7,194 research outputs found

    Resolvable designs with large blocks

    Full text link
    Resolvable designs with two blocks per replicate are studied from an optimality perspective. Because in practice the number of replicates is typically less than the number of treatments, arguments can be based on the dual of the information matrix and consequently given in terms of block concurrences. Equalizing block concurrences for given block sizes is often, but not always, the best strategy. Sufficient conditions are established for various strong optimalities and a detailed study of E-optimality is offered, including a characterization of the E-optimal class. Optimal designs are found to correspond to balanced arrays and an affine-like generalization.Comment: Published at http://dx.doi.org/10.1214/009053606000001253 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Design Lines

    Full text link
    The two basic equations satisfied by the parameters of a block design define a three-dimensional affine variety D\mathcal{D} in R5\mathbb{R}^{5}. A point of D\mathcal{D} that is not in some sense trivial lies on four lines lying in D\mathcal{D}. These lines provide a degree of organization for certain general classes of designs, and the paper is devoted to exploring properties of the lines. Several examples of families of designs that seem naturally to follow the lines are presented.Comment: 16 page

    Entanglement-assisted quantum low-density parity-check codes

    Get PDF
    This paper develops a general method for constructing entanglement-assisted quantum low-density parity-check (LDPC) codes, which is based on combinatorial design theory. Explicit constructions are given for entanglement-assisted quantum error-correcting codes (EAQECCs) with many desirable properties. These properties include the requirement of only one initial entanglement bit, high error correction performance, high rates, and low decoding complexity. The proposed method produces infinitely many new codes with a wide variety of parameters and entanglement requirements. Our framework encompasses various codes including the previously known entanglement-assisted quantum LDPC codes having the best error correction performance and many new codes with better block error rates in simulations over the depolarizing channel. We also determine important parameters of several well-known classes of quantum and classical LDPC codes for previously unsettled cases.Comment: 20 pages, 5 figures. Final version appearing in Physical Review

    On the structure of the directions not determined by a large affine point set

    Get PDF
    Given a point set UU in an nn-dimensional affine space of size qn−1−εq^{n-1}-\varepsilon, we obtain information on the structure of the set of directions that are not determined by UU, and we describe an application in the theory of partial ovoids of certain partial geometries

    The curious nonexistence of Gaussian 2-designs

    Full text link
    2-designs -- ensembles of quantum pure states whose 2nd moments equal those of the uniform Haar ensemble -- are optimal solutions for several tasks in quantum information science, especially state and process tomography. We show that Gaussian states cannot form a 2-design for the continuous-variable (quantum optical) Hilbert space L2(R). This is surprising because the affine symplectic group HWSp (the natural symmetry group of Gaussian states) is irreducible on the symmetric subspace of two copies. In finite dimensional Hilbert spaces, irreducibility guarantees that HWSp-covariant ensembles (such as mutually unbiased bases in prime dimensions) are always 2-designs. This property is violated by continuous variables, for a subtle reason: the (well-defined) HWSp-invariant ensemble of Gaussian states does not have an average state because the averaging integral does not converge. In fact, no Gaussian ensemble is even close (in a precise sense) to being a 2-design. This surprising difference between discrete and continuous quantum mechanics has important implications for optical state and process tomography.Comment: 9 pages, no pretty figures (sorry!
    • …
    corecore