helps to achieve better feature

separability corresponding to different imagined movements (Wolpaw et al., 2002).

A block digram showing the basic building blocks of a BCI is shown in figure 1.1.

These blocks are discussed in more detail in the next chapter.

Figure 1.1: Block diagram showing building blocks of a brain-computer interface.
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1.2 Aims and Objectives

The work presented in this thesis focuses on the study of MEG/EEG signal process-

ing and classification techniques to design BCI systems as two-class and four-class

classification problems. Despite the promising and valuable achievements reported

in the literature the BCI field is still a moderately young research field and there is

a lot of work which needs to be done to make BCI a mature technology. Among

the many possible improvements, this thesis aims to address two main aspects:

improving the classification accuracy for two-class and multi-class classification

problems of current BCI; designing interpretable single channel and multi-channel

preprocessing techniques which enable the handling of inherent non-stationarity in

MEG/EEG recording techniques. This should enable a more reliable BCI systems

for concrete real-life applications. The BCI research community has highlighted

these points as being one of the most important and necessary research topics for

the further development of BCI communication systems (Lotte et al., 2007; Wolpaw

et al., 2000, 2002).

To accomplish the above aims, the main contributions of this thesis are:

Contribution 1 (C1): Development of a novel single channel filtering technique

for handling non-stationarity in the preprocessing stage for classification of two-

class MI based EEG signals and four-class multi-direction wrist movement MEG

signals.

Contribution 2 (C2): Development of a novel multichannel filtering technique for

handling non-stationarity in the preprocessing stage for two-class and four-class

classification problems.

Contribution 3 (C3): To provide evidence on the performance of the novel filtering

methods by varying the features and state-of-the-art classifiers.

Contribution 4 (C4): Through the development of a novel technique for the auto-

matic identification of subject specific signal characteristics using statistical mea-
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sures in both single channel and multichannel filtering techniques.

Contribution 5 (C5): Development of a novel tangent space based transfer learning

pipeline for more effective utilisation of spatial information and compare the BCI

performance against state-of-the-art classification methods.

1.3 Thesis Structure

The remainder of this thesis is organised as follows:

Chapter 2 introduces a state-of-the-art literature review on the basics of machine

learning and BCI. It also discusses the key challenges such as nonstationarity and

the low SNR in existingmulti-modal recording techniques with a focus on EEG and

MEG techniques. Various approaches studied by other research groups to handle

the inherent nonstationarity issue have been discussed. The chapter concludeswith

a detailed discussion on various adaptive decomposition techniques to decompose

the data into intrinsic mode functions with a particular focus on single channel

empirical mode decomposition and multivariate empirical mode decomposition

techniques and the learning strategies that can be implemented to solve binary

class and multi-class classification problems.

Chapter 3 discusses the implementation of a significant work in the field of adap-

tive filtering in EEG/MEG-based BCI systems and is divided into two sections.

These sections introduce two new types of filtering techniques and serve as an

extension built to the empirical mode decomposition (EMD) technique. These

novel filtering techniques can be used to enhance EEG/MEG signals. The EMD

method decomposes the EEG signal into a group of intrinsic mode functions

(IMFs). These IMFs are considered as a narrow-band, frequency modulated and

amplitude modulated signals. The major challenge is to identify the components

which provide major contributions to particular neurocognitive tasks. The first

study introduces a novel use of the mean frequency measure to identify those IMFs
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which have major contributions to mu (8-13 Hz) and beta (16-24 Hz) rhythms. The

identified IMFs are combined to provide enhanced EEG signals and the remaining

IMFs are discarded. The main aim of the proposed method is to filter EEG signals

before feature extraction and classification to enhance the features separability

and results in improved classification performance. The features namely, Hjorth

and band power features computed from the enhanced EEG signals, have been

used as a feature set for classification of the left hand and right hand MIs using a

LDA based classification method. Significantly improved performance is obtained

when the method is tested on the BCI competition IV datasets. The second study

discusses a novel use of the maximum amplitude frequency measure to identify

those IMFs which have major contributions to multi-direction wrist movements

(< 8Hz) (Tangermann et al., 2012; Waldert et al., 2008b). The identified IMFs are

summed to provide enhanced MEG signals. The main aim is to filter MEG signals

as a preprocessing step. The sample entropy feature has been computed from

the enhanced MEG signals. The feature set has been used for the classification of

multi-direction wrist movements. Improved performance is again obtained when

the method is evaluated on the BCI competition IV dataset 3.

Chapter 4 contains two sections. The first section introduces a novel filtering

technique, namely, MEMD based bandpass filtering (MEMDBF), which serves as

an enhancement to multivariate empirical mode decomposition (MEMD) method.

The MEMDBF implements multichannel filtering of IMFs based on the mean fre-

quency measure to obtain an enhanced EEG-based BCI. The proposed method

helps to handle the inherent non-stationarity and utilises the cross-channel in-

formation present in a multi-channel EEG-based BCI. Common spatial pattern

(CSP) features have been computed from the filtered EEG signals with the linear

discriminant analysis (LDA) used to classify the feature set into left hand and right

hand motor imagery (MI). Since the EEG signals are highly subject specific and

non-stationary, the second section presents a novel filtering method based on the

MEMD using subject independent pooled design BCI (MEMD-SI-BCI) for the clas-

sification of MI based EEG signals to achieve an enhanced BCI. TheMEMDmethod
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helps to utilize the cross-channel information and enhanced localization properties.

It decomposes multichannel EEG signals into a set of multivariate intrinsic mode

functions (MIMFs). These MIMFs can be considered narrow-band, amplitude and

frequency modulated (AFM) signals. The statistical property, namely, the mean

frequency measure of these MIMFs has been used to combine these MIMFs to

compute enhanced EEG signals. The CSP feature has been computed from the

enhanced EEG signals and has been used as a feature set for classification of left

hand and right hand MIs using a LDA based classification method.

Chapter 5 discusses a novel subject specificMEMD based filtering method, namely,

SS-MEMDBF to classify the MI based EEG signals into two classes and multiple

classes. The MEMDmethod simultaneously decomposes the multichannel EEG

signals into a group of MIMFs. This decomposition enables us to extract the cross-

channel information and also localize the specific frequency information. The

statistical measure, mean frequency has been used to filter the MIMFs to obtain

enhanced EEG signals which better represent motor imagery related brainwave

modulations over µ and β rhythms. The sample covariance matrix has been com-

puted and used as a feature set. The feature set has been classified into multiple

MI tasks using Riemannian geometry.

Chapter 6 discusses a novel tangent space based transfer learning classification

method. In the preprocessing stage, a subject specific MEMD based filtering

method, namely, SS-MEMDBF is done andunseenMI basedEEG trials are classified

using the proposed method into two classes.

Chapter 7 concludes the thesis, wherein conclusion and recommendations are

discussed along with concluding summary. The main contributions of the thesis

for each chapter with the potential future research directions are also presented in

this chapter.
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1.4 Publications

This section provides the details of the papers that have been published or sub-
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imagery EEG signals for enhancing brain-computer interface. In International
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3. Pramod Gaur, Ram Bilas Pachori, Hui Wang, and Girijesh Prasad. En-
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based Filtering and CSP Features. In Proceedings of the Sixth International
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4. P. Gaur, G. Prasad, H.Wang, and R.B. Pachori. An MEG based BCI for classi-
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sition. In MEG UK 2016, York, UK, 2016c (contributes to chapter 3)

5. G. Kaushik, P. Gaur, G. Prasad, H. Wang, and R.B. Pachori. An MEG based

multi direction wrist movements analysis using empirical mode decompo-

sition and multivariate empirical mode decomposition. In MEG UK 2017,

University of Oxford, UK, 2017 (contributes to chapter 5).

6. P. Gaur, J.S. Bornot, G. Prasad, H. Wang, and R.B. Pachori. Decoding of

Multi-direction Wrist Movements Using Multivariate Empirical Mode De-

composition. In MEG UK 2017, University of Oxford, UK, 2017 (contributes

to chapter 5).



Chapter 2

Literature review

2.1 Introduction

A brain-computer interface (BCI) has the potential to positively impact upon the

lives of individuals for whom conventional methods of communication or control

are ineffective. However, the accuracy of a BCI can be adversely affected by the

variability of the brain signals recorded not only from different subjects but also

between sessions. Researchers have recently shown increasing interest in this

problem of transfer learning which allows for the exploitation of previous data to

enhance performance. Although traditional approaches to BCI were reliant upon

user adaptation the modern approach to BCI is much more centred on placing

the load on the machine to learn. It has already been demonstrated that machine

learning/intelligent algorithms and adaptation can enhance the performance of a

BCI when applied to any stage of the process whether that is preprocessing, feature

extraction or classification. However, due to the inherently non-stationarity of the

signals typically used in BCI, traditional machine learning techniques are often sub-

optimal leading researchers to address the resultant adaptive learning challenges.

Although methods exist such as the Fourier, Hilbert, or wavelet analysis, this

chapter examines the suitability of the Empirical Mode Decomposition (EMD) and

multivariate EMD (MEMD) methods as an alternative due to their robustness in
11
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both the time and frequency domains. EMD has until recently received relatively

little attention from the BCI community because it is highly suitable for non-linear

and non-stationarity signals (Huang et al., 1998). But, it suffers from the mode-

mixing issue discussed later and only does single channel decomposition which

limits its use in real-time BCI applications. A typical real-time BCI system has

a relatively high number of channels (16 or 32 or 64 channels) depending on

the available recording systems. A decomposition method is required that can

decompose all the channels to utilize the cross-channel information. Amultivariate

extension of EMD (MEMD) (Huang et al., 2003; Park et al., 2013; Rehman and

Mandic, 2009; Rilling et al., 2003) has been recently proposed and has gained a lot

of attention in the BCI research community. All these decomposition methods give

a group of intrinsic mode functions (IMFs). There is a need for the development

of an automatic method which can automatically select the IMF based on any

cognitive or imagery task. This thesis proposes two filtering techniques based on

EMD andMEMD based decomposition which will help to identify the components

corresponding to particular cognitive or imagery task. These filtering techniques

offer evidence of the effectiveness of this novel technique which addresses the

non-stationarity issue in the pre-processing step.

The main aim of the thesis is to develop algorithms which are capable of classifying

magnetoencephalography (MEG)/ electroencephalogram (EEG) signals into two-

class and four- class. To gain insight of the classification mechanism, this chapter

mainly focuses on how EEG/MEG signals are classified into different classes in

the context of the BCI. Section 2.2 presents the basic structure of BCI, whereas

existing feature extraction techniques studied by various research groups have

been discussed in Section 2.3. This chapter also provides a detailed insight of

existing classification techniques which are commonly used to classify MEG/EEG

signals. Section 2.4 discusses the state-of-the-art feature classification algorithm

used in BCI research and Sections 2.6.1 and 2.7 provide some details about EEG

and neural oscillations. Section 2.8 discusses the non-stationarity issue persistent

in the MEG/EEG signals and the different approaches that have been followed

by different research groups. Sections 2.9 and 2.10 provides the details about
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adaptive learning and challenges that are involved in the adaptive learning and

also discusses the adaptive decomposition techniques and the chapter concludes

in the Section 2.11.

2.2 Structure of BCI Design

As discussed in Pfurtscheller et al. (2010), for a device to be defined as a BCI, it

must essentially meet the following stated criteria:

1. The device must rely on signals recorded directly from the brain;

2. There must be at least one recordable brain signal that the user can intention-

ally modulate to effect goal-directed behaviour;

3. It should involve real-time processing;

4. The user must obtain feedback.

Therefore a BCI is defined as a communication system in which messages or com-

mands that individual sends to the external world, do not pass through the brain’s

normal output pathways of peripheral nerves and muscles (Wolpaw et al., 2000,

2002). In the literature, several different categories of BCI systems can be found.

Amongst those a few divergent categories will be considered. Most researchers

especially differentiate amongst invasive and non-invasive BCIs and dependent

and independent BCIs and synchronous and asynchronous (self-paced) BCIs. BCI

systems are useful to those individuals who have motor disabilities because it will

help them to improve their quality of life and at the same time, their care cost

will also be reduced. The main aim of BCI is to allow severely disabled people to

communicate with the external world who are either ’locked-in’ or paralyzed by

neurological neuromuscular disorders, such as spinal cord injury, and brain stem

stroke (Nicolas-Alonso and Gomez-Gil, 2012). Generally, a BCI can be treated as

an artificial intelligence based system that identifies a certain set of patterns in the
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EEG brain signals through a set of successive states. The modern BCI system is

a closed-loop process comprising of six steps which are stated and shown in Fig.

1.1 as follow: (i) Measurement of brain activity, (ii) Pre-processing or enhancing

the signal to make it suitable for further processing, (iii) Feature extraction, (iv)

Feature selection, (v) Feature translation and (iv) Feedback. A brief summary of

each step is now discussed below:

1. Data acquisition: Measuring brain activities plays a crucial role in BCI com-

munications. The electrical signals are measured using a variety of electrodes

based on the mental tasks performed. The EEG is the most widely used in

BCI research (Wolpaw et al., 2000, 2002).

2. Pre-processing: The recorded EEG signals may have poor signal-to-noise

ratio so it is always an essential step to remove the noise and artifacts which

do not correspond to the acquired predefinedmental tasks. Machine learning

and signal processingmay be used to remove the ocular artifacts, muscular ar-

tifacts or utility frequency (60 Hz or 50 Hz) and to improve the signal-to-noise

ratio (SNR). Good pre-processing leads to enhanced signal quality which

may result in better feature separability and help achieve higher classification

performance.

3. Feature extraction: It is a difficult problem to classify the raw signals. In

this step, features are identified which can be used to correctly discriminate

the predefined related mental tasks. These can be extracted from the spatial

domain, time domain, frequency domain or a combination thereof.

4. Feature dimensionality reduction: In BCI systems, the high dimensional

feature classification problem is a commonly faced issue. In this step this

problem is taken care of by first identifying the best features or the combina-

tion of features ( feature selection) and then projecting the identified features

from a higher dimensional space to a lower dimensional space which is more

separable for the classification task (dimensionality reduction).
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5. Feature translation/ Classification (pattern matching): In this step, the ex-

tracted feature vectors from the signals are assigned a class. Every class

corresponds to a predefined mental task. For instance, left hand and right

hand could be identified as two classes for Motor Imagery (MI). The applied

methods could be supervised, unsupervised, linear or non-linear.

6. Operating Protocol: This provides details about the following questions (i)

whether the control/communication is discrete or continuous, (ii) how and

when the classification will start and end, and (iii) how the feedback will be

provided to the user.

2.3 Feature Extraction

In BCI design, the main aim of EEG signal processing is to translate the raw

EEG signal recorded from the electrode into the imagined mental state of the

user. A pattern recognition approach is utilized to achieve this translation. This is

usually accomplished by twomain steps: (i) feature extraction and, (ii) classification.

During this step, if a feature or a combination of features extracted does not provide

a better separability, this may lead to poor classification accuracy, thus it plays a

crucial role in BCI applications. With respect to the design of the BCI applications,

the critical properties of the EEG signals must be accounted for. These properties

are:

• EEG signals have poor SNR and may contains outliers.

• Most often feature vectors are of high dimensionality because several features

are extracted from several channels and across several time segments before

they are combined to form a single feature vector.

• BCI features may be highly non-stationary since the characteristics of EEG

signals change rapidly with time and across sessions.
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The features can be extracted from EEG signals using three important sources of

information as discussed below:

• Temporal (time) information: These features describe how the EEG signal

changes with time. In practice this means using the EEG signals values in

different time windows or at different time points.

• Spectral (frequency) information: These features mainly describe how the

power changes in a given frequency bands. In practice, this means that the

power computed in aforementioned frequency bands will be used as features.

• Spatial (space) information: These features describe the location (spatially)

from where the EEG signals originate. In practice, it allows us to focus on

some specific channels, or select specific EEG channels. Table 2.1 summa-

rizes the feature extraction methods which have commonly been used in the

literature.

2.4 Feature Classification

In addition to BCI, correctly classified EEG signals are widely used in the diagnosis

of brain disorders or diseases and help to provide a better understanding of various

cognitive processes. The recorded EEG signal contains a large amount of data

and hence it is very important to extract appropriate features from the recorded

EEG data, and do the classification based on the extracted features. In general,

the available classifiers could be categorised based on a range of commonly used

properties, such as generative-discriminative, and static-dynamic.

Generative - discriminative: In generative classifiers, in order to categorise a

feature vector, firstly the likelihood of each class is computed and then the most

likely one is chosen. e.g., Bayes quadratic. On the contrary, in order to correctly

categorise a feature vector, a discriminative classifier only determines a criterion of

discriminating the class membership or the classes. e.g., support vector machine
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Lotte et al. (2007).

Static - Dynamic: Static classifiers, in which a time-invariant feature vector is

classified so the temporal information is not considered during classification. e.g.,

multilayer perceptron (MLP). Dynamic classifiers are often used for classifying a

combination ofmultiple feature vectors, and they account for temporal information.

e.g., hidden markov model (HMM). For BCI system design, researchers have

reported several types of classifiers such as linear classifiers, non-linear Bayesian

classifiers, neural networks, nearest neighbour classifiers and an ensemble of

classifiers (Lotte et al., 2007; Norani et al., 2010).

1. Linear classifiers fall under the category of discriminant algorithms. They

are the most prominently used in the BCI applications, the two types are

support vector machines (SVM) and linear discriminant analysis (LDA).

2. In BCI applications, the MLP is the most extensively used Neural Network

(NN). It is sensitive to overtraining, especially when the EEG data is non-

stationary and noisy (Bashashati et al., 2007; Lotte et al., 2007; Norani et al.,

2010). Further possible types of NNs commonly used in BCIs are the learning

vector quantization (LVQ) neural network and the Gaussian classifier.

3. In non-linear Bayesian classifiers, the two types commonly used in BCI appli-

cations are HMM and Bayes quadratic (Norani et al., 2010). These classifiers

produce non-linear decision boundaries. Since they are generative classifiers,

they reject the uncertain samples proficiently as compared to discriminative

classifiers (Lotte et al., 2007).

4. Nearest neighbour classifiers are often used in BCI applications, e.g., ma-

halanobis distance and k-nearest neighbour (KNN). Often though this has

not shown a promising performance with high dimensional feature vectors

(Lotte et al., 2007).

5. A combination of classifiers (ensemble classifier) can also be used to reduce

the variance which results in an increase in classification accuracy. Bagging
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(Bootstrap aggregator), voting, boosting, and stacking are the classifier com-

bination strategies typically used in BCI systems (Lotte et al., 2007). It is

commonly reported that an ensemble classier outperforms a single classifier

under certain conditions (Lotte et al., 2007). Adaptive weighted ensemble

classifier has also been studied using a combination of classifiers (Liyanage

et al., 2013).

2.5 Performance Metrics

In pattern classification, a confusion matrix contains information about the esti-

mated and actual classifications of the trained classifier and is used to evaluate the

performance of the classifier.

where, the meaning of each entry in the above confusion matrix are discussed

below:

• TP is the number of correctly classified left hand motor imagery.

• FN is the number of incorrectly identified left hand motor imagery.

• FP is the number of incorrectly classified right hand motor imagery.

• TN is the number of correctly identified right hand motor imagery.

Accuracy: It is a statistical measure of how well the binary classifier correctly

identifies a condition. It is a measure of both true positives and true negatives

from the total number of cases examined.

Accuracy =
TP + TN

TN + FP + TP + FN
× 100 (2.5.1)

Kappa Value: This measures the agreement between two raters who each classify

N items into C mutually exclusive categories.
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Kappa =
po − pe
(1− pe)

(2.5.2)

where po is the relative observed agreement among raters, and pe is the hypo-

thetical probability of chance agreement, using the observed data to calculate the

probabilities of each observer randomly saying each category.

2.6 Brain Signals

There are different types of non-invasive neurophysiological methods studied in

the literature but EEG and MEG recording techniques have been considered to

study brain signals in this thesis. Both of these methods have been used to study

the temporal changes in the activation patterns and the brain dynamics. In the

next subsections, the fundamental of these neurophysiological methods has been

discussed.

2.6.1 Electroencephalography

Electroencephalography (EEG) is a practical non-invasive technique for measuring

the electrical brain activity on the scalp using the electrodes (Grosse et al., 2002) and

is typically used in BCI experiments. The recording is usually done using Ag-AgCl

electrodes and the range for signal value is 0.5 - 100 microvolts. Following are the

advantages of the EEG: (i) excellent time resolution (ii) ease of use, and (iii) low cost

(Wolpaw et al., 2002). There are some challenges pertaining to the recorded EEG

signal, one of which is poor SNR - the possible two sources of EEG noise could be:

(a) external environment source such as lighting, power lines and a large number

of electronic gadgets such as mobile phones, computers, etc. (b) physiological

artifacts such as (electromyogram (EMG), muscle), (electrooculogram (EOG), eye),

and (ECG, heart). There are other techniques available to record the electrical

brain activity, the difference lies in the placement of the electrodes (Wolpaw et al.,
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2002).

• Electrocorticography (ECoG) is a technique inwhich the electrodes are placed

inside the skull (cortical surface) to record the electrical activity.

• Local field potentials (LFP) is a technique in which electrodes are placed

inside the brain.

These methods provide better frequency bandwidth and spatial resolution. At

the same time, they are difficult to use and invasive in nature as compared to EEG

signals (Wolpaw et al., 2002). Although in this thesis, the focus is to use EEG signals

but same technique can be applied to MEG data. The majority of the analysis later

is performed on EEG data.

EEG applications

Aside from the application to BCI, EEG has been explored in a variety of other

applications such as:

1. Epilepsy/ Epileptic seizure - The EEG signals of epileptic patients contain

distinctive discharges of waves and spikes. Thus, it is used for diagnosing,

classifying and monitoring epilepsy (Bajaj and Pachori, 2012, 2013; Sharma

and Pachori, 2015).

2. Sleep disorders - EEG has been studied for classification of sleep disorders

(Sharma et al., 2017).

3. Human Emotions - It is being explored for classification of human emotions

like happy, sad, neutral, and fear (Ang et al., 2017).
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2.6.2 Magnetoencephalography

Magnetoencephalography (MEG) is a practical non-invasive neuroimaging tech-

nique for measuring the minuscule changes in the magnetic fields produced gener-

ated by the electric current. It uses an array of sensors known as superconducting

quantum interference devices (SQUID) positioned over the scalp. These SQUID

can pick up the tiny magnetic fields in the order of femto tesla ( 1fT = 10−15 tesla)

corresponding to electrical activity with the brain. Typical Elekta MEG machine

can record 306 channels including 204 gradiometers and 102 magnetometers. This

technique is becoming popular these days and used in the following studies as

reported in the literature: 1) Precise source localisation by combining MEG and

MRI for epileptic patients. 2) Early stage diagnosis of Mild cognitive impairments

(MCI) in elderly people. 3) Early stage diagnosis in children suffering from Autism.

There are disadvantages associated with this technique including set-up cost and

maintenance cost to keep the MEG system working. Also, portability is a major

issue with this system. There are some challenges like other recording technique

pertaining to the recorded MEG signal, prominently poor signal-to-noise ratio

(SNR) - the possible two sources of MEG noise could be: (a) external environment

generating from lighting, power lines. (b) A large number of electronic gadgets

such as mobile phones, any metallic things, metallic screws in dentures etc can

degrade signal quality to a large extent by inducing noise, etc. (b) physiological

artefacts such as (EOG, eye), (EMG, muscle), and (ECG, heart).

2.7 Neural Oscillations

It can be useful to understand the mechanisms or neural oscillations involved

in the generation of the EEG giving an indication of the underlying cognitive

state (Pfurtscheller et al., 1997) which plays a crucial role in BCI research. The

information in the brain is propagated by sending short electrical pulses typically

known as spikes. A signal of an oscillatory nature is obtained when spikes are
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superimposed from a group of neurons. The oscillations obtained are called neural

oscillations and are further divided into numerous frequency bands which are

fully described in Table 2.2.

Table 2.2: Summary of neural oscillations.

Frequency Band Frequency Range (Hz) Description

Delta 0.5 - 4 Being the slowest brain rhythm.

Theta 4 - 8 Its occurrence is not frequent in adult humans.

Alpha 8 - 13 It is the predominant wave during wakefulness.

Mu 8 - 13
Their frequency range is same as alpha. Present over

the motor cortex region.

Beta 13 - 30 Mostly represent the states of attention and alertness.

Gamma >30 They are associated with information processing.

Sensorimotor rhythm (SMR) contains valuable information about the decoded

signal, and the activity is usually measured over the sensorimotor cortex as a

neural rhythmic activity. The event in which there is a decrease in SMR amplitude

over the cortical activity is known as event related desynchronization (ERD). On

the other hand, if there is an increase in motor cortical activity then it is known

as event related synchronization (ERS). Often bandpower is measured in the mu

and beta frequency bands relative to the pre-stimulus baseline period. If there

is significant decrement or increment in bandpower, it indicates the presence of

ERD/ERS. The corresponding cognitive process is identified based on the activity

in the cortical region. For example, ERD observed over the right primary motor

cortex indicates that there may be a plan to move or an actual movement in the left

hand.

Adaptive BCI to handle non-stationarity: In BCI research, extensive study of

adaptive methods is reported in the literature. As per the current trend, the

adaptation may be possible at several stages of a BCI system such as preprocessing,

feature extraction, and/or classification. It has been identified that adaptation may

help to overcome the adverse effect of non-stationarity (cf. 2.8, 2.8.1) in EEG signals

(Schlögl et al., 2009). Specifically, there are two types of non-stationarities identified:

(i) short-term changes and (ii) long-term changes. The short-term changes correlate
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to different mental activities like mental arithmetic, hand movements etc. On the

other side, long-term changes are correlated to changes in the recording conditions,

fatigue and effects of feedback training.

2.8 What is Non-stationarity

An important question, and a key focus of this thesis, is whether or not it is possible

to find out if the given time-series is non-stationary. In order to address this concern,

two properties are identified in a labelled time-series where the distributions are

different. For instance, in the case of multivariate normal distribution, computing

the first two moments of the data, (i.e. mean and covariance) and checking how

they vary with time will identify the non-stationarity. It is always important to

check a reasonable significance level for the underlying distribution. To check the

difference between the twoprobability distributionswe can do statistical hypothesis

testing which is defined as a method of statistical inference. It is used to make

the decision between a null hypothesis H0 and the alternative hypothesis H1. In a

given hypothesis, sample information must be summarized by test statistics. The

critical region is evaluated based on a given level of significance (α). The null

hypothesis H0 is rejected if the test sample is present in the critical region.

2.8.1 Approaches to handle non-stationarity

The traditional machine learning algorithms typically presume the stationary

nature of the data, which often leads to deteriorated performance because of

the inherent non-stationarity in EEG-based BCI (Krauledat et al., 2007; Shenoy

et al., 2006). Several possible causes of changes in signal properties during inter-

session and intra-session could be fatigue, change in impedance or placements

of the electrodes. When the training and testing data are recorded on different

days this could also be one possible reason which might lead to performance

deflation (Krauledat et al., 2007). In the last few years, researchers have proposed
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several algorithms to mitigate the effect of the inherent non-stationarity present in

EEG-based BCI applications. They are broadly classified into two categories: (i)

The algorithms that ameliorate the model to become invariant and robust against

the changes (Krauledat et al., 2007; Lotte and Guan, 2011; Samek et al., 2012;

Tomioka and Müller, 2010; Von Bünau et al., 2009, 2010). The focus of most of

these algorithms was to extract the invariant features by regularizing the common

spatial patterns algorithm (Krauledat et al., 2007; Lotte and Guan, 2011; Samek

et al., 2012). Moreover, researchers have improved the performance by identifying

and then extracting the stationary segment from the EEG signal, then applied

the common spatial pattern (CSP) algorithm named as the stationary subspace

analysis (SSA) algorithm (Samek et al., 2012; Von Bünau et al., 2009, 2010). (ii) The

algorithms which make the model adapt to the changes (Li et al., 2010; Sugiyama

et al., 2007; Vidaurre et al., 2007, 2011, 2008). Researchers have shown that by doing

bias adaptation, a simple adaptation process, BCI performance can be significantly

enhanced (Shenoy et al., 2006; Vidaurre et al., 2011). In some existing works,

a few researchers have primarily focused on adapting the feature space (Chen

et al., 2010; Li et al., 2009; Sun and Zhang, 2006) and some proposed techniques

focused on adapting the classifier space (Schlögl et al., 2009; Shenoy et al., 2006).

In general, one can mitigate the effect of inherent non-stationarity in EEG signals

by (i) projecting to stationary subspaces (Von Bünau et al., 2009), (ii) constructing

invariant features (Wojcikiewicz et al., 2011), (iii) tracking non-stationarity (Schlögl

et al., 2009; Vidaurre and Blankertz, 2010) or by (iv) modelling non-stationarity

and using adaptive cross- validations schemes (Sugiyama et al., 2007). Recently

researchers have proposed EEG data space adaptation which reduces the session-

to-session non-stationarity in EEG-based BCI applications. They have proposed

both supervised and unsupervised versions (Arvaneh et al., 2013). The key idea is

"to compute a linear transformation that maps the EEG data from the evaluation session

to the training session, such that the distribution difference between these sessions is

minimized."

Covariate shift adaptation: In classical supervised learning, it is presumed that

input data points in the training and testing phases should follow the same prob-
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ability distribution, but in real-world applications this constraint often fails. For

instance, in non-stationary environments, the input data points in the training and

testing phases have different probability distribution (Sugiyama, 2012). Thus, the

covariate shift is defined as "the situation where the training input points and test input

points follow different probability distributions, but the conditional distributions of output

values given input points are unchanged" (Sugiyama et al., 2007). In covariate shift,

when the test points are situated outside the training samples, it might lead to the

extrapolation problem because only training points are used for learning the func-

tion. In a recently reported algorithm, the term "importance" plays a very crucial

role in covariate shift adaptation (Sugiyama et al., 2008). It is the ratio of the test

and training probability density functions which is bounded Ptst(x)
Ptr(x)

<∞ for all x.

However, evaluating the density estimation for high dimensional data is supposed

to be hard from the computational complexity point of view (Sugiyama et al., 2008).

As stated in Vapnik‘s principle "avoid solving more difficult intermediate problem when

solving a target problem" (Moreno-Torres et al., 2012; Quionero-Candela et al., 2009).

Thereafter, researchers developed new techniques called direct importance estima-

tion techniques which include kernel mean matching (KMM), logistic regression

(LR), Kullback-Leibler importance estimation procedure (KLIEP) (Kanamori et al.,

2009; Sugiyama et al., 2008), least square importance fitting (LSIF), and uncon-

strained LSIF (uLSIF) (Kanamori et al., 2009). Each of the above methods has

advantages and disadvantages associated with them in terms of model selection,

optimization and density estimation. In online learning, in order to improve the

system‘s performance, an unsupervised adaptation method called covariate shift

minimization (CSM) has been presented (Satti et al., 2010). In this method, the

feature set distribution is examined to find the covariate shift amongst the feature

distributions of the training data and the test data (Satti et al., 2010). In order

to tackle the non-stationarity present in EEG signals, an unsupervised adaptive

classifier is used by Vidaurre et al. (2011). It can be applied to diversified fields

in BCI applications because label information is not mandatory. The three types

of adaptation methods are as follow: "(i) supervised adaptive LDA (ii) unsupervised

adaptive LDA I: common mean changes (iii) unsupervised adaptive LDA II: common mean
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changes and covariance changes" (Vidaurre et al., 2011).

As can be seen from the previous discussion there are several performance deteri-

orating factors in EEG-based BCI such as non-stationarity, low SNR etc. The EEG

signals can have low SNR due to electrical power line and other artifacts resulting

from EMG or EOG interferences. The removal of these artifacts or distortions from

EEG signals before extracting features for classification of MI tasks is a useful step

in order to increase SNR (Nicolas-Alonso and Gomez-Gil, 2012).

Several attempts have been made to understand the dynamics of EEG signals

by exploring different frequency bands, such as µ (8-13 Hz) and β (13-25 Hz)

rhythms. It is a fact that the responses and topographies obtained from the beta

(β) rhythm is distinct as compared to the mu (µ) rhythm corresponding to limb

movements. It has been shown during limb movements, that there is normally

an increase in the oscillatory power of the beta rhythm observed in the ipsilateral

sensorimotor cortex and simultaneously there is a decrease in oscillatory power of

the mu rhythm observed in the contralateral sensorimotor cortex (Gandhi et al.,

2014; Herman et al., 2008). The BCI systems identify these changes to provide

some meaningful command. One of the major issues in BCI systems is the intrinsic

non-stationarity present in the EEG signals which happens when these signals

originate from different sources. To increase SNR, the most useful step would be

to enhance the EEG signals by eliminating these distortions or artifacts from the

raw EEG signals in the preprocessing stage. This step will help to obtain better

separability in the feature set corresponding to multiple MI tasks (Wolpaw et al.,

2002).

An extension method based on CSP has been studied to handle the adverse results

of intervention from noisy EEG signals (Lemm et al., 2005). A Bayesian learn-

ing method has been implemented for spatial filtering in (Zhang et al., 2013) for

handling EEG signals with extremely low SNR. The methods built on the self-

organizing fuzzy neural network (SOFNN) and the neural network (NN) concept

have also been proposed to attain better feature separation for MI tasks in MI based



2.8. What is Non-stationarity 28

BCI (Coyle, 2009; Coyle et al., 2005, 2009). Recently, a filtering technique based on

the quantum neural network has been proposed before the feature extraction step

in Gandhi et al. (2014, 2015) to gain better separation between classes.

An empirical mode decomposition (EMD) technique is also well suited for analysis

of non-stationary and non-linear signals (Sharma and Pachori, 2015; Sharma et al.,

2015b). This method is data dependent and adaptive in nature. It gives a group

of intrinsic mode functions (IMFs). These IMFs are considered as narrow-band

amplitude and frequency modulated (AFM) signals. Univariate EMD suffers

from the problem of mode-mixing wherein similar frequencies occur in different

IMFs (Park et al., 2013). To overcome this issue, a multi-channel version namely,

multivariate EMD (MEMD) has been investigated to show the comparison with

univariate EMD to classify different MI EEG signals considering all the IMFs for

use in BCI (Davies and James, 2013, 2014; Park et al., 2013, 2014). The MEMD

allows a high localization of information pertaining to specific frequency bands. It

decomposes the raw EEG signal into a finite set of frequency modulated (FM) and

amplitude modulated (AM) components known as multivariate IMFs (MIMFs)

(Park et al., 2013). It also provides the same number of IMFs for all the data channels

in the time domain.

In BCI research community, there are different variants of CSP algorithm studied

and used by several groups (Ang et al., 2012; Zhang et al., 2013) to extract more

separable spatial patterns as features. In this thesis, sample covariance matrix

is exploited as feature set, as the sample covariance matrix contains the spatial

information present in EEG signal. The main objective is to devise a unique step by

combining the spatial filtering and the classification. However, sample covariance

matrices structure needs to be handled carefully in Riemannian manifold. In this

respect, a rich framework is facilitated by Riemannian geometry (Barachant et al.,

2012) to handle these matrices.

This thesis seeks to address the inherent non-stationarity in the EEG by enhancing

the EEG/MEG signals using the two proposed filtering techniques for single chan-
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nel and multi-channel EEG/MEG signals in the preprocessing step as discussed in

the later chapters.

2.9 Adaptive Learning Challenges

There are some major issues which draw the attention of the BCI researchers,

namely, non-stationarity (cf. 2.8, 2.8.1) in intra and inter session recordings, the bias-

variance trade-off and the curse-of-dimensionality. In machine learning research

community, last two problems are very common and a lot of work has been done by

researchers to address these challenges. These days, non-stationarity is attracting

lot of attention from different researcher groups. Indeed, the focus of this thesis is

also on handling non-stationarity in BCI systems.

• Non-stationarity: Non-stationarity is often seen in brain signals between

inter-session transfers, also known as a covariate shift and can cause the

classifier performance to deteriorate with the time (Mohammadi et al., 2013;

Satti et al., 2010; Sugiyama et al., 2007). In BCI, several researchers have

proposed various non-stationarity adaptation techniques for handling inter-

session non-stationarity in EEG signals. Those techniques have been covered

in greater depth in section 2.8 and 2.8.1.

• The curse-of-dimensionality: If the training set is small and the dimension-

ality of the feature vector is high, it is known as the curse-of-dimensionality.

This is a major issue in BCI systems. In order to improve the system per-

formance, the system needs to undergo training very often which is not

favourable for most of the subjects. Indeed, retraining the system very fre-

quently is not a good indication because it involves subject time and extra

effort, and at the same time professional supervision to ensure that training

happened under suitable conditions.

• Bias-variance trade-off: The variance shows the sensitivity to the input train-
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ing dataset used. The bias describes the difference between the best mapping

and the estimated mapping, and is highly dependent on the method chosen

such as linear, quadratic etc. EEG-based BCI tends to have inherent non-

stationarities, so some mechanism is needed to keep the variance very low.

Invariably, EEG signals in session-to-session transfer suffer from high vari-

ance and high bias (Lotte et al., 2007). Generally, the EEG signals in multiple

sessions may also suffer from both high variance and high bias. Hence the

challenge is to have low variance and low bias to gain a better classification

accuracy.

In practical real-world situations, still there are open research challenges which

deal with EEG signal processing because of the noise introduced during recording,

inherent non- stationarity, signal complexity and the amount of data available

during the training phase (Lotte, 2014). In EEG-based BCI, the biggest challenge is

to handle the effect of the non-stationarity caused by the inter-session transfers. In

order to reduce the effect of non-stationarities, the approaches discussed in section

2.8 and 2.8.1 use either an adaptation method or by selecting the non-stationarity

generating process and then handling it by taking suitable corrective action. In

this respect there is a need to handle the adverse effect of the non-stationarity

present in the real-world environment. This leads to a novel research program

to be explored for an adaptive learning model for an evolving system in a non-

stationary environment. In an attempt to take full advantage of present methods to

build an adaptive learning model, different facets of non-stationary environment

such as adaptive decomposition, dataset shifts and adaptive learning must be

investigated. For this reason, the adaptive decomposition technique and adaptive

classifiers are vital in achieving this goal. The adaptive decomposition is highly

suitable for non-stationary signals because it provides a set of IMFs which can be

considered as narrow-band amplitude and frequency modulated (AFM) signals

for analysis.
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2.10 Adaptive Decomposition

There are many types of decomposition techniques available in the literature such

as empiricalmode decomposition (EMD), ensemble empiricalmode decomposition

(EEMD), and multivariate empirical mode decomposition (MEMD). We have only

considered single channel decomposition (EMD) and multivariate extension of

this decomposition. These approaches have been selected based on the nature of

the available EEG/MEG dataset.

2.10.1 Empirical Mode Decomposition

In this section, the background of the EMD algorithm is discussed and its ability

to work at the level of instantaneous frequency and will demonstrate an example

of how EMD decomposition works on EEG/MEG data.

Background: Data analysis is an indispensable part of both practical engineering

and pure science. When attempting to develop a numerical model to solve a

real-world data problem, there may be several issues in the data to estimate the

parameters such as:

• nonstationarity of the data

• nonlinearity of the data

• short length of the trial

In most applications spectrum analysis is commonly used. Additionally, Fourier

spectral analysis is also widely implemented due to both the calculation speed and

its simplicity but there are certain restrictions when applied on real-world data

because it is intended for periodic and stationary data, and linear systems.

The stationarity of a time-series X(t) in the strict sense is defined if the joint distributions
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of

[X(t1), X(t2), ..., X(tn)] and [X(t1 + τ), X(t2 + τ), ..., X(tn + τ)] (2.10.3)

are the same for all ti and τ .

The definition of stationarity in the wide sense is

E(|X(t)2|) <∞, E(X(t)) = m,C(X(t1), X(t2)) = C(X(t1+τ), X(t2+τ)) = C(t1−t2)

(2.10.4)

where E (̇) denotes the expected value operator and C (̇) gives the covariance opera-

tor. Due to the limitation of trial length, limited datasets can satisfy this stationarity

condition in real-world.

Several methods have been proposed to handle the non-stationarity present in

neurophysiological data, for example, "spectrogram" and "wavelet analysis". The

spectrogram serves as a special case of Fourier spectral analysis which works on a

short time segment of datasets. By moving the window over the entire time span,

multiple sets of frequency spectrums are obtained. These spectrums are combined

in a time-frequency distribution.

Most of the analysis depends on the traditional Fourier analysis but it may not

be the best solution unless the neurophysiological data are stationary in every

window. This sounds very unrealistic in a real-world signal.

Secondly, the wavelet analysis is a linear analysis technique. It facilitates a uniform

resolution for all the scales, which relies on the size of the basic wavelet function

(Morse wavelet). The basic definition of wavelet analysis is given as

Wf(c, d;X,ψ) = |c|−1/2

∫ ∞
−∞

X(t)ψ∗(
t− d
c

)dt (2.10.5)

where ψ∗ gives the basic wavelet function, c denotes the dilation factor and d

provides the translation of the origin.
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The most commonly used wavelet in the wavelet family is the Morse wavelet1

which has the problem of leakage, and which is generated by the limitation of

the basic wavelet function length. Due to this problem, it is difficult to define the

energy-frequency-time distribution quantitatively.

In this chapter, the single channel empirical mode decomposition (EMD) method

will be discussed as an alternative to the conventional Fourier and wavelet analysis.

The EMD is a fully data-driven operation for obtaining a highly localised time-

frequency estimation for a nonlinear and nonstationary signal (Huang et al., 1998),

by decomposing it into a finite set of AM/FM components, intrinsicmode functions

(IMFs). Also, multivariate version of EMD will be also studied to utilise the cross-

channel information present across channels and to achieve highly localised time-

frequency estimation across channels.

Table 2.3: Comparison of EMD with other state-of-the-art methods.

Fourier Wavelet Hilbert (EMD)

Basis Apriori Apriori Adaptive

Presentation Frequency- energy Time-frequency-energy Time-frequency-energy

Frequency Convolution: global uncertainty Convolution: regional uncertainty Differential: local certainty

Feature extraction No Continuous : yes, discrete : no Yes

Non-stationarity No Yes Yes

Theoretical base Theory complete Theory complete Empirical

Algorithm

In order to qualify as an IMF, it must satisfy two mandatory conditions: (i) the

number of extrema and the number of zero crossings must differ by at most one or

be the same, (ii) at any point, the mean value of the envelopes defined by the local

maxima and the local minima is zero. The EMD algorithm (Flandrin et al., 2004;

Huang et al., 1998) for a signal y(t) can be summarized by the following sifting

process:

1The Morse wavelet is the most commonly used wavelet transform, and had been used for the

performance comparison with EMD in (Huang et al., 1998).
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(1) Assume i1(t) = y(t)

(2) Determine the extrema (maxima and minima) from the i1(t).

(3) Compute the upper envelope Emax(t) and lower envelope Emin(t) by interpo-

lating the maxima and minima using cubic spline interpolation respectively.

(4) Compute the local mean of Emax(t) and Emin(t) as:

mean(t) =
Emax(t) + Emin(t)

2
(2.10.6)

(5) Substract mean(t) from the original signal y(t) as:

i1(t) = i1(t)−mean(t) (2.10.7)

(6) Check whether the i1(t) is an IMF by applying the aforementioned two basic

conditions of IMF.

(7) Repeat steps (2)− (6), until an IMF i1(t) is determined.

Once the first IMF is obtained, define the M1(t) = i1(t) which tends to have the

smallest temporal scale in the signal y(t). In order to determine the remaining

IMFs, the residual signal R1(t) = y(t)−M1(t) can be treated as a new signal. The

above mentioned sifting process is then repeated until the final residual obtained

becomes monotonic function from which no further IMFs can be obtained. After

obtaining all IMFs, the original signal y(t) can be expressed as a sum of these IMFs

and final residual (Huang et al., 1998):

y(t) =
N∑
q=1

Mq(t) +RN(t) (2.10.8)

where N is the number of extracted IMFs and RN(t) is final residual. The signal

y(t) can also be approximated as sum of amplitude and frequency modulated

(AFM) sinusoids (Huang et al., 1998):

y(t) ≈
N∑
q=1

aq(t) cos[φq(t)] (2.10.9)
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where aq(t) is amplitude envelope and φq(t) is instantaneous phase of qth IMF of

the signal y(t).

However, EMD suffers from the mode-mixing problem. Also, the cross-channel

information present across the channels is not utilized because it does decomposi-

tion of one channel at a time. To handle these issues, a lot of other variants have

been proposed. To overcome the mode-mixing problem, EEMD technique was

proposed in (Wu and Huang, 2009). Unfortunately, EEMD is a time-consuming

method andmay add noise to the original signal. In addition, it may not be suitable

for real-time implementation of the proposed algorithm for this thesis with more

number of channels. Further, Rehman and Mandic have proposed a multivariate

version of the EMD method utilizing cross-channel information called MEMD

(Park et al., 2013). It is not only suitable for dealing with multichannel signals

but also solves the problem of mode-mixing by adding white Gaussian noise to

different channels.

Fig. 2.1 displays all of the obtained IMFs of an EEG signals for a single channel. It

should be noted that the first IMF, IMF1, shows the fastest oscillation whereas IMF7

gives the slowest oscillation of the EEG signal. Fig. 2.2 displays the magnitude

of the fast Fourier transform for all the IMFs obtained using EMD method. A

single trial EEG signal of subject A01 from BCI competition IV dataset 2A has been

considered for demonstration purpose.

To investigate the power resolution of the Hilbert Huang spectrum (HHS), the

frequency shift sinwaves of 8 Hz and 13 Hz are considered shown in Fig. 2.3(a),

where the frequency of the sin wave is changed from 8Hz to 13Hz at 4 seconds.

The sampling rate is 250Hz. The signal HHS is compared with conventional time-

frequency analysis methods, short-time Fourier transform (STFT), Morse wavelet

transform. It is evident from the Figures 2.3(b), 2.4(a), and 2.4(b) shows the shifting

pattern of frequency components are well estimated using all these three methods.

The EMDmethod has enabled to achieve highly localised frequency modulated

signal and the transition of frequency change is very smooth. This method doesn’t



2.10. Adaptive Decomposition 36

200 400 600 800 1000 1200 1400 1600 1800

Sample Number

-5
0
5

IM
F

1

200 400 600 800 1000 1200 1400 1600 1800

Sample Number

-10
0

10
IM

F
2

200 400 600 800 1000 1200 1400 1600 1800

Sample Number

-10
0

10

IM
F

3

200 400 600 800 1000 1200 1400 1600 1800

Sample Number

-10
-5
0
5

IM
F

4

200 400 600 800 1000 1200 1400 1600 1800

Sample Number

-10
0

10

IM
F

5

200 400 600 800 1000 1200 1400 1600 1800

Sample Number

-5
0
5

IM
F

6

200 400 600 800 1000 1200 1400 1600 1800

Sample Number

-5
0
5

IM
F

7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Subject 1 :  Right hand MI task

Figure 2.1: The EEG signal of subject A01T for the right hand movement and its first seven

IMFs.

require any apriori knowledge about the nature of the neurophysiological signal

hence, it is adaptive in nature. Comparison of different techniques has been shown

in Table 2.3. The other methods spread over a wide range as compared with HHS

which provided more localised time-frequency components.

In the next section, more details about the MEMD will be discussed in a greater

detail.

2.10.2 Multivariate Empirical Mode Decomposition

As just described, the EMD is a data-driven technique to decompose a signal into

a finite set of band limited basis functions called IMFs (Huang et al., 1998). The

MEMD was recently developed, where instead of computing the local mean using

the average of upper and lower envelopes like conventional EMD, the multiple

n−dimensional envelopes are generated by projecting the signal along every di-
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Figure 2.2: The magnitude of the FFT of subject A01T for the right hand movement and its

first seven IMFs.

rections in n−variate spaces. These projections are averaged to obtain the local

mean. As discussed previously in section 2.9, EEG signals tend to have a low SNR

and may suffer from interference from EMG, EOG, or electrosurgical units (ESU)

(Pfurtscheller et al., 1997). The EEG signals of interest corresponding to µ and β

rhythms may contain noise which can cause erroneous results. Hence, a method is

required that does not undermine the original signal and can filter out noise. In

1998, Huang et al. proposed EMD which decomposes the original signal into a

finite set of band limited basis functions which are known as IMFs (Huang et al.,

1998), given by Equation 2.10.8.

Later, in 2013 they proposed a noise-assistedMEMD (N-AMEMD)method (ur Rehman

et al., 2013), which is not only suitable for dealing with multichannel signals, but

also solves the problem of mode-mixing by adding white Gaussian noise to differ-

ent channels. In the computation of N-A MEMD, the meanM(t) is calculated by

means of the multivariate envelope curves, expressed as follows (ur Rehman et al.,
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Figure 2.3: Time-frequency representations of frequency shift in sin waves of 8 Hz and 13

Hz. (a) Signal in time domain, (b) spectrogram produced for sin waves of 8 Hz and 13 Hz.
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Figure 2.4: Time-frequency representations of frequency shift in sin waves of 8 Hz and

13 Hz. (a) Morse wavelet spectrum, (b) Hilbert Huang spectrum (EMD). Please note the

localized time-frequency representation obtained using EMD.
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2013):

Y (t) =
1

m

m∑
j=1

eθj(t) (2.10.10)

where eθj(t) are the multivariate envelope curves for whole set of direction vectors,

herem gives a set of direction vectors and j is length of the vectors (Park et al., 2013).

Then, the candidate IMF R(t) by R(t) = X(t)− Y (t) is computed. If the candidate

IMF satisfies the stoppage criterion, the candidate IMF becomes the multivariate

IMF. If not, the input X(t) will equal the remainder R(t) and the remainder is

computed again. The whole process is repeated until all of the multivariate IMFs

are extracted. Regarding the stoppage criterion, this is similar to the original EMD

proposed (Huang et al., 1998) using decomposing signal until the signal becomes

monotonic or no more IMFs can be derived (Huang et al., 1998).

Fig. 2.5 displays all of the obtained IMFs of an EEG signals for multiple channels

namely, FCz, C3, andCz. Asmentioned earlier, the first IMF, IMF1, shows the fastest

oscillation whereas IMF9 gives the slowest oscillation of the EEG signal across all

the three channels. Only three channels have been considered for demonstration

purpose of the provided twenty-two channels.

The nonstationary and nonlinear EEG signals are well decomposed using EMD

andMEMDmethods. The seven IMFs are obtained adaptively using EMDmethod

without any assumption about basis functions like Fourier analysis. The same rule

applies for the MEMD decomposition as well.

In this thesis, filtering techniques built on EMD andMEMDwill be used to enhance

the EEG/MEG signals to increase feature separability as discussed in the later

contribution chapters.
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Figure 2.5: The EEG signals of subject A01T for the foot movement and its first nine IMFs.
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2.11 Conclusion

The brain-computer interface offers those with debilitating conditions the possibil-

ity of communication or control. However, the inherent non-stationarity present

in the signals typically used in BCI remains an ongoing challenge for researchers.

This chapter has examined not only modern transfer learning techniques, but also

existing methods to tackle the non-stationarity challenge by examining the Fourier,

Hilbert, and wavelet analyses. This chapter also addresses why there is a need for

the development of a method which can automatically select the IMF based on the

any cognitive or imagery task. In the next few chapters, the discussion will focus

on how the EEG/MEG can be enhanced using these decomposition methods and

how to efficiently utilize different components to enhance the EEG/MEG signals

and its application to two-class and four-class MI based BCI and four-class wrist

movement classification problems. Chapter 3 primarily focuses on contribution

C1, where the novel single channel EMD based filtering technique will be used to

enhance the EEG/MEG signals and how the different statistical measures may be

utilized to identify the components for a particular task.



Chapter 3

Empirical Mode Decomposition

based Filtering

3.1 Introduction

This chapter seeks to address contribution C1 of this thesis by developing a novel

single channel empirical mode decomposition (EMD) filtering technique for han-

dling non-stationarity in the pre-processing stage as discussed in the previous

chapter. This chapter is divided into two sections with the first section describing

a study which implements this EMD based filtering method for enhancing perfor-

mance of a two-class motor imagery based brain-computer interface (BCI) using

electroencephalography (EEG) data. The second section extends the study and

also addresses C1 by applying the techniques introduced in the first section and

implements this novel filtering method on magnetoencephalography (MEG) data

for classification of multi-direction wrist movements.

The results from both studies provide evidence for the effectiveness of EMD for

improving the classification accuracy when applied, not only to the widely used

EEG-based BCI competition datasets 2A and 2B, but also when classifying motor

imagery (MI) from BCI competition 3 MEG dataset. These two studies together

43
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demonstrate the effectiveness of the EMD method when applied to both EEG and

MEG data for enhancing the performance of a BCI.

3.2 Study 1: EMD 2-class EEGMI

3.2.1 Methods

As discussed and mentioned previously (cf. 2.10.1), the EMD method breaks EEG

signals into a set of intrinsic mode functions (IMFs) (Huang et al., 1998) which

can be considered narrow-band, Amplitude and Frequency Modulated (AFM)

signals. A novel single channel filtering method is built as an extension to the

EMD (Huang et al., 1998; Jia et al., 2011) for enhancement of EEG signals before

extracting features for classification of left and right hand MIs. For the first time

in the literature, a novel use of mean frequency is proposed to first automatically

identify these IMFs and further sum up the identified IMFs to obtain enhanced

EEG signals corresponding to the mu and beta rhythms. The Hjorth and band

power features are then computed from the enhanced EEG signals. These features

are then classified into left and right handMIs using an linear discriminant analysis

(LDA) classifier. The proposed methodology consists of three major steps namely,

EMD based EEG signal enhancement, feature extraction, and LDA classifier. A

block diagram of the proposed method is shown in Fig. 3.1.

3.2.2 Dataset

BCI competition IV dataset 2A description

This dataset consists of EEG signals performing four differentMI tasks: movements

of the left hand, right hand, feet, and tongue fromnine healthy subjects. The dataset

contains two sessions, one for training and one for evaluation. The sessions were

recorded on different days for each of the subjects. Each session was recorded with
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Figure 3.1: Block diagram of the proposed method.

22 EEG channels and 3 monopolar electrooculography (EOG) channels (with left

mastoid serving as reference) and includes 288 trials of data (72 for each of the four

MI tasks) as shown in Table 3.1. The EEG signals were bandpass filtered between

0.5 Hz and 100 Hz and sampled at the sampling rate of 250 Hz. An additional 50

Hz notch filter has been applied to suppress line noise. Refer to (Brunner et al.,

2008) for further details on the BCI competition IV dataset 2A.

BCI competition IV dataset 2B description

This dataset consists of EEG signals performing two different MI tasks: movements
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Table 3.1: Datasets description.

BCI competition IV
Dataset 2A

EEG

Dataset 2B

EEG

Subjects
9 Subjects

[A01-A09]

9 Subjects

[B01-B09]

Channels

Total channels: 25

EEG channels: 22 (monopolar)

EOG channels: 3 (monopolar)

3 bipolar EEG channels

C3, Cz, and C4

3 monopolar EOG channels

Recorded sessions
Session - I ( 288 Trials)

Session - II ( 288 Trials)

Session - I ( 120 Trials)

Session - II ( 120 Trials)

Session - III ( 160 Trials)

Session - IV ( 160 Trials)

Session - V ( 160 Trials )

Classes

Left hand ( class 1)

Right hand ( class 2)

Foot ( class 3)

Tongue ( class 4)

Left hand ( class 1)

Right hand ( class 2)

Sampling frequency 250 Hz 250 Hz

Trial length 7.5 seconds 8 seconds

of the left hand and right hand from nine healthy subjects. The dataset contains five

sessions, with the first two sessions containing training data without feedback, and

the last three sessions with feedback. Each session was recorded with three bipolar

EEG channels and three monopolar EOG channels (with left mastoid serving as a

reference) and includes 160 trials of data (80 for each of the two MI tasks) as shown

in Table 3.1. The EEG signals were bandpass filtered between 0.5 Hz and 100 Hz

and sampled at the sampling rate of 250 Hz. An additional 50 Hz notch filter has

been applied to suppress line noise. Refer to (Leeb et al., 2008) for further details

on the BCI competition IV dataset 2B.
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3.2.3 Empirical Mode Decomposition

The EMD method (cf. 2.10.1) automatically decomposes a signal y(t) into a finite

set of IMFsMq(t), which can be considered band limited and symmetric functions

(Huang et al., 1998). Features defined based on the symmetric nature of IMFs have

been explored for classification of epileptic seizure related EEG signals (Bajaj and

Pachori, 2012; Pachori, 2008; Sharma and Pachori, 2015). For biomedical signals

like EEG, it has been shown that better localization of time-varying frequency

components of µ and β rhythms duringMI can be obtained using the EMDmethod

as compared to the short-time Fourier transform (STFT) and wavelet transform

based methods (Davies and James, 2013; Park et al., 2013).

However, the extracted IMFs are narrow-band components of the signal. In or-

der to obtain an enhanced EEG signal corresponding to µ rhythm (8-13 Hz) and

β rhythm (14-24 Hz), from the original EEG signal, the selection of an optimal

number of IMFs is required. This selection of IMFs is done based on the mean

frequency computation from these IMFs so as to obtain an enhanced EEG signal

corresponding to µ and β rhythms. Normally, the number of IMFs selected are

between two and four depending on the nature of physiological signal. No normal-

ization has been done on the selected IMFs, in fact they were summed after being

selected. The mean frequency of each IMF is computed as the sum of a product of

IMF spectrum power and the frequency divided by the total sum of IMF power

spectrum in the frequency domain (Pachori, 2008; Phinyomark et al., 2012). The

mathematical expression of mean frequency is denoted as

MFIMF =

∑n
b=1 Pbfb∑n
b=1 Pb

(3.2.1)

where n denotes the length of frequency bin, and Pb gives the power spectrum

at the frequency bin b. fb represents the frequency value at the frequency bin b.

These computed mean frequencies represent centroids of the IMF in the spectrum

in frequency domain. The enhanced EEG signals are obtained from the summing
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of these IMFs whose mean frequencies belong to frequency bands µ and β bands.

In order to cover both the bands (µ and β), frequencies in the range of 6-26 Hz have

been considered for selection of IMFs of EEG signals. Therefore, left hand and right

hand MI EEG signals are decomposed using this EMD method (cf. 2.10.1).

3.2.4 Feature Extraction

BCI feature extraction approaches are many and varied and include techniques

such as power spectral density (PSD) (Herman et al., 2008), band power, Hjorth pa-

rameters (Hjorth, 1970), and bispectrum (BSP) (Shahid and Prasad, 2011). However,

researchers in the BCI community focus mainly on frequency domain features at

the signal processing stage. The most commonly used features in BCI applications

for classification of left hand, right hand, both feet and tongue MI EEG signals

are band power and Hjorth features (Gandhi et al., 2014; Park et al., 2011; Wolpaw

et al., 2002). These feature combinations have been collectively extracted from the

enhanced EEG signals to classify MI EEG signals. The band power features are

computed as the square of the amplitude of the signal over a small time window

of 1 second in this study. Typically, the band powers of the two frequency bands

associated with the µ and β rhythms are computed for classification of EEG sig-

nals corresponding to left hand, right hand, both feet and tongue MI tasks. The

frequency ranges (8-12 Hz) and (16-24 Hz) have been selected corresponding to

frequency bands µ and β respectively (Bamdadian et al., 2013; Gaur et al., 2015;

Shahid and Prasad, 2011; Shahid et al., 2010).

The first Hjorth parameter, we consider is activity, which is the measure of the

average power of the signal (variance of the signal). Mathematically, it can be

expressed as (Hjorth, 1970):

Activity =
Ns∑
i=1

[y(i)−mean]2

Ns

(3.2.2)

where Ns is the number of samples in the window. The second Hjorth parameter,

we consider is mobility, which is an estimate of the mean frequency. It can be
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defined as follows (Hjorth, 1970):

Mobility =

√
var(y′)
var(y)

(3.2.3)

The third Hjorth parameter, we consider is complexity, which is an estimate of the

bandwidth of the signal. It can be defined as follows (Hjorth, 1970):

Complexity =

√
Mobility(y′)

Mobility(y)
(3.2.4)

where, y is the signal and y′ is the first derivative of the signal, and µ is the mean

of the signal in the computation sampling window. The aforementioned Hjorth

features have been computed from a 1 second window of EEG signals from the

three channels namely C3, C4 and/or Cz, respectively. All these three Hjorth

parameters are used as input features for LDA.

These bands are selected for computing features as they are more reactive during a

cuedMI task (Raza et al., 2014) in the formof event related desynchronization (ERD)

and event related synchronization (ERS) over the sensorimotor cortex (Pfurtscheller

and Neuper, 2001; Pfurtscheller et al., 1997). The combined features based on

band powers and Hjorth parameters have also been used as a final feature set for

classification of multiple class MI based EEG signals.

3.2.5 Linear Discriminant Analysis

Generally, it is a very tedious task to classify the extracted features for classification

of EEG signals in BCI applications. The demanding task is to find the optimum

combination of the features which can reduce classification errors and can provide

better feature separability. An LDA classifier has been applied which is most com-

monly implemented in EEG-based BCI applications. The LDA classifier tries to

reduce the dimensionality and simultaneously protects most of the class discrim-

ination information. Suppose, we have two classes of data, denoted by cls1 and

cls2. Then, we classify the n-dimensional sample points x = {x1, x2, x3, . . . , xn},

wherem1 samples belongs to class cls1, andm2 samples belongs to class cls2. The
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main goal is to enact a hyperplane y = wtx from the set of all possible lines. The

selected line may maximize the discrimination between two classes. To obtain a

good projection vector, the distance between the two classes needs to be measured.

The mean vector of each class in x-space and y-space is represented by following

equations (Lotte et al., 2007):

υi =
1

Ni

∑
x∈wi

x, (3.2.5)

and ϑi =
1

Ni

∑
y∈wi

y =
1

Ni

∑
y∈wi

wtx = wtυi (3.2.6)

The objective function is expressed as the distance between the two projected

means. It can be defined as follows (Gaur et al., 2015; Lotte et al., 2007; Vidaurre

et al., 2011):

J(w) = |ϑ1 − ϑ2| = |wt(υ1 − υ2)| (3.2.7)

However, the distance measured between these projectedmeans may not always be

a good measure as the standard deviation between classes has not been considered.

In order to overcome this restriction, an enhancement of LDA has been proposed

known as Fisher’s LDA classifier. It determines a decision boundary or most likely

a hyperplane in the feature space to classify the features in to distinct classes. It

finds out the separation boundary between two given distributions in terms of

the ratio of two group variances as given below (Lotte et al., 2007; Vidaurre et al.,

2011):

J(w) =
σ2
between
σ2
within

=
wt(υ1 − υ2)2

wtS1w + wtS2w
(3.2.8)

where υ1, υ2 are the mean of the classes and S1, S2 are the variances of the feature

distributions between two classes w1, w2 respectively. The maximum separation

between the two classes can be shown by (3.2.9) (Lotte et al., 2007):

w∗ =
υ1 − υ2

(S1 + S2)
(3.2.9)
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The w∗ is weight vector which provides optimum direction of projection of the

data. In Fisher’s LDA, the decision boundary uses following equation to classify

the feature vector x as (Lotte et al., 2007):

y = xwt + b (3.2.10)

where b is the bias or threshold. Thus, by choosing a threshold b, it can be used to

classify a new feature if y(xnew) ≥ b or y(xnew) ≤ b to one of the classes based on

the sign of the b.

3.2.6 Results and Discussion

In order to evaluate the performance of the proposed method, the BCI competition

IV dataset 2B (Leeb et al., 2008) has been used. The dataset contains EEG signals

from nine healthy subjects, denoted by B01-B09, where each contained five sessions.

The EEG signals of all nine subjects have been used to study the effectiveness of

the proposed method. To evaluate the method, the data was selected from C3 and

C4 channels related to the sensorimotor areas. There are a different number of

trials in each session, e.g., 60, 70 or 80 as discussed in Table 3.1. Each trial involved

a paradigm period of 8 second (Leeb et al., 2008). In the training phase, a single

session namely ∧03T has been used. For the evaluation phase, we have used two

sessions namely, ∧04E and ∧05E to compute the accuracy of classifying left and

right MI EEG signals. These sessions are selected in order to maintain consistency

and provide comparison with other filtering techniques (Gandhi et al., 2014). It

should be noted that, the ∧ in the session name denotes the subject number in the

range B01 to B09. We have also used BCI competition IV dataset A (Brunner et al.,

2008) for evaluating the performance of the proposedmethod. The dataset contains

EEG recordings from the nine healthy subjects, namely (A01-A09). The EEG signals

of all the nine subjects have been considered to evaluate the performance of the

proposedmethod. For each of the nine subjects, the data recorded over two sessions

are provided, e.g., A01T and A01E (Brunner et al., 2008). EEG signals were used

from only two channels namely C3, and C4 respectively. For each of the subjects,
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Figure 3.2: Channel locations for channels C3, C4 and Cz.

in order to compute the classification accuracy (in %), the LDA classifier has been

trained with 100% data from the B0β03T and tested/evaluated on the 100% data

for each of the sessions, B0β04E and B0β05E, where β is the subject number. Since

the MI task starts at 3 second, the LDA classifier was trained and tested with the

features corresponding to EEG signals from 3 second to 8 second time-interval

of the MI paradigm. During the training session, we have performed a 5-fold

cross-validation to determine the window size for the best possible classification

accuracy by the LDA classifier for classification of the left and right hand MI based

EEG signals. The window size denotes the sample points considered from which

the features will be extracted and rest of the sample points will be discarded,

for example, 1 second window size means 250 sample points will be selected for

feature extraction because the sampling frequency is 250 Hz.

To explain the working of the EMDmethod (cf. 2.10.1), two single trial EEG signals

are considered from the dataset B0103T to obtain IMFs (Fig. 3.4 and Fig. 3.5). The

left MI EEG signal and its nine IMFs are shown in Fig. 3.4. Similarly, the Fig. 3.5

shows the right hand MI EEG signal and its nine IMFs.

The mean frequency was computed for each of the IMFs of the EEG signals corre-



3.2. Study 1: EMD 2-class EEGMI 53

22 of 22 electrode locations shown

Channel locations

Fz 

FC3 FC1 FCz FC2 FC4

C5 C3 C1 Cz C2 C4 C6 

CP3 CP1 CPz CP2 CP4

P1 Pz P2 

POz

+Y

+X

Figure 3.3: Channel locations for all twenty-two channels.

sponding to left and right hand MI tasks. In order to obtain enhanced EEG signals

corresponding to left and right hand task, the IMFs whose mean frequencies fall

in the range 6-24 Hz were selected. It should be noted that this frequency range

covers the µ band (8-13 Hz) and β band (18-24 Hz). These frequency-bands are

very important for detection of MI EEG signals (Wolpaw et al., 2000). The features

namely, Hjorth parameters and band powers are then computed for the enhanced

EEG signals obtained using the selected IMFs. In our study three frequency-bands

namely 8-12Hz, 18-22 Hz, and 16-24 Hz were taken for extracting the band powers

features and the frequency band 6-24 Hz for the Hjorth features. The extracted

features have been given as input features to the LDA classifier for classification of

left and right hand MI EEG signals. Table 3.2 shows the maximum classification

accuracy for BCI competition IV dataset 2B with EMD based filtering, which pro-

vides information on both the enhanced EEG signals and with the raw EEG signals,

for the nine subjects denoted by B01-B09 across three sessions 03T, 04E, and 05E. It

should be noted that only channels C3 and C4, and Cz are considered for comput-

ing the results. Manual channel selection was done in the training session and the

same set of channels are used in the evaluation session. The preliminary analysis

reveals that only channels C3 and C4 provide better classification accuracy for all
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Figure 3.4: The EEG signal corresponding to channel C3 of the trial 10 of B0403T for the

left hand movement and its first nine IMFs. Y-axis represents the amplitude in the time

domain for all each of the IMFs.
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Figure 3.5: The EEG signal corresponding to channel C3 of the trial 10 of B0403T for the

right hand movement and its first nine IMFs.
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Table 3.2: Maximum classification accuracies of the proposed method based on EMD and

without EMD studied on BCI competition IV dataset 2B.

Subject
Accuracy with EMD based filtering(%) Accuracy with raw EEG(%)

Channel
Training Evaluation Evaluation Training Evaluation Evaluation

(03T) (04E) (05E) (03T) (04E) (05E)

B01 80 70 55.63 75 60 50 C3 C4

B02 77.5 64.17 70 63.13 58.33 55 C3 C4

B03 98.75 98.75 100 55.63 50 55.63 C3 C4

B04 90.63 95.63 81.25 95.63 94.38 78.13 C3 C4

B05 90 98.13 97.5 73.75 80.63 77.5 C3 C4

B06 93.75 89.38 91.88 62.5 64.38 73.75 C3 C4 Cz

B07 80.63 68.75 75.63 68.75 61.25 60.63 C3 C4

B08 82.5 85 90.63 82.5 82.5 89.38 C3 C4

B09 85.63 86.25 84.38 79.38 80.63 75.63 C3 C4

Average 86.6 84 82.99 72.92 72.23 68.4

Std 7.13 13.27 14.2 12.12 14.66 13.42

subjects except for the subject B06. Subject B06 provides higher classification accu-

racy when channel Cz is also selected along with the channels C3 and C4. There is

inter-subject variability because of non-stationarity across the subject performing

the same MI task. Some of the subjects perform well while other subjects are not

good at performing MI task. After applying the EMD based filtering, the group

average of the maximum classification accuracy for all subjects across the three

sessions improved by 10.54% (p < 0.001). In the training session 03T, the results

clearly showed the average of the maximum classification accuracy was enhanced

by 9.65% (p < 0.05) when comparing the EMD based filtering with the raw EEG

signals using the same combination of band powers and Hjorth features. In the

evaluation sessions, the average improvement with the EMD based filtering is > 9%

for 04E and in the case 05E, the average classification accuracy improved by > 12%

(p < 0.01). Indeed, as shown in Table 3.2, the ten sessions including training and

evaluation provided an improvement of > 10% (p < 0.001) classification accuracy

with EMD based filtering method across subjects.
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Table 3.3: Maximum classification accuracies of the proposed method based on EMD and

without EMD studied on BCI competition IV dataset 2A.

Subject
Accuracy with EMD based filtering (%) Accuracy with raw EEG (%)

Channel
Training Evaluation Training Evaluation

A01 78.6 66.7 52.9 56.3 C3,C4,Cz

A02 68.6 63.9 56.4 54.9 C3

A03 89.3 77.8 62.9 63.2 C3,C4,Cz

A04 72.1 63.2 48.6 55.6 C3,C4

A05 75 72.2 51.4 50 C3

A06 64.3 70.1 57.1 54.2 C3,Cz

A07 78.6 64.6 51.4 50.7 C3,C4

A08 71.4 76.4 56.4 61.1 C3,Cz

A09 77.9 77.1 66.4 74.3 C4

Average 75.1 70.2 55.9 57.8

Std 7.20 5.91 5.74 7.51

p-value 0.001 0.001

Table 3.3 shows the average classification accuracy as well as the maximum of

the classification accuracy obtained for BCI competition IV dataset 2A for the

classification of left and right hand MI EEG signals. Channels C3, C4 and Cz were

selected to compute the classification accuracy to provide a fair comparison with

other filtering technique (Gandhi et al., 2014). In order to compute the classification

accuracy in the training session, a five-fold cross-validation mechanism has been

applied. To compute the classification accuracy in the evaluation session, a model

with 100% data from the training session is created, then each of the single trials

of evaluation session is assigned a class.

Different channel combinations were selected manually in the training session

using a five-fold cross-validation scheme for each subject based on the optimal

accuracies as reported in the Table 3.3. The same set of selected channels were

used for computing the classification accuracy in the evaluation session. After

applying the EMD based filtering, the group average of the maximum classifica-

tion accuracy across the two sessions was improved by 15.90% (p < 0.001). The
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average of the maximum classification accuracy for training stage showed highly

significant improvement of > 19% (p < 0.001). However, in the evaluation session,

it showed an improvement of > 12% (p < 0.001) in the classification accuracy when

compared with the raw EEG signals using the same set of band powers and Hjorth

features. The six sessions including training and evaluation showed highly signifi-

cant improvement of > 20% (p < 0.001), and eight sessions showed improvement

in the range of 10% (p < 0.001) to 20% (p < 0.001) across all the nine subjects. The

p-value across session-wise for all the nine subjects has been calculated using the

repeated measures analysis of variance using the ranova command in MATLAB

which calculates a repeated measures analysis of variance.

Fig. 3.6 and Fig. 3.7 show the difference between EMD based filtering and without

EMD based filtering results. The performance improvement across all the nine

subjects are illustrated with the bar graphs. In Fig. 3.6, the performance improve-

ment for the BCI dataset 2B have been shown for the training and the evaluation

sessions respectively. The bar graphs show an improvement of accuracy when

the EMD based filtering method is applied when compared to raw EEG signals

across 3 sessions (i.e., training 03T, evaluation 04E and evaluation 05E) and for 9

subjects.

With the proposed EMD based filtering, seven out of nine subjects have shown

improvement in the classification accuracy as shown in the fig. 3.6 for the training

session. In the evaluation session 04E, there is an improvement in classification

accuracy for all the nine subjects using EMD based filtering. In the evaluation

session 05E, eight subjects have shown improvement in the classification accuracy

using the EMD based filtering.

For the BCI dataset 2A, the classification accuracy has been reported for the training

and the evaluation session, respectively as shown in Fig. 3.7. The bar graphs show

an improvement of accuracy when the EMD based filtering method is applied

when compared to raw EEG signals across 2 sessions (i.e., training T, evaluation E).

Classification accuracy have been significantly improved across the nine subjects
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Figure 3.6: The bar graphs show accuracy difference between EMD based filtering and

without EMD based filtering for 9 subjects in BCI competition IV dataset 2B.

using the proposed EMD based filtering. In both, the training session and the eval-

uation session, results obtained from all the nine subjects have shown performance

improvement > 7% (p < 0.001) in the classification accuracy.

The proposed EMD based filtering has shown a performance improvement in MI

based BCI when compared to quantum neural network filtering (Gandhi et al.,

2014) as reported in Table 3.4. The EMD based filtering done at the preprocessing

stage has thus helped to achieve an average classification accuracy of 70.22 % (

p=0.0391) whilst quantum neural network filtering (Gandhi et al., 2014) reported

an average classification accuracy of 66.59%. Seven of the nine subjects have shown

improvement in the classification accuracy of the evaluation session. The same set

of features and classification method has been done to provide a fair comparison.

The p-value has been computed with Wilcoxon signed rank test method.
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Figure 3.7: The bar graph shows accuracy difference between EMD based filtering and

without EMD based filtering for 9 subjects in BCI competition IV dataset 2A.

Table 3.4: Comparison of classification accuracy with other filtering technique in the

evaluation session of BCI competition IV dataset 2A.

Subject EMD based filtering
Quantum neural network filtering

Gandhi et al. (2014)

A01 66.7 61.11

A02 63.9 61.11

A03 77.8 79.17

A04 63.2 60.42

A05 72.2 71.53

A06 70.1 61.11

A07 64.6 58.33

A08 76.4 67.36

A09 77.1 79.17

Average 70.2 66.59

p−value 0.0391
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3.3 Study 2: EMD 4-class MEG

Having presented evidence of the effectiveness of EMD when applied to EEG

data, the same technique is now applied to MEG data for the classification of

multi-direction wrist movements for enhancing BCI and also addresses C1 of this

thesis.

3.3.1 Methods

Similar to the previous EEG study, and asmentioned previously (cf 2.10.1) the EMD

method breaks magnetoencephalography (MEG) signals into a set of IMFs (Huang

et al., 1998) which can be considered narrow-band, AFM signals. The maximum

amplitude frequency measure of these IMFs has been used to combine these IMFs

in order to obtain enhanced MEG signals which have major contributions from low

frequency band (<8Hz) (Waldert et al., 2008b). Themaximumamplitude frequency

is defined as the frequency component in power spectrum where amplitude value

is maximum in time domain. The BCI competition IV dataset 3 contains MEG

signals for four classes, namely, right, forward, left and backward wrist movements.

The signals from 10 channels above the motor areas have been used for the study.

Significantly improved performance is obtained when the method is tested on this

dataset, which demonstrates the effectiveness of the proposed method not only on

EEG data but also for MEG data.

3.3.2 Dataset

This dataset contains MEG signals when two healthy subjects performed four

wrist movements in four different directions: right, forward, left and backward.

The dataset contains two sessions where the first session contains training data,

and the other session is used for evaluation. Each session was recorded with ten

MEG channels located above the motor areas as shown in Fig. 3.10. Each training
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Figure 3.8: Block diagram of the proposed method.
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Figure 3.9: The EEG signal corresponding to channel C3 of the trial 10 of B0403T for the

right hand movement and its first nine IMFs.
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Figure 3.10: MLC21, MLC22, MLC23, MLC32, MLC31, MLC41, MLC42, MZC01, MZC02,

and MRC41 channels are used for the present work. These channels are highlighted in

green colour.

session includes 160 trials of training data (40 for each of the four wrist movements)

as shown in Table 3.5. The MEG signals were bandpass filtered between 0.5 Hz

and 100 Hz and re-sampled to 400 Hz from 625 Hz (Waldert et al., 2008a). In the

evaluation session, subject 1 contains 74 trials and subject 2 contains 73 trials as

shown in Table 3.5. For more details on the BCI competition IV dataset 3 please

refer to Waldert et al. (2008a).

3.3.3 Feature Extraction

Sample Entropy (SapEn) (Richman and Moorman, 2000) is a modified version of

the Approximate Entropy (ApEn) and is used as a complexity measure of time

series. It prevents the bias caused by the use of the self matches in the computation

of ApEn and improves performance. Furthermore, SapEn is independent of the

long record length and improves the relative consistency (Richman and Moorman,

2000). Moreover, the SapEn algorithm is simpler than the ApEn algorithm and the
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Table 3.5: Dataset description.

BCI competition IV
Dataset 3

MEG

Subjects
2 Subjects

[S01-S02]

Channels Ten channels

Recorded sessions

Subject 1 Session 1 ( 160 Trials)

Subject 1 Session 2 ( 74 Trials)

Subject 2 Session 1 ( 160 Trials)

Subject 2 Session 2 ( 73 Trials)

Classes

Right ( class 1)

Forward ( class 2)

Left ( class 3)

Backward ( class 4)

Sampling frequency 400 Hz

Trial length 1 sec
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computation time of SapEn is nearly half of the ApEn (Richman and Moorman,

2000). Sample entropy has shown promising results in classification of focal and

non-focal seizure EEG classification problems (Sharma et al., 2015a,b).

The SapEn was computed as a feature in order to classify MEG signals for four

classes, namely, right, forward, left and backward. The SapEn of the signal is

defined as the negative natural logarithm of the conditional probability that two

sequences similar form points remain similar at the next point, where self matches

are not included in calculating the probability. Thus, a lower value of SapEn of the

signal also indicates more self-similarity in the time-series. In order to calculate

the SapEn of the signal, tolerance parameter (r) and embedding dimension (m)

must be specified (Sharma et al., 2015b; Song et al., 2010).

Formally, the algorithm for computing SapEn of the signal x[n] consists of the

following steps (Wang et al., 2012):

(1) Consider a signal ( EEG signal or IMF) y[n] of length N , this signal can be

represented by the sequence as, {y[1], y[2], ..., y[N ]}.

(2) Formm dimension vectors consecutively, starting with the i-th point of the

signal sequence in the step (1),

Ym[i] = [y[i], y[i+ 1], ...., y[i+m− 1]], i = 1, 2, ...., N −m+ 1, (3.3.11)

(3) Define the distance d(Ym[i], Ym[j]) between two vectors Ym[i] and Ym[j] as the

absolute maximum difference between their scalar components:

d(Ym[i], Ym[j]) = max
k=0,1,...,m−1

(|y[i+ k]− y[j + k]|), i 6= j (3.3.12)

(4) For a given tolerance parameter r, for every i-th value, compute the distance

d(Ym[i], Ym[j]) from (3.3.12). Count the number of distances which are less

than or equal to r, denoted as PQi. Then compute the ratio of this number to
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N −m− 1, denoted as PQm
i (r),

PQm
i (r) =

1

N −m− 1
PQi (3.3.13)

then,

PQm(r) =
1

N −m

N−m∑
i=1

PQm
i (r) (3.3.14)

(5) Increase the dimensionm tom+ 1, and then repeat the steps (1) to (4), and

compute PQm+1
i (r).

(6) The SapEn of the signal can be expressed as by (Sharma et al., 2015b):

SampEn(N,m, r) = −lnPQ
m+1(r)

PQm(r)
(3.3.15)

3.3.4 Results and Discussion

During the training phase, a single session namely s1 has been used to compute

a training model. Session s2 has been used for the evaluating the model In the

evaluation phase, one session s2 for computing the classification accuracy to classify

the MEG signals into right, forward, left and backward wrist movements in both

subjects. Each movement has 40 trials each, giving a total of 160 trials in the

training session for each subject and evaluation session has 74 trials for subject

S01 and 73 trials for subject S02. The maximum amplitude frequency measure is

computed for each of the IMFs of the MEG signals corresponding to right, forward,

left and backward wrist movements. In order to obtain enhanced MEG signals

corresponding to multi-directional wrist movements, the IMFs whose maximum

frequencies fall in the range 0.1 - 8 Hz are selected. However, this frequency range

covers low bandpass filtering range (< 8 Hz) (Waldert et al., 2008b), although the

frequency range from 58 to 70 Hz (high gamma band) was also investigated but the

classification accuracy obtained was low as compared to the frequency range 0.1-

8 Hz. These frequency bands are crucial for identification of multi-direction wrist

movement based MEG signals but only frequency range 0.1-8 Hz was considered

for this study.
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Table 3.6: Classification accuracies of the proposed method based on EMD and without

EMD studied on BCI competition IV dataset 3.

Subject Proposed method Winner1 Winner2 Winner3 Winner 4

S01 40.54 59.5 31.1 16.2 23.0

S02 39.72 34.3 19.2 31.5 17.8

Average 40.13 46.90 25.15 23.85 20.4

Table 3.6 shows the classification accuracy for BCI competition IV dataset 3 with

EMD based filtering providing the enhanced MEG signals. It also shows the

comparison with BCI competition winners (Hajipour Sardouie and Shamsollahi,

2012) for two subjects. All ten channels as shown in Figure 3.10 are considered

for calculating the results. Table 3.6 displays the classification accuracy calculated

with the proposed methodology and compared with other similar works. The

proposed EMD based filtering has shown a performance improvement in multi-

directional wrist movements BCI classification when compared to results reported

by others except the BCI competition winner. The EMD based filtering done at

the preprocessing stage has thus helped to achieve an average of two subjects

classification accuracy of 40.13%. The results obtained have been calculated with a

one versus rest mechanism to classify the multi-direction wrist movements MEG

signals into multiple classes. With the results, we are placed at the second position

in the table.

The top competition winner extracted a combination of statistical features, fre-

quency domain features and wavelet coefficients as a feature set. They also gener-

ated two artificial bipolar channels giving a total of twelve channels. Furthermore,

they performed feature reduction using a genetic algorithm and then, classification

with a combination of LDA and SVM using a linear kernel. The average classi-

fication accuracy obtained across the two subjects was 46.90% with a standard

deviation of 17.81 (Hajipour Sardouie and Shamsollahi, 2012). The runner-up

applied a low-pass filter between 0.5-8 Hz. Then segmented the time segment

and extracted the time feature from the segments. They then took the first three
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components of the abs and first five PCA components of the angle of 128 FFT for

each channel and corresponding samples. Further, they classified the feature set

with an LDA classifier after performing the feature reduction step. They have

reported classification accuracy of 25.15%. The third group computed the feature

set which consists of wavelet coefficient, temporal and statistical parameters. They

thereafter applied a genetic algorithm and PCA for feature reduction respectively

and used linear SVM for feature classification and reported 23.9% as classification

accuracy. The fourth group applied low-pass filtering between 0.5 and 8Hz and

then segmented the time-series into small segments of 0.5 seconds. They extracted

the first five PCA components of the angle and the first three angles of 128 FFT for

each segment and each channel. They classified the feature set using LDA classifier

and reported a classification accuracy of 20.4% for two subjects.

3.4 Conclusion

In this chapter the first contribution of this thesis has been met (C1) by exploring a

novel single channel empirical mode decomposition (EMD) based filtering method

for enhancing the performance of a motor imagery based BCI. In the first 2-class

EEG-based study, a combination of IMFs whose mean frequencies fall in the fre-

quency range of µ and β rhythms has provided a significant improvement (> 10%,

2-class) in accuracy when classifying left and right hand MI signals when com-

pared to those using raw EEG. The second 4-class MEG-based study has also met

the first thesis contribution (C1) by exploring single channel EMD based filtering

method for enhancing performance when classifying wrist movements in BCI. The

proposed method identifies a combination of IMFs whose maximum frequency

falls in the low frequency band (<8 Hz) and provided comparable results using

sample entropy features to classify multi directional wrist movement signals when

compared to the BCI competition winners (40.13%, 4-class). These two studies

together demonstrate the effectiveness of the EMD method when applied to both

EEG and MEG data for enhancing the performance of a BCI.
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The next chapter seeks to address the second (C2) and third (C3) contributions of

the thesis by investigating the effectiveness of an extension to the EMD method

known as multivariate empirical mode decomposition (MEMD) based filtering

(cf. 2.10.2) when applied to multichannel EEG data in a motor imagery based BCI

paradigm.



Chapter 4

Multivariate Empirical Mode

Decomposition based Filtering

4.1 Introduction

The previous chapter presented two studies which together demonstrated the

effectiveness of the novel single channel empirical mode decomposition (EMD)

based filtering method when applied to both electroencephalogram (EEG) and

magnetoencephalography (MEG) data for enhancing the performance of a brain-

computer interface (BCI). This chapter seeks to address the second (C2) and third

(C3) contributions of this thesis by investigating the effectiveness of an exten-

sion to the EMDmethod known as multivariate empirical mode decomposition

(MEMD)(cf. 2.10.2) and proposing a novel multichannel EMD based filtering when

applied to multichannel EEG data in a motor imagery based BCI paradigm. This

chapter again describes two separate studies both of which explore the application

of this MEMD based filtering method along with common spatial pattern (CSP)

features for enhancing the performance of a two-class motor imagery (MI) based

BCI. The first study studies MEMD based filtering with CSP features where a

separate training model is created for each subject. The second study extends

the multi-channel MEMD based filtering method put forward in the first study,
70
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by presenting a novel multi-channel MEMD filtering based subject independent

(MEMD-SI) BCI by training the system on MI EEG data from all subjects.

4.2 Study 1 : MEMDbasedfiltering 2-class EEGMI

4.2.1 Methods

As discussed previously (cf. 2.10.1) and demonstrated in the previous chapter the

EMD method is highly suitable for analysis of non-stationary signals. Whereas

single channel EMD suffers from the problem of mode-mixing, wherein similar

frequencies occur in different IMFs (Park et al., 2013), the multi-channel version,

namely, multivariate EMD (MEMD), seeks to address this problem (Park et al.,

2013)(cf. 2.10.1).

In this study, a new MEMD based bandpass filtering (MEMDBF) is proposed by

selecting the multivariate intrinsic mode functions (MIMFs) which contributes to

µ and β rhythms observed over the central region of the brain when the subjects

plan or execute hand movements. A block diagram representation of the proposed

MEMD based bandpass filtering methodology is shown in Figure 4.1. Further, the

candidate MIMFs are selected based on the mean frequency measure calculation

corresponding to µ and β rhythms. The enhancedMIMF is obtained by summation

of all the candidate MIMFs. The features extracted from the enhanced MIMFs are

used for classification of left hand and right hand MI tasks as compared with our

previously proposed filtering technique (Gaur et al., 2015) based on EMD which

is restricted to the decomposition of EEG signals on one channel at a time in BCI.

This MEMDBF filtering is done ahead of any feature extraction and classification

steps. Its goal is to provide better feature separability, leading to reduced error

rates and high task classification accuracy in an MI based BCI. Spatial filters are

appliedwhichmaximize the variance in one class andminimize it in the other class,

additionally, CSP features are computed (cf. 4.2.4) using the first and last three
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pairs of spatial filters from the enhanced EEG signals and a linear discriminant

analysis (LDA) classifier (cf. 3.2.5) is used to classify the feature sets into left and

right hand MIs.

4.2.2 Dataset

The MEMD based filtering technique has been investigated on the BCI competition

IV dataset 2A (Brunner et al., 2008) which has already been described in the

first study of the previous chapter (cf. 3.2.2).The time interval selection for MI

classification is a key factor that helps to reduce the error rates. In this work, CSP

features are extracted from the enhanced EEG signals from fifteen channels as

shown in Figure 4.2. Features are extracted from EEG signals between 0.5 sec

and 2.5 sec after onset of the visual cue in the training step, keeping it same as

the competition winner (Ang et al., 2012). In this work, the number of channels

selectedwere increased from three channels (Gandhi et al., 2014) to fifteen channels

(i.e., FC3, FC1, FCz, FC2, FC4, C3, C1, Cz, C2, C4, CP3, CP1, CPz, CP2 and CP4)

over the motor cortex region for the analysis because the most activity is seen for

left hand and right hand motor imagery over the ipsilateral sensorimotor cortex

and contralateral sensorimotor cortex (Gandhi et al., 2014; Herman et al., 2008;

Wolpaw et al., 2000). Refer to (Brunner et al., 2008) for further details on the BCI

competition IV dataset 2A.

4.2.3 Multivariate EmpiricalModeDecomposition (MEMD)

The left hand and right hand MI EEG signals are decomposed using MEMD

method. A brief description of MEMD method is provided in Section 2.10.2 of

Chapter 2. The IMFs obtained with the MEMDmethod of left hand and right hand

MI EEG signals are shown in Figure 4.3 and Figure 4.4 respectively.
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Figure 4.1: Block diagram of the proposed methodology.

Figure 4.2: Channels used for the present study.
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Figure 4.3: The EEG signal corresponding to channel C3 of the trial 1 of A08T for the left

hand movement and its first nine IMFs.

4.2.4 Common Spatial Pattern (CSP)

In feature extraction stage, a widely used feature corresponding to MI based BCI

has been used which uses the CSP algorithm from fifteen channels as shown in

Figure 4.2. The CSP algorithm may be understood as a method which generates

weight maps of the selected channels for EEG signals. The weight maps provide

the importance of EEG signal content of the channels to separate the two conditions

present in the data (Blankertz et al., 2008).

The weight maps are spatial filters which are then projected onto data. With the

projection of these spatial filters, the data is altered in a way that the ratio of the

variance for EEG amplitudes between the provided two conditions is maximized.

Therefore, the variance of the filtered EEG signal may serve as a discriminative

feature for a two-class classification problem. The recorded EEG scalp potentials

may have very poor spatial resolution because of volume conduction. With the
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Figure 4.4: The EEG signal corresponding to channel C3 of the trial 2 of A08T for the right

hand movement and its first nine IMFs.

poor spatial resolution, the classification of EEG signals becomes more tough

especially if other sources produce more strong signals and the signal of interest is

weak in the specific frequency range (Blankertz et al., 2008).

As mentioned in the introduction(cf. 2.1), the CSP algorithm has shown promising

results in computing spatial filters for detecting event related desyncronization /

event related synchronization (ERD/ERS) (Ang et al., 2012; Blankertz et al., 2008).

It is a trial specific supervised decomposition of signals which is parameterized by

a projection matrix PM ∈ <Chn×Chn where Chn denotes the number of channels

selected. In EEG signal sensor space, PM gives the projection of a single trial

Tr ∈ <Chn×t to C ∈ <Chn×t in the surrogate sensor space, which is represented

as:

C = (PM)T × Tr (4.2.1)

where C gives Chn× t EEG measurement data selected from a single trial, and t

provides the number of sample points per channel. The spatial filters are denoted
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by the rows of PM . The spatially filtered signal C provided in (4.2.1), maximizes

the ratio of the variances of the two classes. A CSP analysis is employed to obtain

an efficient discrimination between two different conditions which are described

by ERD/S mechanisms. However, the variances concerning to a small subset

of spatial filters are usually selected. The first M and last M rows of C i.e., Ce ,

e ∈ {1, 2, ..., 2M} given in (4.2.1) are used. In this study, we have consideredM = 5

spatial filters. Please refer to (Blankertz et al., 2008) for more details.

4.2.5 Classification

In this study, an LDA classifier is applied (discussed earlier in section cf. 3.2.5)

which is most commonly used for EEG signals in BCI applications. The LDA

classifier tries to reduce the dimensionality and simultaneously protects most of

the class discrimination information. Also, the effectiveness of the CSP features to

classify the left hand and right hand MI EEG signals is evaluated using the LDA

classifier (Pfurtscheller et al., 1997).

4.2.6 Study1: Results and Discussion

For the computation of classification accuracy (in %) for each subject, 100% of

A0ST data has been considered for training the classifier model using an LDA

classifier. Then, it is evaluated on 100% data A0SE for each evaluation session,

where S represents the subject number. In the MI paradigm, the MI task begins at

2 second; the training session and evaluation session features have been extracted

from the 2.5 to 4.5 seconds time interval similar to the competition winner (Ang

et al., 2012).

During the training session, a five-fold cross-validation has been applied to classify

the EEG signals into LHMI and RHMI tasks. To demonstrate the decomposition

dynamics of the MEMD technique, single trial EEG signals per class are considered

from the subject A08’s training session data A08T. Figure 4.3 demonstrates the
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LHMI tasks raw EEG signals and its obtained IMFs whilst Figure 4.4 gives the

RHMI EEG signal and its obtained IMFs.

The statistical mean frequency measure has been computed for each of the IMFs

obtained pertaining to LHMI and RHMI tasks. To get enhanced EEG signals

pertaining to theseMI tasks, the IMFs are first identified based onmean frequencies

which lie in the frequency range 4− 24 Hz (Gaur et al., 2015). This frequency range

comprises the mu (µ) band and beta (β) band. These bands play a critical role in the

identification of MI EEG signals (Gandhi et al., 2014, 2015; Gaur et al., 2015).

Figure 4.5 and Figure 4.6 display the feature distribution of four features. The box

plot in Figure 4.5 represents the four features using the Kruskal-Wallis test with the

MEMDBFmethod. To show the effect of the proposed filteringmethod on the avail-

able CSP features, feature separability is evaluated using the Wilcoxon test method

for the LHMI and RHMI tasks. The CSP features are arranged in decreasing order

of class separability based on the p-value computed using Wilcoxin test method.

The CSP features extracted from the raw EEG signals were not significant and after

applying the proposed filtering these features are significant as discussed later.

Although, this procedure was done for all the fifteen channels but for illustration,

only four features were shown in the Figure 4.6. The proposed preprocessing

method has thus helped achieve statistically significant improvement in feature

separability (p < 0.005) in the training session for the LHMI and RHMI tasks. Fig-

ure 4.6 displays the same four features from the raw EEG signals giving p-values

of 0.0522, 0.9109, 0.1136, and 0.0475. The p-values reveal the fact that the three

features (with p-value 0.0522, 0.9109, and 0.1136) are not significantly different

in their feature distribution for the LHMI and RHMI tasks. However, with the

proposed pipeline, the p-values show a statistically significant difference in feature

distribution for all four features. Although all the subjects were considered for

the study but subject A01 was used for illustration purpose. The non-parametric

Wilcoxon test is used for ranking the four features.

Table 4.1 shows the classification accuracy for the BCI competition IV dataset 2A



4.2. Study 1 : MEMD based filtering 2-class EEGMI 78

        

4

4.5

5

5.5

6

6.5

7

C
S

P
 f

e
a
tu

re
s

Features (x1, x2, x3, and x4) with M=2 for left hand and right hand MI tasks with proposed method

x1:Left hand x1:Right hand x2:Left hand x2:Right hand x3:Left hand x3:Right hand x4:Left hand x4:Right hand

Figure 4.5: The box plot displays the calculated four features usingMEMDBF in the training

session for left hand and right hand MI tasks are statistically significant features in terms

of separability with p-values < 0.005.



4.2. Study 1 : MEMD based filtering 2-class EEGMI 79

        

6

7

8

9

10

11

12

C
S

P
 f

e
a
tu

re
s

Features (x1, x2, x3, and x4) with M=2 for left hand and right hand MI tasks using raw EEG signals

x1:Left hand x1:Right hand x2:Left hand x2:Right hand x3:Left hand x3:Right hand x4:Left hand x4:Right hand

Figure 4.6: The box plot reveals that the same four features from the raw EEG signals are

not statistically significant in terms of separability.



4.2. Study 1 : MEMD based filtering 2-class EEGMI 80

obtained using LDA classifier with raw EEG signal and the preprocessed EEG

signals with the MEMDBF method. This method provides enhanced EEG sig-

nals for all A01-A09 subjects as compared to raw EEG signals, across two sessions

namely, the training and evaluation sessions. With the enhanced EEG signals using

the MEMDBF method, the group average of classification accuracy improved by

6.37% across all subjects considering both training and evaluation sessions. The

results computed in the training session clearly depict that the average of the classi-

fication accuracy improved by 2.84% (p = 0.3594) with standard deviation of 12.98

with MEMDBF-CSP method compared with the raw EEG signals considering the

same features. Notably, eight of the nine subjects have improved in classification

accuracy in the evaluation session and also the group average of classification

accuracy across all nine subjects has improved by > 9.91% (p = 0.0078).

Table 4.1: Classification accuracies (in %) obtained with the MEMDBF method and raw

EEG signals by LDA classifier evaluated on BCI competition IV dataset 2A.

Subject
Accuracy with MEMDBF-CSP Accuracy with raw EEG

Training Evaluation1 Evaluation2 Training Evaluation1

A01 91.67 90.78 90.81 72.27 69.44

A02 59.05 58.45 61.33 63.21 50

A03 93.27 93.43 95.69 91.65 90.28

A04 73.76 74.14 74.2 71.58 59.03

A05 68.05 60.74 64.44 67.92 50

A06 76.34 68.52 68.44 67.99 54.86

A07 79.57 80 76.52 86.18 65.28

A08 94.43 97.01 96.27 95.19 97.92

A09 94.29 94.62 94.62 88.86 91.67

Average 81.16 79.74 80.26 78.32 69.83

p-value 0.3594 0.0078

With the MEMDBF method, the difference between accuracies obtained in the

training session and evaluation session have been very minimal (< 3 %). As

discussed, the training session accuracies have been computed using a five-fold

cross-validation mechanism. In the evaluation session, there are two different

ways in which classification accuracies have been reported in the columns Eval-
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uation1 and Evaluation2. Column Evaluation1 accuracies have been computed

by creating a model with 100% of the training session data. Column Evaluation2

accuracies have been calculated by using a five-fold cross-validation mechanism

on the evaluation session data. The difference between columns Evaluation1 and

Evaluation2 help to show the effect of the non-stationarity across the sessions.

Two different classification accuracies have been computed to compare the results

and verify to what extent non-stationarity and non-linearity in the EEG data have

been accounted. Column Evaluation1 reported an average classification accuracy

of 79.74 while Evaluation2 reported an average classification accuracy of 80.26.

Now, it is clearly evident that the average classification accuracy computed for a

particular session is very minimal (< 1% ) using two different approaches across

nine subjects. Thus, the proposed filtering has helped to handle the adverse effect

of the non-stationarity to a larger extent. In the column Evaluation1, Subjects

A01 and A02 have a difference of < 1% in terms of classification accuracy across

training and evaluation sessions. Subjects A03, A04, A08, and A09 have obtained

greater classification accuracy in the evaluation session as compared to the train-

ing session accuracies. Thus, the results clearly show the proposed pipeline

has helped to counteract the inherent intersession non-stationarity present in

the EEG signals. The difference in the group average of classification accuracies

across columns Evaluation1 and Evaluation2 may be accounted using adaptive

techniques/ transfer learning mechanisms (cf. 2.8.1).

Table 4.2 presents the comparison of classification accuracy values calculated with

the MEMDBF-CSP method and other comparable works in the literature. The

MEMDBF-CSP has shown comparable performance with one approach reported

in (Lotte and Guan, 2011) and substantial improvement when compared with

other research works reported in (Gandhi et al., 2014; Raza et al., 2015). The

superior average classification accuracy has been achieved across nine subjects

in comparison to results reported by four most recent advanced methods. The

method-1 reported average classification accuracy 66.59 % (p = 0.0273) (Gandhi

et al., 2014), method-2 reported 78.01% (p = 0.2031) (Lotte and Guan, 2011), method-

3 computed 73.84% (p = 0.0078) (Raza et al., 2015) and method-4 reported 74.92%(p



4.2. Study 1 : MEMD based filtering 2-class EEGMI 82

= 0.0391) (Raza et al., 2015). The Wilcoxon signed rank test has been used to

compute the p-values. Thesemethods investigated the same two-class classification

problem in order to classify the left and right hands MI tasks. The method-1

studied quantum neural network filtering Gandhi et al. (2014) and extracted the

band power and Hjorth features collectively from three channels (C3, C4, and Cz),

then classified the feature set by LDA classifier. The method-2 extracted the CSP

features from all twenty-two channels on bandpass-filtered EEG data between

8-30 Hz. Thereafter, the features set was calculated by taking the log variance of

three pairs (m=3) of selected filters. Finally, they classified the feature set by LDA

classifier (Lotte andGuan, 2011). Themethod-2 considered all twenty-two channels

to compute the classification accuracy while comparable results are obtained by

using only fifteen channels. Method-3 and method-4 extracted the CSP feature and

detected the covariate shift using ten channels and then applied adaptive learning

and transductive learning to adapt the shift (Raza, 2016).

Table 4.2: Comparison of classification accuracies (%) obtained with the MEMDBF method

and other state-of-the-art methods evaluated on BCI competition IV dataset 2A.

Subject MEMDBF-CSP Method-1 Method-2 Method-3 Method-4

A01 90.78 61.11 88.89 90.28 90.28

A02 58.45 61.11 51.39 54.17 57.64

A03 93.43 79.17 96.53 93.75 95.14

A04 74.14 60.42 70.14 64.58 65.97

A05 60.74 71.53 54.86 57.64 61.11

A06 68.52 61.11 71.53 65.28 65.28

A07 80 58.33 81.25 62.5 61.11

A08 97.01 67.36 93.75 90.97 91.67

A09 94.62 79.17 93.75 85.42 86.11

Average 79.74 66.59 78.01 73.84 74.92

p-value 0.0273 0.2031 0.0078 0.0391

These methods investigated the same two-class classification problem to classify

the LHMI and RHMI tasks. Method-1 studied quantum neural network filtering

(Gandhi et al., 2014) and extracted the band power and Hjorth features collectively,

then classified the feature set by an LDA classifier. Method-2 extracted the CSP
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features on bandpass filtered EEG data between 8-30 Hz. Thereafter, the features

set was calculated by taking the log variance of three pairs of selected filters. Fi-

nally, they classified the feature set using an LDA classifier (Lotte and Guan, 2011).

Method-2 considered all twenty-two channels to compute the classification accu-

racy while comparable results are obtained with the MEMDBF-CSP method using

only fifteen channels. Method-3 andmethod-4 extracted CSP features and detected

the covariate shift and then applied adaptive learning and transductive learning

to adapt to the covariate shifts (Raza et al., 2015). MEMDBF-CSP demonstrates

a tangible improvement in classification accuracy for four of the nine subjects as

marked in boldface in Table 4.2.

4.3 Study 2: Subject Independent MEMDBF

4.3.1 Methods

As discussed previously (cf. 2.8.1), one of the most challenging task is to classify

motion intentions since the recorded EEG signals have inherent non-stationarities

which are due to changes in the signal properties over time within a session as

well as across sessions. Also, another limitation is long calibration time, which

is limiting the use of BCI in patients and healthy people. EEG signals are highly

subject specific and there exists a lot of non-stationarity (user variability) across

sessions and subjects aswell. Every time there is a need to collect numerous training

data trials for machine learning methods particularly used in BCI paradigm. Thus

it becomes difficult to achieve a stable operation of BCI. To this end, a novel filtering

method based on theMEMDusing subject independent pooleddesign BCI (MEMD-

SI-BCI) for classification of MI based EEG signals is proposed to achieve enhanced

BCI. A block diagram of the proposed method is shown in Figure 4.7.
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Figure 4.7: Block diagram of the MEMD-SI-BCI method.

4.3.2 Dataset

TheMEMD-SI-BCImethod has been investigated on the BCI competition IV dataset

2A (Brunner et al., 2008). For more information about the dataset, refer to cf.

3.2.2.

4.3.3 Multivariate EmpiricalModeDecomposition (MEMD)

The left hand and right hand MI EEG signals using the MEMD-SI-BCI method are

decomposed using MEMD method. More details of MEMD method are provided

in Section 2.10.2 of Chapter 2. The original EEG signal and its computed IMFs

with the MEMD method of left hand and right hand MI EEG signals are shown in

Figure 4.3 and Figure 4.4 respectively.

4.3.4 Common Spatial Pattern (CSP)

The CSP algorithm was again used as described previously in section 4.2.4 of this

chapter. As reported in the literature, there is no fixed algorithm to select the spatial
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filters. The number of spatial filters (m) has been selected randomly such as (Lotte

and Guan, 2011) considered m=3 spatial filters whereas m=1 spatial filters are

selected by (Raza et al., 2015). Here,m is taken as the first and last columns of the

CSP matrix. In this study,m = 4 andm = 5 spatial filters are considered. All the

combinations takingm=1,2,3,...,7 was taken into consideration and finally,m = 4

andm = 5 spatial filter were identified which was providing better classification

accuracy in a training session with a five-fold cross-validation scheme. These

selected spatial filters from the training CSP matrix were used to compute the CSP

features in the evaluation session. Further, these extracted CSP based features an

input features for the LDA classifier. Although this study considered fixed set of

fifteen channels from the provided twenty-two channels for all nine subjects but

to counteract the inter-subject non-stationarity, subject specific could have been

done.

4.3.5 Linear Discriminant Analysis

The classification of left hand and right hand MI EEG signals is performed using

LDA classifier (cf. 3.2.5).

4.3.6 Study2 : Results and Discussion

The MEMD-SI-BCI based filtering has been evaluated on publicly available BCI

competition IV dataset 2A (Brunner et al., 2008). In this study, EEG signals recorded

are considered from fifteen channels (Figure 4.2) related to the sensorimotor areas.

Although the actual data were recorded from twenty bipolar EEG channels and

three Electrooculography (EOG) channels with a sampling frequency of 250 Hz (cf.

3.2.2). There are seventy two trials provided in each session. Each trial involved a

paradigm period of 7.5 second (Brunner et al., 2008). In the training stage, a single

session namely ∧T has been used. For the evaluation phase, one session namely,
∧E has been used for computing the accuracy in the classification of left and right
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MI EEG signals. It should be noted that, as in earlier studies, the ∧ in the session

name denotes the subject number which again ranges from A01 to A09.

Table 4.3: Classification accuracies using the proposed method based on MEMD and

without MEMD studied on BCI competition IV dataset 2A.

Subject

Accuracy with MEMD-SI-BCI Accuracy with SI-BCI

Training Evaluation Training Evaluation Training Evaluation Training Evaluation

m = 4 m = 5 m = 4 m = 5

A01 70.14 91.67 72.16 92.36 68.2 69.44 68.2 68.06

A02 70.21 55.56 71.07 58.33 67.91 49.31 67.9 52.78

A03 69.22 90.97 67.45 91.67 68.36 70.83 68.14 71.53

A04 70.6 62.5 70.68 63.89 68.21 59.72 67.91 58.33

A05 68.91 61.11 71.45 59.03 68.29 49.31 68.52 49.31

A06 70.37 68.06 71.29 67.36 68.44 55.56 68.68 55.56

A07 70.29 61.11 70.37 60.42 68.3 50.69 67.98 51.39

A08 70.52 96.53 70.67 96.53 68.29 91.67 69.14 91.67

A09 65.44 65.97 67.82 66.67 67.9 54.86 68.36 56.94

Average 69.52 72.61 70.33 72.92 68.21 61.27 68.31 61.73

Std 1.64 15.79 1.62 15.81 0.19 13.95 0.41 13.45

p-value 0.034 0.001 0.005 0.001

In order to compute the classification accuracy (in %) in the training stage, a 5-

fold cross-validation has been applied. For the evaluation session, the model

has been trained with an LDA classifier using 100% training data from the nine

subjects and evaluated on the 100% data for the session, A0βE, where β denotes

the subject number. The classification model has been used to classify sequentially

the evaluation session data of all the nine subjects. Since the MI task starts at 3

seconds, the features are extracted in both of the training and evaluated sessions

corresponding to EEG signals from 0.5 second to 2.5 second time-interval after the

start of the MI paradigm. The classification accuracy is computed using an LDA

classifier for two-class classification of the left and right hand MI EEG signals in

both training and evaluation sessions for each of the subjects.

In order to explain the working of the MEMDmethod, two single trial EEG signals

are considered of fifteen channels from the dataset A01T to obtain IMFs but for
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illustration the plot for five channels is shown. The left MI EEG signal and its first

nine IMFs are shown in Figure 4.3. Similarly, the Figure 4.4 depicts the right hand

MI EEG signal from the five channels and its obtained IMFs.

The statistical measure, namely, mean frequency has again been calculated for

each multivariate IMFs of the EEG signals from the selected fifteen channels in

the motor cortex region corresponding to left and right hand MI tasks. To achieve

enhanced EEG signals corresponding to left and right hand MI tasks, the IMFs

whose mean frequencies fall in the range 6-24 Hz were selected. This frequency

range takes into account the µ band (8-13 Hz) and low β band (18-24 Hz) which

have considerable importance in classifying left and right hand MI EEG signals

as mentioned in (cf. 4.2.4). The CSP feature is then computed for the enhanced

EEG signals obtained using the selected IMFs. In our study the results obtained

are reported using two spatial filtersm = 4 andm = 5 wherem denotes the first

m and the lastm columns of spatial filter matrix. Then, the extracted feature has

been fed as an input feature to the LDA classifier for classification of left and right

hand MI EEG signals.

Table 4.3 presents the classification accuracy with MEMD based filtering-SI-BCI

(MEMD-SI-BCI) and with the raw SI-BCI method for BCI competition IV dataset

2A. This method has provided enhanced EEG signals using subject independent

MEMD-BCI for the each of nine subjects in both training T and evaluation E ses-

sions respectively. In this study, only fifteen channels corresponding to motor

cortex have been considered of the provided twenty two channels for obtaining

the results. Comparing the MEMD-SI-BCI results, it is clear that the new method

presented in this paper provides a significant improvement in classification ac-

curacy in the evaluation sessions of all nine subjects when compared with the

raw SI-BCI results. It has shown improvement > 11% (p < 0.001) in the evaluation

session withm = 4 and > 11% (p < 0.001) in evaluation session withm = 5. In the

training session, since a generalized model is created for all the subjects, there is a

slight improvement in the classification accuracy. All nine sessions have shown

improvement in the evaluation stage withm = 4. A total of seven out of the nine
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sessions have shown a highly significant improvement > 10% and the other two

sessions have shown an improvement > 2%. On the other hand, with m = 5,

two of the subjects have shown significant improvement of > 20% and a total of

seven sessions have shown improvement in the range of > 4% and < 24%. To

conclude, withm = 4 andm = 5, an improvement is achieved in all of the eighteen

sessions of nine subjects. The p-values for all the nine subjects was calculated using

the anova2 command available in MATLAB which calculates 2-way analysis of

variance. The non-parametric Kruskal-Wallis test was also done on the evaluation

session and p-value obtained for column evaluation withm=4 gives 0.08 and 0.05

form=5.

4.4 Conclusion

This chapter sought to address the second (C2) and three (C3) contributions of

the thesis by investigating the effectiveness of an extension to the EMD method

known as multivariate empirical mode decomposition (MEMD) (cf. 2.10.2) based

filtering when applied to multichannel EEG data in a motor imagery based BCI

paradigm.

In the first study the classification accuracy obtained from the MEMD based filter-

ing has shown significant improvement during both the training and the evaluation

stages across multiple sessions. Additionally, when compared against both raw

EEG signals and a quantum neural network based EEG filtering method (Gandhi

et al., 2014), MEMD based filtering in conjunction with CSP features has shown

superior performance in terms of classification accuracy.

In the second study, which explored an application of MEMD based subject inde-

pendent design (MEMD-SI), significant improvements were achieved in terms of

classification accuracy of left and right hand MI EEG signals when compared with

raw EEG signals.
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This chapter explored an application of this MEMD based filtering method with

common spatial pattern (CSP) features for enhancing performance of two-class MI

based BCI. The key idea is that at the preprocessing stage, MEMD based filtering

removes inherent non-stationarity present in the EEG signals to some extent whilst

also filtering artifacts and noise. The enhanced EEG signals have zero mean and

there is no complexity introduced at the feature extraction or the classification

stages. A highly significant performance has been obtained inMI based BCI simply

by enhancing the EEG signals at the pre-processing stage. A selection of multiple

IMFs whose mean frequencies fall in the frequency range of µ and β rhythms

have helped to improve the classification accuracy of left hand and right hand MI

EEG signals as compared to raw EEG signals. The next two chapters will address

the last two contributions of this thesis (C4 and C5) by varying the features and

different classification techniques, and proposing a novel tangent space based

transfer learning classification method.



Chapter 5

Subject Specific Multivariate

Empirical Mode Decomposition

based Filtering

5.1 Introduction

The previous chapter investigated the effectiveness of the proposed multivariate

empirical mode decomposition (MEMD) based filtering when applied to multi-

channel electroencephalogram (EEG) data in a motor imagery (MI) based brain-

computer interface (BCI) paradigm. Additionally, it presented an MEMD based

subject independent design (MEMD-SI), wherein significant improvements were

achieved in terms of classification accuracy of left and right hand MI EEG signals.

This chapter will address the fourth contribution for this thesis (C4) by introducing

a subject specific multivariate empirical mode decomposition (SS-MEMD) filtering

method which seeks to improve the performance by further improving the classifi-

cation accuracy and by proposing a novel tangent space based transfer learning

classification method. The chapter concludes by comparing the MEMD technique

to other similar works using Riemannian geometry demonstrating a substantial

90
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performance improvement in multi-class MI based BCI classification.

The aims of this chapter are as follow:

1. To study the intra- and inter-subject non-stationarity present in the EEG

signals;

2. To identify whether the same frequency or different frequency components

are involved in motor imagery activity when EEG signals are recorded from

the same cortical areas across the subjects;

3. To automatically identify the subject specificMIMFs based onmean frequency

measure;

4. To present the results in terms of classification accuracy and Kappa value

when single trials are classified.

5.2 Methods

A new subject specific MEMD based filtering method for classification of multi-

classMI tasks is proposed by extending the previously described filtering technique

(Gaur et al., 2015) based on EMD which is restricted to two-class MI tasks in BCI.

The enhanced EEG signals have been obtained corresponding to µ and β rhythms

before extracting features in order to classify right hand, left hand, foot and tongue

MI tasks. The capability of the existing MEMDmethod (Davies and James, 2013,

2014; Park et al., 2013, 2014) has been utilized to decompose the signal into a set

of narrow-band MIMFs and subject specific MIMFs. These have been selected

based on a statistical measure namely, mean frequency, corresponding to the µ

and β rhythms of each subject. Thereafter, the summation of selected MIMFs is

performed to attain enhanced EEG signals corresponding to a particular subject. A

block diagram of the proposed subject specificMEMD based filteringmethodology

is shown in Figure 5.1.
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Training stage

Multi-channel  EEG signals

Evaluation stage

IMFs generated using MEMD method 

Mean frequency computation of IMFs

Enhanced EEG signal corresponding to left, 
right, both feet and tongue movements

Covariance matrix feature computation

Class wise Riemannian mean computation 

IMFs generated using MEMD method 

Mean frequency computation of IMFs

Covariance matrix feature computation

Class wise Riemannian mean computation 

Classification with Riemannian distance 
computation 

Left Right Feet Tongue

Enhanced EEG signal corresponding to left, 
right, both feet and tongue movements

Figure 5.1: Block diagram for the proposed method.

5.3 Dataset

In this study, the publicly available BCI competition IV dataset 2A (Brunner et al.,

2008) has been considered. All the twenty-two channels have been used in this

study as shown in Figure 5.2. The reason for increasing the number of channels

selected from three channels to fifteen channels and then to twenty-two channels

was to test whether considering all the twenty-two channels helped to obtain more

classification accuracy. There is no fixed method to select the number of channels

in the literature with some considering three channels (Gandhi et al., 2014), 10

channels (Raza, 2016), and 22 channels (Lotte and Guan, 2011). The enhanced

EEG signals from all twenty-two channels have been used to extract the sample

covariance matrix (cf. 5.5) as a feature set.
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Figure 5.2: Head plot showing all the channels locations.

5.4 Multivariate Empirical Mode Decomposition

The left hand, right hand, feet and tongue MI EEG signals are decomposed using

the MEMD method as in previous studies (cf. 4.2.3) and described in greater

depth in (cf. 2.10.2). The decomposition dynamics of the MEMD technique may

be explained using single trials of left hand and right hand MI EEG signals. Figs.

4.3 and 4.4 display the obtained MIMFs from the subject A08T. Similarly, the foot

and tongue MI EEG signal and its obtained MIMFs are shown in Figs. 5.4(a) and

5.4(b) respectively.

5.5 Feature Extraction

In BCI literature, some research groups have studied EEG features such as Hjorth

parameters, band power, power spectral density (PSD) and bispectrum (BSP) fea-

tures (Brunner et al., 2008; Davies and James, 2013, 2014; Leeb et al., 2008; Lotte

et al., 2007; Shahid and Prasad, 2011). The most commonly used features in MI

based BCI applications for classification of right hand, left hand, foot and tongue

MI tasks are Hjorth features and band power (Bajaj and Pachori, 2012; Gaur et al.,

2015; Pachori, 2008; Park et al., 2011; Wolpaw et al., 2002). Also, some of the re-
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search groups investigated spatial filters technique namely, common spatial pattern

(CSP) as used in chapter 3 and its extension for multi-class MI tasks classification

problems. This method enhances class separability by estimating the eigenvectors.

Thereafter, the spatial patterns are derived from these eigenvectors (Ang et al.,

2008).

In this chapter, the structure of sample covariance matrix has been exploited as

a feature set, as the sample covariance matrix contains the spatial information

present in EEG signal. The main objective is to devise a unique step by combining

the spatial filtering and the classification. However, sample covariance matrices

structure needs to be handled carefully in Riemannian manifold.

Sample Covariance Matrix

Let xj ∈ <r represent the enhanced EEG signal vector at a particular time instant

j where r represents the number of electrodes. The formal definition of spatial

covariance matrix is given by Cov = E{(xj −E{xj})(xj −E{xj})T}, wherein E{.}

depicts the expected value and superscript T represents matrix transposition. For

designing a BCI, a short time segments are extracted from continuous EEG signals

of a trial. They may be denoted in the form of a matrix Xi = [xj+Ti ...xj+Ti+Tn−1] ∈

Rr×Tn corresponding to i-th trial of an MI task beginning at time Ti. Furthermore,

the spatial covariance matrix corresponding to the i-th trial is computed using the

unbiased SCM Pi ∈ Rr×r such as,

Qi =
1

Tn − 1
XiX

T
i (5.5.1)

where Tn represents the number of time instants taken from each trial.

Shrinkage covariance matrix

The shrinkage covariancematrix ( SHCM) is computed from the enhancedEEG/MEG

signals obtained from single channel or multi channel filtering methods. Let
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F1, F2F3...Ff denote the f feature vectors. Let unbiased estimator of the mean is

given as,

M̂ =
1

f

f∑
i=1

Fi (5.5.2)

Also, the unbiased estimator of the covariance matrix is denoted as,

Ĉ =
1

f − 1

f∑
i=1

(Fi − M̂)(Fi − M̂)> (5.5.3)

To account for the estimation error, Ĉ is substituted by

C(γ) = (1− γ)Ĉ + γυI (5.5.4)

with a tuning parameter (γ ∈) [0, 1]. υ denotes the average eigenvalue and I gives

the identity matrix. More details may be obtained from Blankertz et al. (2011).

5.6 Riemannian Geometry Framework

Let, the space of all r×r symmetricmatrices (SM) {P (r) ∈ Z(r), P T = P} is defined

in the space of square real matricesZ(r). Also, the set of all r×r symmetric positive

definite (SPD) matrices is represented by Q(r) = {Q ∈ P (r), vTQv > 0,∀v ∈ <r}

and the set of all r × r invertible matrices is denoted by Gl(r) in Z(r). Lastly,

the notation Q1/2 denotes a symmetric matrix B such that it satisfies the relation

BB = Q.

As shown in Figure 5.3, the space of SPDmatricesQ(r) is denoted by a differentiable

Riemannian manifold Z (Moakher, 2005). The tangent space for the derivatives

of a matrix Q lies in a vector space TQ over the manifold. The dimensions of the

tangent space and the manifold are dts = r(r + 1)/2.

The inner product <,>Q of each tangent space changes smoothly from one point

to another over the entire manifold. The definition of natural metric over the entire
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SPD manifold is given by inner product represented as follows:

< P1, P2 >Q= Tr(P1Q
−1P2Q

−1) (5.6.5)

A norm for tangent vectors is induced by inner product on the tangent space

given by, ||P ||2Q =< P,P >Q= Tr(PQ−1PQ−1). It should be noted that such a

norm reduces into the Frobenius norm in case of identity matrix i.e., < P,P >I=

||P ||2F .

In the following subsections, the Riemannian geometry framework details will be

discussed and also, how the MI tasks classification is done using the Riemannian

framework.

Geodesic Distance

Let D(t) : [a, b] → Q(r) denotes any form of differentiable path from D(a) =

Q1 toD(b) = Q2. The length of D(t) is expressed as,

L(D(t)) =

∫ b

a

||D(t)||D(t)dt (5.6.6)

with the norm as discussed earlier. The geodesic distance on the manifold is

defined as the minimum length curve joining these two points. The Riemannian

distance is defined by the length of this curve. The geodesic distance is induced by

the natural metric (5.6.5) and is given by,

δR(Q1, Q2) = ||log(Q−1
1 Q2)||F =

[
r∑
i=1

Log2χi

]1/2

(5.6.7)

where χi, i = 1, ..., r denotes the real eigenvalues of Q−1
1 Q2 and r represents the

number of channels.

Following describes the main properties of the Riemannian geodesic distance,

(Moakher, 2005):

1. δR(Q2, Q1) = δR(Q1, Q2)
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2. δR(Q−1
1 , Q−1

2 ) = δR(Q1, Q2)

3. δR(W TQ1W,W
TQ2W ) = δR(Q1, Q2) ∀Gl(r).

Exponential Map

A tangent space for each point Q ∈ Q(r) is composed by a set of tangent vectors

defined atQ. Each tangent vector Pi is seen as the derivative at t = 0 of the geodesic

Di(t) between exponential mapping Qi(= ExpQ(Pi)) and Q, defined as,

ExpQ(Pi) = Qi = Q1/2exp(Q−1/2PiQ
−1/2)Q1/2 (5.6.8)

The logarithmic mapping gives the inverse mapping which is defined as,

LogQ(Qi) = Pi = Q1/2log(Q−1/2QiQ
−1/2)Q1/2 (5.6.9)

The geometrical procedure has been presented in Figure 5.3. Riemannian distance

equivalent definitions are as follows,

δR(Q,Qi) = ||LogQ(Qi)||Q = ||Pi||Q

= ||upper(Q−1/2LogQ(Qi)Q
−1/2)||2 = ||pi||2

(5.6.10)

where the upper(.) operator describes to keep the upper triangular part of a

SM and vectorizing the diagonal elements with unity weight and non-diagonal

elements with
√

2 weight (Moakher, 2005). Here pi is the dts-dimensional vector

upper(Q−1/2LogQ(Qi)Q
−1/2) of the normalized tangent vector.

Some conditions over Q and the Qi (Tuzel et al., 2008), (7) may leads to an approxi-

mation of computing distance between the manifold and the tangent space, such

as

∀i, j δR(Qi, Qj) ≈ ||pi − pj||2 (5.6.11)

These conditions can be verified if Qi is locally distributed in the manifold. It

means that Qmust always represent the mean of the Qi.
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TQ

Qi

LogQ(Qi)

ExpQ(Pi)

Pi

Q

Z

D(t)

Figure 5.3: The tangent space at point Q. Pi is a tangent vector at Q. D(t) is the geodesic

between Q and Qi.

Riemannian Mean

The Riemannian mean of J×1 SPD matrices using Riemannian geodesic distance

(5.6.7) is denoted by,

G(Q1, ..., QJ) = argmin
Q∈Q(r)

J∑
i=1

δ2
R(Q,Qi) (5.6.12)

This is called geometric mean. Considering 1 × 1 SPD matrices yi > 01×J , this

definition gives G(y1, ..., yJ) = argmin
y>0

∑J
i=1 log

2(yi/y) = J
√
y1, ..., yJ

To compute the Riemannian mean of J SPD matrices an efficient algorithm is

discussed in (Barachant et al., 2012; Moakher, 2005).
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Motor Imagery Classification Using Riemannian Geometry Framework

For each MI task in the training stage, a set of trials, denoted by {X tr
i , i ∈ J (K)}

corresponding to K-th condition, is obtained. The J (K) denotes the set of trial

indices corresponding to the K-th condition. For each single trial, the SCM is

computed serving as a feature vector using (5.5.1). These SCMs belong to the

manifold Z since they are SPDmatrices. LetQ be the SCM of the trialX ts from test

data. It is possible to derive an efficient classification algorithm using the equations

presented in Section 5.6 to compute the unknown test label of a trial X ts.

Classification Algorithm using Minimum Distance to Riemannian Mean

For each of the MI tasks, the class-wise covariance matrices Q(c)
G have been calcu-

lated with the equations discussed in Section 5.6, where c = [1 : K] depicts the

class indices. A simple algorithm has been used to compute the distance between

class-wise covariance matrix Q(c)
G and an unknown test trial SCM typically known

as Riemannian distance. The class giving the minimum distance is assigned to the

unknown test trialX ts. This procedure has been done to assign the class to each of

the new test trials. The details of the algorithm are as follow:

Algorithm:

Input : a set of trials X ts
i of different unknown classes.

Input : J (c) denotes the set of indices for the trials corresponding to the c-th class.

Output : K̂ gives the estimated class of unknown test trial X ts

1. Compute SCM of X ts
i to obtain Qts

i , from eq. (5.5.1).

2. Compute SCM of X tr
i to obtain Qtr

i , from eq. (5.5.1).

3. for c = 1 to K do

4. Q(c)
G = G(Qtr

i , i ∈ J (c)), from eq. (5.6.12).
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5. end for

6. K̂ = argmin
x

δR(Qts
i , Q

(c)
G ), from eq. (5.6.7).

5.7 Results and Discussion

In the training session, a 5-fold cross-validation has been done to avoid the overfit-

ting issue during the classification ofmulti-classMI EEG signals. For the evaluation

session, the Riemannian mean covariance matrix for each of the classes has been

obtained with all training trials from the A0ST and evaluated on all unknown test

trials of the corresponding evaluation session A0SE on a trial-by-trial basis, where

S represents the subject number. As the MI task began at 2 seconds, the covariance

matrix feature is computed for the EEG signals from the 2.5 second to 4.5 second

time-interval of the MI paradigm. The Kappa value (cf. eq. 2.5.2) (between 0 and

1) and classification accuracy for all the nine subjects have been computed.

The mean frequency measure (cf. eq. 3.2.1) has been computed for all the MIMFs

corresponding to right hand, left hand, both feet and tongue MI tasks. This mean

frequencywas used to identify theMIMFswhich contribute to µ and β rhythms and

remaining of the MIMFs were discarded. To enhance EEG signals corresponding

to left hand, right hand, foot and tongue MI tasks, a subject specific filtering range

is identified based on the feature separability in the training session. The obtained

MIMFs have been summed to attain the enhanced EEG signals. The identified

subject specific frequency range has been reported in Table 5.5.

The results in Figure 5.5(a) and Figure 5.5(b) show the feature distribution of first

five best features. Figure 5.5(a) depicts the boxplot obtained using Kruskal-Wallis

test for the first five best features with the SS-MEMDBF. After applying the SS-

MEMDBF, the first five best features extracted have shown statistically significant

improvement in separability with p-value < 0.05 in the training session for the left

hand and right hand MI tasks. The feature selection has been done by ranking the
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Figure 5.4: The EEG signals and its MIMFs corresponding to channels FCz, C3, Cz, C4

and CPz of A08T for (a) Foot MI task (b) Tongue MI task.
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available features with the Wilcoxon test method for left hand and right hand MI

tasks. The feature set has been arranged based on the rank in decreasing order

of class separability. Then the best five features were selected giving the highest

class discrimination for left hand and right hand MI task classification as shown

in Figure 5.5(a) with the proposed method. For illustration, the first five features

are shown although there are more features in the training session which are

statistically significant in terms of features separability. Figure 5.5(b) shows the

same five features computed from the raw EEG signals giving p-values of 0.1065,

0.2861, 0.0643, 0.2111 and 0.6983. The p-values indicate that the two classes have

no significant difference in their feature distribution for left hand and right hand

MI tasks. However, with the proposed method, the p-values show statistically

significant difference in feature distribution.

Table 5.1 gives the details of the trials rejected from each subject in the evaluation

session as indicated with the event 1023 (Brunner et al., 2008). Subject A06 has

maximum number of the trials rejected. The rejected trials corresponding to each

MI tasks are as follow: left hand 19 trials, right hand 17 trials, foot 18 trials and

tongue 19 trials respectively. This gives the total of 73 trials rejected for subject

A06 in the evaluation session.

Table 5.1: Trials rejected from all subjects.

Subject Total trials Correct trials Rejected trials Left hand Right hand Foot Tongue

A01 288 281 7 1 2 3 1

A02 288 283 5 1 1 3 0

A03 288 273 15 5 2 4 4

A04 288 228 60 13 15 13 19

A05 288 276 12 2 7 0 3

A06 288 215 73 19 17 18 19

A07 288 277 11 1 3 1 6

A08 288 271 17 6 4 3 4

A09 288 264 24 7 7 3 7

Table 5.2 presents the results obtained using the pairwise binary classification for
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Figure 5.5: The box plot depicts the first five best features obtained in the training session

for left hand and right hand MI tasks (a) SS-MEMDBF (b) raw EEG signals.
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multiple MI tasks. Since there are four classes, we can have six possible pairs of

imagery tasks: left vs right (LvR), left vs foot (LvF), left vs tongue (LvT), right vs

foot (RvF), right vs tongue (RvT), foot vs tongue (FvT). The features obtained with

the SS-MEMDBF have helped to achieve superior classification accuracy.

Table 5.2: Classification accuracy (in %) for the proposed method with and without SS-

MEMDBF with one vs one scheme applied on BCI competition IV dataset 2A.

Subject
Accuracy with SS-MEMDBF (in %)

LvR LvF LvT RvF RvT FvT

A01 91.49 97.14 98.59 98.56 100 75

A02 60.56 78.57 67.13 80.71 68.53 74.47

A03 94.16 91.11 88.89 97.1 95.65 69.85

A04 76.72 91.53 87.5 92.24 86.36 66.07

A05 58.52 68.31 71.94 67.88 70.9 70.92

A06 68.52 69.16 73.58 66.97 75 67.29

A07 78.57 92.25 89.05 93.57 90.37 78.83

A08 97.01 88.89 83.58 91.97 83.09 81.02

A09 93.85 92.54 98.46 79.85 83.85 89.55

Average 79.93 85.5 84.3 85.43 83.75 74.78

Table 5.3 displays the comparison of classification accuracy using SS-MEMDBF

and bandpass filtering along with Riemannian geometry framework. In addition,

it shows the comparison of SS-MEMDBF with CSP features as well. Method-1

shows the results obtained by performing bandpass filtering in the range of 4

and 30 Hz with the same time window from which features are extracted. These

features have been classified using Riemannian geometry framework. With the

proposed method, the group accuracy has improved by > 4 % (p = 0.0078) and

eight of the nine subjects have shown improvement in the accuracy. Method-2

displays the classification accuracy in the evaluation session using the proposed

SS-MEMDBF with Method-2 displays the classification accuracy in the evaluation

session using the proposed SS-MEMDBF with CSP features. In this case, although

an improvement of > 1.6 % (p = 0.7422) was obtained across the nine subjects but

the results obtained are not significant in terms of p-value. Method-3, method-
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4 and method-5 display the comparison of classification accuracy obtained in

the evaluation session with other published results. An average improvement in

classification accuracy was achieved across nine subjects in comparison to those

obtained by three most recent advanced techniques, namely the method-3 (p = 0.20)

(Lotte and Guan, 2011), the method-4 (p = 0.027) (Raza, Cecotti, Li, and Prasad,

2015), and the method-5 (p = 0.0039) (Raza, Cecotti, Li, and Prasad, 2015). These

methods studied the binary classification to classify the left hand and right hand

MI tasks. Method-3 implemented CSP on bandpass filtered EEG between 8-30 Hz.

Then computed the log variance from three pairs of filters in the feature extraction,

further classified by linear discriminant analysis (LDA)(Lotte and Guan, 2011).

Method-4 and method-5 studied the CSP feature and identified the covariate shift

followed by adaptive learning and transductive learning respectively (Raza et al.,

2015). Using the proposed technique, there is a substantial improvement in four of

the nine subjects in terms of classification accuracy as reported in Table 5.3 marked

in boldface. The p-value has been computed using the Wilcoxon signed rank test

using signrank command in Matlab. Subject A05 has shown very low classification

accuracy except in the case when the number of channels is reduced. Tables 4.2

and 5.3 show the classification accuracy obtained for the subject A05 and when

comparing classification accuracies with other methods. In Table 4.2, method-1

used only three channels and reported the accuracy of 71.53%. In Table 5.3, method-

4 and method-5 reported a classification accuracy of 57.64% and 61.11% with ten

channels. Method-3 reported a classification accuracy of 54.86% with twenty-two

channels. With our proposed method, we obtained a classification accuracy of

60.74%with fifteen channels (reported in Table 4.2) and 58.52%with all twenty-two

channels (reported in Table 5.3). To conclude, for subject A05, finding the optimum

number of channels may help to obtain better classification accuracy.

Subject-specific filtering range was identified for all nine subjects for each pair of

MI tasks presented in Table 5.4.

The Kappa value was also computed using Riemannian geometry with one vs rest

(OVR) scheme for the multi-class classification of MI tasks on the same dataset.
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Table 5.3: Classification accuracy comparison (in %) for LvR task of the proposed method

with other published results using one vs one scheme applied on BCI competition IV

dataset 2A.

Subject
Evaluation session comparison with other groups (in %)

Proposed method Method-1 Method-2 Method-3 Method-4 Method-5

(Lotte and Guan, 2011) (Raza et al., 2015) (Raza et al., 2015)

A01 91.49 85.11 92.91 88.89 90.28 90.28

A02 60.56 56.34 59.86 51.39 54.17 57.64

A03 94.16 91.97 95.62 96.53 93.75 95.14

A04 76.72 70.69 66.38 70.14 64.58 65.97

A05 58.52 56.3 62.96 54.86 57.64 61.11

A06 68.52 68.52 68.52 71.53 65.28 65.28

A07 78.57 65 68.57 81.25 62.5 61.11

A08 97.01 94.78 96.27 93.75 90.97 91.67

A09 93.85 92.31 93.08 93.75 85.42 86.11

Average 79.93 75.67 78.24 78.01 73.84 74.92

p-value 0.0078 0.7422 0.2031 0.0039 0.0273

Table 5.4: Subject specific filtering range for all six possible MI tasks with the proposed

method applied on BCI competition IV dataset 2A.

Subject
LvR LvF LvT RvF RvT FvT

Low high Low high Low high Low high Low high Low high

A01 9 30 9 25 9 25 4 26 8 25 9 26

A02 6 25 9 29 9 29 7 26 8 22 9 30

A03 7 27 7 23 4 25 8 24 5 26 10 26

A04 7 30 5 25 10 26 9 27 9 25 8 22

A05 10 26 10 30 4 30 9 28 4 26 4 25

A06 4 25 6 28 5 22 7 28 8 27 5 22

A07 10 27 10 29 6 29 10 30 6 27 7 27

A08 6 28 5 23 8 22 8 24 10 28 10 26

A09 5 24 6 22 5 23 6 25 5 25 4 26
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Table 5.5: Kappa values of the proposed method with and without SS-MEMDBF applied

on BCI competition IV dataset 2A.

Subject
Subject specific filtering range (%) Kappa value with SS-MEMDBF Kappa value with raw EEG

Lower higher Training Evaluation Training Evaluation

A01 8 26 0.78 0.86 0.58 0.53

A02 7 26 0.16 0.24 0.25 0.21

A03 7 26 0.7 0.7 0.58 0.54

A04 6 28 0.4 0.68 0.22 0.38

A05 4 29 0.24 0.36 0.18 0.15

A06 6 28 0.22 0.34 0.33 0.28

A07 6 29 0.79 0.66 0.49 0.4

A08 8 22 0.77 0.75 0.77 0.61

A09 5 25 0.81 0.82 0.67 0.63

Average 0.54 0.60 0.45 0.41

p-value 0.0781 0.0039

The results obtained using the proposed methodology are presented in Table 5.5.

The Kappa value measures the agreement across the two outcomes (Schlogl et al.,

2007). A subject specific filtering range was obtained providing the best Kappa

value shown in Table 5.5 for the multi-class problem. With subject specific MEMD

based filtering, the average Kappa value across all the nine subjects has improved

by 0.08 (p = 0.0508) in the evaluation sessions as compared to 0.52 reported using

the Riemannian geometry in (Barachant et al., 2012). The average Kappa value

of 0.54 has been obtained with 5-fold cross-validation in the training stage. In

addition, a maximum improvement of 0.17 was observed for the subject A08 when

compared to that reported using Riemannian geometry in (Barachant et al., 2012).

Subjects A04 and A09 have improved by 0.15 and 0.14 in Kappa value. There is an

improvement in Kappa value with the SS-MEMDBF filtering in eight of the nine

subjects considering only the evaluation session compared to that reported using

Riemannian geometry in (Barachant et al., 2012).

Table 5.6 shows the classification accuracy when evaluated on BCI competition IV

dataset 3 using EMD based filtering and MEMD based filtering. It also shows the

comparison with the other BCI competition IV winners (Sardouie and Shamsollahi,

2012; Tangermann et al., 2012). The classification accuracy has been computed for
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Table 5.6: Classification accuracies with the proposed method when evaluated on BCI

competition IV dataset 3.

Subject MEMDBF EMDBF MEMDBF-SCM Winner1 Winner2 Winner3 Winner 4

S01 52.7 40.54 54.05 59.5 31.1 16.2 23.0

S02 49.31 43.83 46.57 34.3 19.2 31.5 17.8

Average 51.00 42.18 50.31 46.90 25.15 23.85 20.4

subjects S01 and S02. These results are computed using two different features. The

SHCM and SCM features have been computed from the enhanced MEG signals.

The Columns first and second present the classification accuracy results obtained

using the SHCM feature with MEMDBF and EMDBF filtering techniques. The

third column gives the results computed using SCM feature as MEMDBF-CSP. The

main highlights observed based on the classification accuracy are as follows: (1)

The average classification accuracy computed with the EMD based filtering and

MEMD based filtering for both subjects gives the minimum standard deviation

of 2.33 and 2.4 as compared to other research groups. (2) Subject S02 gives the

maximum classification accuracy of 49.31 % which is higher than (> 5% ) with

EMDBF method and > 15 % with the competition winner. (3) Since the higher

classification is achieved in multiclass classification problem using the MEMDBF

technique, thus the features are more separable as compared to EMDBF method.

These filtering techniques have served as a preprocessing step. It should be noted

that no complexity has been introduced at feature extraction and classification

steps.

5.8 Comparison with Other Published Results

As this chapter represents the culmination of all the previous studies reported

in this thesis it would be pertinent to assess SS-MEMDBF against others in the

field who are presenting similar works to assess the effectiveness of the proposed

technique. Table 5.7 displays the Kappa values computed with the proposed
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Table 5.7: Kappa value comparison with other published results. The best result for each

subject is displayed in bold characters.

Subjects SS-MEMDBF MDRM Winner 1 Winner 2 Winner 3 Winner 4 Winner 5

(Barachant et al., 2012) (Ang et al., 2008) (Guangquan et al., 2008) (Song, 2008) (Coyle, 2008) (Jin, 2008)

A01 0.86 0.75 0.68 0.69 0.38 0.46 0.41

A02 0.24 0.37 0.42 0.34 0.18 0.25 0.17

A03 0.70 0.66 0.75 0.71 0.48 0.65 0.39

A04 0.68 0.53 0.48 0.44 0.33 0.31 0.25

A05 0.36 0.29 0.40 0.16 0.07 0.12 0.06

A06 0.34 0.27 0.27 0.21 0.14 0.07 0.16

A07 0.66 0.56 0.77 0.66 0.29 0.00 0.34

A08 0.75 0.58 0.75 0.73 0.49 0.46 0.45

A09 0.82 0.68 0.61 0.69 0.44 0.42 0.37

Average 0.60 0.52 0.57 0.52 0.31 0.30 0.29

p-value 0.0508 0.4844 0.0469 0.0039 0.0078 0.0039

methodology and comparison with other similar works based on p-value com-

putation. The SS-MEMDBF has shown substantial performance improvement in

multi-class MI based BCI classification when compared to that reported using

Riemannian geometry in (Barachant et al., 2012). The SS-MEMDBF done at prepro-

cessing stage has thus helped to achieve a mean Kappa of 0.60 which is superior

to all the results reported so far. The results obtained have been computed using

a one versus rest mechanism to classify the MI EEG signals into multiple classes.

Moreover, we have exploited the frequency domain information as done by the

competition winner.

The top competition winner implemented filter bank CSP (FBCSP) and multiple

one-against the rest classifiers (Ang et al., 2008) and reported average Kappa value

0.57 across nine subjects; while the runner-up implemented CSP on bandpass

filtered data (between 8-30 Hz) and computed log variance of best eight com-

ponents as the features and then classified by LDA and Bayesian classifiers and

computed average Kappa 0.52 (Guangquan et al., 2008). The third group (Song,

2008) have applied bandpass filtering between 8-25Hz and used a recursive channel

elimination for the channels selection. They, thereafter extracted the CSP feature

and used ensemble multi-class classifier using three SVM classifiers and com-

puted mean Kappa value 0.31. The fourth group (Coyle, 2008) applied CSP on

spectrally filtered neural time-series prediction pre-processing (NTSPP) signals at
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pre-processing stage and used the log variance of each filtered channel with a one

second sliding window as features and then the best classifier among two variants

of support vector machine (SVM) and three variants of LDA was chosen for each

subject individually for classification purposes and calculated mean Kappa value

0.30.

There is a significant difference in the methodology followed between competitors

and us: we have obtained the enhanced EEG signal using SS-MEMDBF and com-

puted feature set as SCM for each trial across all the nine subjects, then did the

classification using Riemannian mean distance. A research group however did

study the usage of the Riemannian geometry but their pre-processing approach

was very different and has reported mean kappa value of 0.52 (Barachant et al.,

2012). Comparing these results, we have achieved highest Kappa value in four

subjects and same Kappa value in one subject of the provided nine subjects in

the evaluation session. These results clearly show that without the prior knowl-

edge about the non-stationary characteristics of the EEG signals, the SS-MEMDBF

method has shown promising performance and thus, has potential to enhance the

feature separability when incorporated as a pre-processing method and signifi-

cantly enhance BCI applications.

5.9 Conclusion

The SS-MEMDBF method was explored with sample covariance as a feature set to

enhance the performance of multiple class MI based BCI. The main idea in the pro-

posed method is to provide subject specific MEMD based filtering range in the pre-

processing stage reducing the effect of the intra- and inter-subject non-stationarity

present in the EEG signals. This preprocessing step provides the enhanced EEG

signals fromwhich the extracted feature’s distributions have statistically significant

differences. Also, mean frequency ranges have been identified when EEG signals

are recorded from the same cortical areas across the subjects. The results were

obtained in terms of Kappa value and classification accuracy when single trials are
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classified. The filtering method is demonstrated to reduce the effect of intrinsic

non-stationarity in the EEG signals to some extent. Also, it reduces the noise, and

artifacts. Moreover, highly significant performance improvement was obtained in

binary class and multi-class classification problems of MI based BCI by enhancing

the EEG signals at the pre-processing stage. In the SS-MEMDBF, a selection of one

or multiple MIMFs is done when the MIMFs have mean frequencies falling in the

frequency range of µ and β rhythms specific to a subject. Further, the enhanced

EEG signal obtained has helped to achieve improvement in the Kappa value while

classifying EEG signals into left hand, right hand, foot, and tongue MI tasks when

compared to raw EEG signals. The Kappa value obtained with the SS-MEMDBF

has shown significant improvement in both the training session and the evaluation

session across the multiple subjects. Overall the results compare favourably with

a research group that used Riemannian geometry and the BCI competition IV

dataset 2A winners for the multi-class and binary class classification problems.

Although SS-MEMDBF has helped to obtain enhanced feature separability and

reduce the error rates due to intrinsic non-stationarities present in EEG signals

to a large extent, adaptive classification methods may also be explored to handle

the non-stationarities more efficiently which is further discussed in future work

section.

The proposed method in this chapter is studied on publicly available BCI com-

petition IV dataset 2A for discrimination of two-class and four-class MI based

EEG signals in offline mode. Additionally, the proposed has been evaluated on

the BCI competition IV dataset 3 MEG data also. In future, it may be interesting

to evaluate the proposed method in an online classification problem in real-time

environment using EEG or MEG recording techniques. Additionally, it may be

possible to further extend the proposed method through its application on more

than four-class. This chapter has addressed contribution (C4) of this thesis and

the next chapter seeks to address the fifth (C5) contribution by proposing a novel

method built on top of transfer learning when applied to multichannel EEG data

in a motor imagery based BCI paradigm.



Chapter 6

Tangent Space based Transfer

Learning

6.1 Introduction

The previous chapter investigated the effectiveness of subject specific multivariate

empirical mode decomposition based filtering (SS-MEMD) in Riemannian geome-

try framework when evaluated on multichannel electroencephalogram (EEG) data

in a motor imagery (MI) based brain-computer interface (BCI) paradigm. With the

method presented in the previous chapter, significant improvements were achieved

in terms of classification accuracy of two-class and four class classification problems

of MI EEG signals. This chapter will address the last contribution for this thesis

(C5) by introducing a novel tangent space based transfer learning classification

method which seeks to further improve the classification accuracy.

This chapter concludes by comparing the results obtained by using a combination

of the SS-MEMD technique and a new tangent space based transfer learning classi-

fication method with the method previously proposed in the last chapter based

on a distance formula in Riemannian geometry framework. It also compares the

proposed method to other similar work demonstrating a substantial performance

112
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improvement in multi-class MI based BCI classification.

The aims of this chapter are as follow:

1. To study the session-to-session non-stationarity present in the EEG signals;

2. To reduce the long calibration time in BCI systems by proposing a model

which can be directly used for evaluating unseen single trials for a subject

without any training session data.

3. To automatically identify the subject specificMIMFs based onmean frequency

measure;

4. To present the results in terms of classification accuracy when single trials

are classified.

6.2 Methods

Asdiscussed previously (cf. 2.8.1), a challenging task is to classifymotion intentions

into two classes since the recorded EEG signals are highly subject-specific and

sensitive to noise and have inherent non-stationarities which are due to changes in

the signal properties over time within the session as well as across sessions. They

also require long calibration time, which is limiting the use of BCI in patients and

healthy people. Every time there is a need to collect numerous training data trials

for machine learning methods particularly used in BCI paradigm. Thus it becomes

difficult to achieve a stable operation of BCI. A unique approach was already

discussed in the study 2 of chapter 4 by combining the training data available from

all of the nine subjects. This approach yields improvement but in this work, a

novel tangent space based transfer learning method is proposed to further improve

the classification performance. This classification technique exploits the tangent

space features shared structure between the training data of multiple sessions and

subjects instead of combining the training data. A block diagram of the proposed
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method is shown in Figure 6.1.
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Figure 6.1: A pipeline for the proposed methodology.

6.3 Dataset

In this study, the publicly available BCI competition IV dataset 2A (Brunner et al.,

2008) has been used. All of the twenty-two channels have been considered in

this study as shown in Figure 6.2. The enhanced EEG signals from all twenty-

two channels have been used to extract the sample covariance matrix (cf. 5.5) as

a feature set. The feature set contains n(n + 1)/2 features where n denotes the

number of channels. Here, in this study the number of channels are twenty-two,

so the feature obtained from the enhanced EEG signals are 253.

6.4 Multivariate Empirical Mode Decomposition

The feet, tongue, left hand, and right handMI EEG signals were decomposed using

the MEMDmethod as in previous studies (cf. 4.2.3) and was described in more

depth in (cf. 2.10.2). The decomposition mechanism of the MEMD method was

also explained using single trials of left hand and right hand MI EEG signals. It
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Figure 6.2: Head plot showing all the channels locations

was also shown in Figures 4.3 and 4.4 using single trials from Subject A08T how

the trials are decomposed with the MEMD decomposition technique (cf. 5.4).

6.5 Tangent space based transfer learning

This section introduces the classification model used in this chapter. The training

session across multiple subjects are indexed s = {1, ..., S} and and has ntrs trials,

Zs = {(xis, yis)}
ntrs
i=1. As discussed in Section 5.6, the tangent space concept in the

Riemannian geometry framework and the logarithmic mapping gives the inverse

mapping which is defined as,

LogQ(Qi) = Pi = ||lower{Q1/2log(Q−1/2QiQ
−1/2)Q1/2}|| (6.5.1)

These are features derived from the tangent space and named as tangent space

features. Only n(n+ 1)/2 are considered by taking the lower triangular matrix of

the provided n× n features.



6.5. Tangent space based transfer learning 116

F =


x11 x12 x13 . . . x1n

x21 x22 x23 . . . x2n

... ... ... . . . ...

xn1 xn2 xn3 . . . xnn

 (6.5.2)

Here, xis ∈ Rd denotes the features derived from the EEG signals of training session

in the subject s during trial i, with d denoting the number of features selected from

the feature matrix F . Since the sample covariance matrices (SCM) is symmetric,

the lower triangular matrix is being considered for this study giving a total of

d = n(n + 1)/2 features. The xis consists of tangent space features computed at

different scalp locations. Variable yis gives the subject’s stimulus such as motor

imagery task of either the left or right hand imagination in trial i for session s. This

approach is applicable for solving two class classification problems. Additionally,

it is a linear regression problem with yis ∈ {+1,−1} for all i and s. Based on this

assumption, the model is linear with a noise term ν, the linear function model is

denoted by,

yis = wTs x
i
s + ν (6.5.3)

related to each subject/training session s. The parameters ws shows the weights

assigned to the individual features which are further used to evaluate the stimulus

for trials in evaluation session of a new subjects s. Given a new EEG signal x for

subject/ evaluation session s, the stimulus is evaluated by

ŷi+1
s = wTs x

i
s (6.5.4)

Each subject/training session has a shared structure (Σ, µ) that represents the

invariable properties for stimulus prediction. To be specific, (Σ, µ) represents the

covariance and mean vectors of features. The divergence of training session model

from shared structure of each subject ||ws−µ|| gives the session specific properties

of the stimulus prediction (Jayaram et al., 2016). This shared structure is unknown,

thus the main goal is to find the shared structure across all the subjects. This is

achieved by combining the optimization problem as,
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min
K,Σ,µ

LF (K,Σ, µ;Z, θ) = min
K,

∑
,µ

1

θ

s∑
1

||Xsws − ys||2 +
s∑
1

Ψ(ws; Σ, µ) (6.5.5)

where d denotes the dimension of each feature vector and K = [w1, ..., ws]
T and

Z = {Zs}Ss=1. The ws may be computed by solving the above optimization prob-

lem.

Algorithm 1 Shared structure computation across multiple training subjects using

multi-task BCI
1: Input: Z,θ

2: Set :
{(

Σ, µ
)}

=
{
I, 0}

3: repeat

4: Update ws =

(
1
θ
XT
s ysΣ+µ

)(
1
θ
XsXT

s Σ
)

5: Update Σ using Σ̂ =
∑S
s=1

(
ws−µ

)(
ws−µ

)T
Tr
((
ws−µ

)(
ws−µ

)T) + εI

6: Update µ using µ̂ = 1
S

∑S
s=1 ws

7: until converge

8: Output :
{(

Σ, µ
)}

Algorithm 1 is used for computing shared structure and ws across training sessions

for all the subjects. More details about the optimization problem to compute ws
can be obtained from Alamgir et al. (2010); Jayaram et al. (2016).

6.6 Results and discussion

In the training session, a novel tangent space based transfer learning model has

been created by exploiting the features obtained from the enhanced EEG signals

using all nine subjects. The features share some common information because

the feature set is generated when a subject is asked to perform the same motor

imagery task. The proposed method exploits the tangent space features shared

structure between the training data of multiple subjects. For the computation of

classification accuracy (in %) for each subject in the evaluation session, 100% of
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A0ST data has been constructing the classification model from all the nine subjects.

Furthermore, the tangent space feature has been computed on all unknown test

trials of the corresponding evaluation session A0SE on a trial-by-trial basis, where

S represents the subject number. These features have been classified using the

proposed classification model and assigned a particular class. The proposed

method is suitable for two-class classification problems. Now, there are four motor

imagery tasks so the total number of combinations obtained are six as discussed

later in this thesis. The possible combination are as follow : left vs right (LvR), left

vs foot (LvF), left vs tongue (LvT), right vs foot (RvF), right vs tongue (RvT), foot

vs tongue (FvT).

As theMI task began at 2 seconds, the covariancematrix feature has been computed

for the EEG signals from the 2.5 second to 4.5 second time-interval of the MI

paradigm. The classification accuracy for all the evaluation session in nine subjects

has been computed. In this study, the mean frequency measure (cf. eq. 3.2.1) has

been calculated to identify the MIMFs from all the obtained MIMFs corresponding

to the right hand, left hand, both feet and tongue MI tasks. These MIMFs are

identified based on mean frequency measure which provide a major contribution

to µ and β rhythms and remaining MIMFs are discarded as noise. These identified

MIMFs were summed together to obtain the enhanced EEG signals.

Figures 6.3, 6.4 and 6.5 display the difference between the classification accuracy

computed using SS-MEMDBF with Riemannian geometry framework and SS-

MEMDBF with tangents space based transfer learning obtained in the evaluation

session for all of the six possible binary MI tasks. The performance improvement

is demonstrated with bar graphs for all of the nine subjects.

Figure 6.3(a) shows the classification accuracy comparison of the proposed pipeline

(SS-MEMDBFwith tangents space-based transfer learning) with SS-MEMDBFwith

Riemannian geometry framework, and other state-of-the-art methods obtained in

the evaluation session for the left hand and right handMI tasks. With the proposed

tangent space based transfer learning method, we have achieved the best results
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Left vs Right MI task
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(a) Comparison of classification accuracy for left hand and right hand MI task.

Left vs Foot MI task
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(b) Comparison of classification accuracy for left hand and foot MI task.

Figure 6.3: The bar graph displays the classification accuracy comparison using proposed

pipeline with other published results (a) left hand and right hand MI tasks (b) left hand

and foot MI tasks obtained in the evaluation session.



6.6. Results and discussion 120

Left vs Tongue MI task
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(a) Comparison of classification accuracy for left hand and tongue MI task.

Right vs Tongue MI task
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(b) Comparison of classification accuracy for right hand and tongue MI task.

Figure 6.4: The bar graph displays the classification accuracy comparison (a) left hand and

tongue MI task (b) right hand and tongue MI task, using proposed pipeline with other

state-of-the-art methods in the evaluation session.
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Right vs Foot MI task
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(a) Comparison of classification accuracy for right hand and foot MI task.

Foot vs Tongue MI task
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(b) Comparison of classification accuracy for foot and tongue MI task.

Figure 6.5: The bar graph displays the classification accuracy comparison using proposed

pipeline with other published results (a) right hand and foot MI task and (b) foot and

tongue MI task in the evaluation session.
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Table 6.1: Classification accuracy (in %) for the proposed classification method with one

vs one scheme applied on BCI competition IV dataset 2A.

Subject
SS-MEMDBF and proposed method Comparison with other groups

LvR LvF LvT RvF RvT FvT Method-1 Method-2 Method-3

A01 91.49 99.29 99.3 100 100 75 88.89 90.28 90.28

A02 66.9 84.29 70.63 85 73.43 73.76 51.39 54.17 57.64

A03 97.81 97.04 96.3 99.28 100 84.56 96.53 93.75 95.14

A04 81.03 88.14 92.86 87.07 88.18 78.57 70.14 64.58 65.97

A05 71.11 73.24 79.86 70.8 71.64 74.47 54.86 57.64 61.11

A06 75.93 84.11 80.19 83.49 78.7 71.96 71.53 65.28 65.28

A07 77.86 97.18 98.54 97.86 98.52 78.83 81.25 62.5 61.11

A08 99.25 93.33 97.76 91.24 94.12 91.97 93.75 90.97 91.67

A09 94.62 97.01 100 91.79 95.38 98.51 93.75 85.42 86.11

Average 84 90.4 90.6 89.61 88.89 80.85 78.01 73.84 74.92

Std 12.05 8.64 10.83 9.33 11.46 9.1 17.01 15.93 15.43

p-value 0.0273 0.0039 0.0039

when compared with the other state-of-art methods. As discussed earlier, the

results obtained with SS-MEMDBF with Riemannian geometry framework are still

impressive but few of the subjects have performed badly due to the effect of the

non-stationarity present. There was a need to perform transfer learning to handle

these issues. The proposed method has helped to overcome non-stationarity to a

larger extent by combining two approaches together to form a novel pipeline. The

proposed pipeline handles the non-stationarity in the pre-processing stage which

is evident by the results reported using SS-MEMD filtering technique in chapter

5 and then applying transfer learning on the tangent space features. It is evident

that the results are more impressive when tangent space based transfer learning is

compared with Riemannian geometry framework. Seven of the nine subjects have

shown improvement but subject A05 has shown exceptional improvement of > 12

% using the proposed methods. The average classification accuracy for the nine

subjects has increased by > 4% in the evaluation session. The bar graph shown

in Fig 6.3(b) displays the classification accuracy comparison of SS-MEMDBF with
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Riemannian geometry framework and SS-MEMDBF with tangents space based

transfer learning obtained in the evaluation session for left hand and foot MI tasks.

There is an improvement in classification accuracy for eight of the nine subjects

using tangent space based transfer learning method. The average accuracy across

the nine subjects has improved by > 4.9%. Subject A06 has shown a maximum

improvement of >14% in the evaluation session. Six of the nine subjects have

shown an improvement between > 4 % and < 6%.

In the Figure 6.4(a), the classification accuracy comparison using SS-MEMDBFwith

Riemannian geometry framework and SS-MEMDBF with tangents space based

transfer learning obtained in the evaluation session for the left hand and tongue

MI tasks have been presented. All of the nine subjects have shown improvement

in the classification accuracy using the proposed method. The average classifi-

cation accuracy has been improved by > 6%. Subject A09 has shown maximum

improvement of > 14% in the classification accuracy.

Figure 6.4(b) shows the classification accuracy comparison using SS-MEMDBFwith

Riemannian geometry framework and SS-MEMDBF with tangents space based

transfer learning obtained in the evaluation session for the right hand and tongue

MI tasks. Eight of the nine subjects have shown improvement in the classification

accuracy using the proposed method. The average classification accuracy has been

improved by > 5%. Subject A09 and A08 have shown significant improvement of

> 11% in the classification accuracy. Subject A07 has shown an improvement of >

8% in terms of classification accuracy.

Figure 6.5(a) similarly shows the classification accuracy comparison using SS-

MEMDBF with Riemannian geometry framework and SS-MEMDBF with tangents

space based transfer learning obtained in the evaluation session but for the right

hand and foot MI tasks. Seven of the nine subjects have shown improvement

in classification accuracy using the proposed method. The average classification

accuracy has been improved by >4%. The greatest improvement was seen in

subject A06 at >16% whilst subject A09 has shown an improvement of almost 12%
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in terms of classification accuracy.

Figure 6.5(b) again compares SS-MEMDBF with Riemannian geometry framework

and SS-MEMDBF with tangents space based transfer learning obtained in the

evaluation session but this time for the foot and tongue MI tasks. All but one

subject showed improvement in classification accuracy using the proposed method

with an average classification accuracy improvement of > 6%. Subject A03 showed

significant improvement of > 14% with subject A04 improving by > 12%. Subjects

A08 and A09 also improved by > 10% and > 8% respectively.

6.7 Conclusion

The tangent space based transfer learning method has been explored with sample

covariance as a feature set to enhance the performance of two class MI based BCI.

The main idea is to provide subject specific MEMD based filtering range in the

preprocessing stage reducing the effect of the inter-subject non-stationarity present

in the EEG signals and then performing the classification using tangent space

based transfer learning method. This preprocessing step enables to achieve the

enhanced EEG signals from which the extracted feature’s distributions have statis-

tically significant differences. The results were obtained in terms of classification

accuracy when single trials are classified in the evaluation session. The filtering

method is demonstrated to reduce the effect of intrinsic non-stationarity in the

EEG signals to some extent. The proposed method in this chapter along with

the previously proposed filtering method in chapter 4 has provided significant

performance improvement in two class classification problems of MI based BCI.

The classification accuracy obtained with the SS-MEMDBF and proposed method

has shown significant improvement in the evaluation session across the multiple

subjects. The SS-MEMDBF has thus helped to obtain enhanced feature separability

and reduce the error rates due to intrinsic non-stationarities present in EEG signals

to a large extent. Additionally, a tangent space based transfer learning method

was able to handle the non-stationarities more efficiently. The proposed classifica-
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tion method in this chapter was studied on publicly available BCI competition IV

dataset 2A for discrimination of two-class MI based EEG signals. In future, it may

be interesting to evaluate the proposed method in for multi-class classification

problems using EEG or MEG recording techniques.

This chapter has addressed the fifth contribution (C5) by proposing a novel method

built on top of transfer learning when applied to multichannel EEG data in a motor

imagery based BCI paradigm.



Chapter 7

Conclusions and

Recommendations

7.1 Concluding Summary

Non-stationarity is a major issue and is often perceived across sessions and subjects

in MEG/EEG-based brain-computer interface (BCI) systems. In this phenomenon,

the statistical properties of the recorded brain signals change with time. Due to this

issue, the performance of the BCI system is often degraded while using traditional

machine learning algorithms which are built on the assumption that the statistical

property should remain stationary across the trials, which is often violated. This

thesis has addressed this shortcoming through the development of novel and robust

single and multichannel filtering techniques for the analysis of both EEG andMEG

brain signals in the pre-processing stage leading to improved BCI classification

accuracy. These filtering techniques are able to handle the adverse effect of inherent

non-stationarity in the brain signals. Another issue is the long calibration time

needed to record training data, which limits the usefulness of BCI both for patients

and healthy users. There is also a need to collect numerous training data trials for

machine learning methods frequently used in BCI paradigms. Thus it becomes

difficult to achieve a stable operation of BCI.
126
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In this thesis, single channel and multichannel filtering techniques are studied for

the analysis of brain signals. The main work was done based on EEG, but to check

the effectiveness of the proposed techniques they were also evaluated on MEG

signals. The aim of these filtering techniques was to enhance MEG/EEG in the

pre-processing stage which led to improved classification accuracy for use in BCI

systems. Also, a tangent space transfer learning approach was proposed which is

an important step towards zero training for BCI systems. This has been achieved

through:

1. Development of an empirical mode decomposition based filtering method.

2. Development of amultivariate empiricalmodedecomposition filteringmethod.

3. Development of a novel tangent space based transfer learning classification

model.

To benchmark the performances of the two proposed filtering techniques, theywere

evaluated on two publically available BCI competition IV EEG datasets and one

publically available BCI competition IV MEG dataset. They were also compared

against other state-of-the-art research methods.

7.2 Contributions of the Thesis

The research work within the thesis has been peer-reviewed in three international

conference papers (Gaur et al., 2015, 2016a,b), and contributed one journal paper

(Gaur et al., 2018) with two journal papers due to be submitted along with one

book chapter . There were three posters also presented and the results have been

reported in this thesis (Gaur et al., 2017, 2016c; Kaushik et al., 2017). As discussed

earlier in Section 1.2 of chapter 1, there were five research objectives set, each of

which has been addressed in each of the preceding contribution chapters and

which will now be discussed in the context of this contributions:



7.2. Contributions of the Thesis 128

Contribution 1 (C1) - Chapter 3: The EEG signals were enhanced using the single

channel filtering method. The features namely, Hjorth and band power features

were computed from these enhanced EEG signals. These features were classified

into the left hand and right hand motor imagery (MI) using a linear discriminant

analysis (LDA) based classification method. This filtering method was also used

to classify multi-direction wrist movement MEG signals into right, forward, left

and backward classes. The MEG signals were similarly enhanced using the sin-

gle channel filtering method. The sample entropy feature was extracted from

these enhanced MEG signals and the feature set was classified using an ensemble

classifier.

Contribution 2 (C2) - Chapter 4: A novel signal processing pipeline was intro-

duced to classify left hand and right handmotor imagery based EEG signals. These

signals were first enhanced using multichannel filtering method and then CSP

features were extracted from these enhanced EEG signals and further classified

using LDA. Additionally, a subject independent classification model was proposed

which helped to reduce the training time by using a general model to classify the

MI based EEG signals into the left hand and right hand.

Contributions 3 (C3) and 4 (C4) - Chapter 5: An automated classification system

was introduced to classify motor imagery based EEG signals into binary and

multiple classes of associated MI tasks. A subject specific filtering range has been

identified for the motor imagery tasks, namely, left hand, right hand, foot and

tongue. The covariance matrix feature was computed as a feature set and classified

in the Riemannian geometry framework.

Contribution 5 (C5) - Chapter 6: A classification pipeline was introduced to clas-

sify motor imagery based EEG signals. This pipeline was used to solve six combi-

nations of the two-class classification problem for motor imagery tasks, namely,

left hand, right hand, foot and tongue. These signals were enhanced in a specific

range corresponding to a particular motor imagery task classification problem

with the multichannel filtering method. A tangent space feature was computed
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from covariance matrix as a feature set and classified using the linear regression

method.

7.3 Future Work

Although the techniques presented in this thesis are both novel and robust there

are several obvious shortcomings which could be made to improve the work, a

short discussion of which will now follow:

1. As discussed in chapter 4, EEG channels have been selected due to their

proximity to the motor cortex region in BCI competition IV dataset 2a. In the

future, it would be interesting to explore a method to implement a channel

selection mechanism based on correlation in the time domain and/or coher-

ence in the frequency domain to achieve better classification accuracy with a

minimum number of channels.

2. As discussed in chapter 4, spatial filters have been heuristically selected as

also reported in (Lotte and Guan, 2011), they have consideredm = 3, where

m represents the first and the last column vectors of the CSP matrix. Also,

Gaur et al. (2016a) have selectedm = 4 andm = 5 spatial filters, while Raza

et al. (2015) consideredm = 2 spatial filters of the CSP matrix. In future, it

may be interesting to automatically select the spatial filters for a particular

subject. This subject specific selection of spatial filters should help achieve

higher classification accuracy because EEG data is highly subject specific.

3. The single channel and multichannel filtering methods may be evaluated in

an online MEG-based BCI paradigm for single trials classification problem

to validate the performance of a real-time BCI system.

4. Impact analysis on the functional connectivity can be done to see how the

connectivity pattern is changing when the single channel, multichannel, and

bandpass filtering is done on the EEG/MEG data.
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5. As discussed in Chapter 5, n(n+1)/2 features were considered in the Rie-

mannian geometry framework for classification purpose where n denotes

the number of channels. Since all twenty two channels were considered, the

filtering method may be time-consuming in terms of execution time. There is

a need to find a method which can help to find optimum number of channels

without compromising with the classification accuracy. One possible solu-

tion may be to first apply cross-validation to find when additional features

may lead to overfitting. Then, it would be interesting to find their optimum

features using a one-way ANOVA by ranking them according to the p-value

and then using the identified feature for classification purposes.

6. The results reported in the literature and in this thesis (cf. Chapter 6) demon-

strate that transfer learning methods provide a general improvement when

compared to other classification methods, but they don’t solve the BCI train-

ing time problem. The approach followed in this thesis (cf. Chapter 6),

all the training session features have been considered for a specific motor

imagery task. Future work may involve the selection of subjects based on

the significant difference between training data’s feature distribution for a

specific motor imagery task. In the literature, transfer learning methods

are studied where they have exploited the feature structure across all the

subjects (Jayaram et al., 2016). There is a need for an automatic method to

decide whether the new subject training session feature structure should be

considered to update the existing shared structure based on the algorithm

discussed in Chapter 6. The final shared structure should be able to classify

the new subject evaluation session data. This automatic method will be an

important step and may address the zero training time issue to a large extent.
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