207 research outputs found

    Dynamics of Current, Charge and Mass

    Full text link
    Electricity plays a special role in our lives and life. Equations of electron dynamics are nearly exact and apply from nuclear particles to stars. These Maxwell equations include a special term the displacement current (of vacuum). Displacement current allows electrical signals to propagate through space. Displacement current guarantees that current is exactly conserved from inside atoms to between stars, as long as current is defined as Maxwell did, as the entire source of the curl of the magnetic field. We show how the Bohm formulation of quantum mechanics allows easy definition of current. We show how conservation of current can be derived without mention of the polarization or dielectric properties of matter. Matter does not behave the way physicists of the 1800's thought it does with a single dielectric constant, a real positive number independent of everything. Charge moves in enormously complicated ways that cannot be described in that way, when studied on time scales important today for electronic technology and molecular biology. Life occurs in ionic solutions in which charge moves in response to forces not mentioned or described in the Maxwell equations, like convection and diffusion. Classical derivations of conservation of current involve classical treatments of dielectrics and polarization in nearly every textbook. Because real dielectrics do not behave in a classical way, classical derivations of conservation of current are often distrusted or even ignored. We show that current is conserved exactly in any material no matter how complex the dielectric, polarization or conduction currents are. We believe models, simulations, and computations should conserve current on all scales, as accurately as possible, because physics conserves current that way. We believe models will be much more successful if they conserve current at every level of resolution, the way physics does.Comment: Version 4 slight reformattin

    Dynamics of Current, Charge and Mass

    Get PDF
    abstract: Electricity plays a special role in our lives and life. The dynamics of electrons allow light to flow through a vacuum. The equations of electron dynamics are nearly exact and apply from nuclear particles to stars. These Maxwell equations include a special term, the displacement current (of a vacuum). The displacement current allows electrical signals to propagate through space. Displacement current guarantees that current is exactly conserved from inside atoms to between stars, as long as current is defined as the entire source of the curl of the magnetic field, as Maxwell did.We show that the Bohm formulation of quantum mechanics allows the easy definition of the total current, and its conservation, without the dificulties implicit in the orthodox quantum theory. The orthodox theory neglects the reality of magnitudes, like the currents, during times that they are not being explicitly measured.We show how conservation of current can be derived without mention of the polarization or dielectric properties of matter. We point out that displacement current is handled correctly in electrical engineering by ‘stray capacitances’, although it is rarely discussed explicitly. Matter does not behave as physicists of the 1800’s thought it did. They could only measure on a time scale of seconds and tried to explain dielectric properties and polarization with a single dielectric constant, a real positive number independent of everything. Matter and thus charge moves in enormously complicated ways that cannot be described by a single dielectric constant,when studied on time scales important today for electronic technology and molecular biology. When classical theories could not explain complex charge movements, constants in equations were allowed to vary in solutions of those equations, in a way not justified by mathematics, with predictable consequences. Life occurs in ionic solutions where charge is moved by forces not mentioned or described in the Maxwell equations, like convection and diffusion. These movements and forces produce crucial currents that cannot be described as classical conduction or classical polarization. Derivations of conservation of current involve oversimplified treatments of dielectrics and polarization in nearly every textbook. Because real dielectrics do not behave in that simple way-not even approximately-classical derivations of conservation of current are often distrusted or even ignored. We show that current is conserved inside atoms. We show that current is conserved exactly in any material no matter how complex are the properties of dielectric, polarization, or conduction currents. Electricity has a special role because conservation of current is a universal law.Most models of chemical reactions do not conserve current and need to be changed to do so. On the macroscopic scale of life, conservation of current necessarily links far spread boundaries to each other, correlating inputs and outputs, and thereby creating devices.We suspect that correlations created by displacement current link all scales and allow atoms to control the machines and organisms of life. Conservation of current has a special role in our lives and life, as well as in physics. We believe models, simulations, and computations should conserve current on all scales, as accurately as possible, because physics conserves current that way. We believe models will be much more successful if they conserve current at every level of resolution, the way physics does.We surely need successful models as we try to control macroscopic functions by atomic interventions, in technology, life, and medicine. Maxwell’s displacement current lets us see stars. We hope it will help us see how atoms control life.View the article as published at https://www.degruyter.com/view/j/mlbmb.2017.5.issue-1/mlbmb-2017-0006/mlbmb-2017-0006.xm

    Quantitative modeling of synthetic gene transfer

    Get PDF
    modeling of synthetic gene transfe

    Statistical mechanics of ecological systems: Neutral theory and beyond

    Get PDF
    The simplest theories often have much merit and many limitations, and, in this vein, the value of neutral theory (NT) of biodiversity has been the subject of much debate over the past 15 years. NT was proposed at the turn of the century by Stephen Hubbell to explain several patterns observed in the organization of ecosystems. Among ecologists, it had a polarizing effect: There were a few ecologists who were enthusiastic, and there were a larger number who firmly opposed it. Physicists and mathematicians, instead, welcomed the theory with excitement. Indeed, NT spawned several theoretical studies that attempted to explain empirical data and predicted trends of quantities that had not yet been studied. While there are a few reviews of NT oriented toward ecologists, the goal here is to review the quantitative aspects of NT and its extensions for physicists who are interested in learning what NT is, what its successes are, and what important problems remain unresolved. Furthermore, this review could also be of interest to theoretical ecologists because many potentially interesting results are buried in the vast NT literature. It is proposed to make these more accessible by extracting them and presenting them in a logical fashion. The focus of this review is broader than NT: new, more recent approaches for studying ecological systems and how one might introduce realistic non-neutral models are also discussed

    Quantum Transport in Mesoscopic Systems

    Get PDF
    Mesoscopic physics deals with systems larger than single atoms but small enough to retain their quantum properties. The possibility to create and manipulate conductors of the nanometer scale has given birth to a set of phenomena that have revolutionized physics: quantum Hall effects, persistent currents, weak localization, Coulomb blockade, etc. This Special Issue tackles the latest developments in the field. Contributors discuss time-dependent transport, quantum pumping, nanoscale heat engines and motors, molecular junctions, electron–electron correlations in confined systems, quantum thermo-electrics and current fluctuations. The works included herein represent an up-to-date account of exciting research with a broad impact in both fundamental and applied topics

    Variational inference for Gaussian-jump processes with application in gene regulation

    Get PDF
    In the last decades, the explosion of data from quantitative techniques has revolutionised our understanding of biological processes. In this scenario, advanced statistical methods and algorithms are becoming fundamental to decipher the dynamics of biochemical mechanisms such those involved in the regulation of gene expression. Here we develop mechanistic models and approximate inference techniques to reverse engineer the dynamics of gene regulation, from mRNA and/or protein time series data. We start from an existent variational framework for statistical inference in transcriptional networks. The framework is based on a continuous-time description of the mRNA dynamics in terms of stochastic differential equations, which are governed by latent switching variables representing the on/off activity of regulating transcription factors. The main contributions of this work are the following. We speeded-up the variational inference algorithm by developing a method to compute a posterior approximate distribution over the latent variables using a constrained optimisation algorithm. In addition to computational benefits, this method enabled the extension to statistical inference in networks with a combinatorial model of regulation. A limitation of this framework is the fact that inference is possible only in transcriptional networks with a single-layer architecture (where a single or couples of transcription factors regulate directly an arbitrary number of target genes). The second main contribution in this work is the extension of the inference framework to hierarchical structures, such as feed-forward loop. In the last contribution we define a general structure for transcription-translation networks. This work is important since it provides a general statistical framework to model complex dynamics in gene regulatory networks. The framework is modular and scalable to realistically large systems with general architecture, thus representing a valuable alternative to traditional differential equation models. All models are embedded in a Bayesian framework; inference is performed using a variational approach and compared to exact inference where possible. We apply the models to the study of different biological systems, from the metabolism in E. coli to the circadian clock in the picoalga O. tauri

    Multivalent Random Walkers:A computational model of superdiffusive transport at the nanoscale

    Get PDF
    We present a stochastic model and numerical simulation framework for a synthetic nanoscale walker that can be used to transport materials and information at superdiffusive rates in artificial molecular systems. Our \emph{multivalent random walker} model describes the motion of a walker with a rigid, inert body and flexible, enzymatic legs. A leg can bind to and irreversibly modify surface-bound chemical substrate sites arranged as nanoscale tracks. As the legs attach to, modify, and detach from the sites, the walker moves along these tracks. Walkers are symmetrical and the tracks they walk on are unoriented, yet we show that under appropriate kinetic constraints the walkers can transform the chemical free energy in the surface sites into directional motion, and can do ordered work against an external load force. This shows that multivalent random walkers are a new type of molecular motor, useful for directional transport in nanoscale systems. We model the motion of multivalent random walkers as a continuous-time discrete-state Markov process. States in the process correspond to the chemical state of the legs and surface sites, and transitions represent discrete chemical changes of legs binding to, unbinding from, and modifying the surface sites. The Markov property holds because we let the mechanical motion of the body and unattached legs come to equilibrium in between successive chemical steps, thus the transitions depend only on the current chemical state of the surface sites and attached legs. This coarse-grained model of walker motion allows us to use both equilibrium and non-equilibrium Markov chain Monte Carlo simulation techniques. The Metropolis-Hastings algorithm approximates the motion of a walker\u27s body and legs at a mechanical equilibrium, while the kinetic Monte Carlo algorithm simulates the transient chemical dynamics of the walker stepping across the surface sites. Using these numerical techniques, we find that MVRWs move superdiffusively in the direction of unmodified substrate sites when there is a residence time bias between modified and unmodified sites. This superdiffusive motion persists when opposed by external load forces, showing that multivalent random walkers are \emph{molecular motors} that can transform chemical free energy into ordered mechanical work. To produce these results we devised a distributed object-oriented framework for parallel simulation and analysis of the MVRW model. We use an object-relational mapping to persistently maintain all simulation-related objects as tuples in a relational database. We present a new object-relational mapping technique called the \emph{natural entity framework} which disambiguates the semantics of object identity and uniqueness in the relational and object-oriented programming models. Using the natural entity framework we are able to guarantee the uniqueness of mappings between data stored as objects in the relational database and external data stored in non-transactionally-secured HDF5 data files

    Lattice models for granular and active matter fluctuating hydrodynamics

    Get PDF
    This thesis investigates the common nature of granular and active systems, which is rooted in their intrinsic out-of-equilibrium behavior, with the aim of finding minimal models able to reproduce and predict the complex collective behavior observed in experiments and simulations. Granular and active matter are among the most studied systems in out-of-equilibrium statistical physics. The thesis guides readers through the derivation of a fluctuating hydrodynamic description of granular and active matter by means of controlled and transparent mathematical assumptions made on a lattice model. It also shows how a macroscopic description can be provided from microscopic requirements, leading to the prediction of collective states such as cooling, swarming, clustering and the transitions among them. The analytical and numerical results shed new light on the physical connection between the local, microscopic properties of few particles and the macroscopic collective motion of the whole system

    Mesoscopic Models of Stochastic Transport

    Get PDF
    Transportphänomene treten in biologischen und künstlichen Systemen auf allen Längenskalen auf. In dieser Arbeit untersuchen wir sie für verschiedene Systeme aus einer mesoskopischen Perspektive, in der Fluktuationen physikalischer Größen um ihre Mittelwerte eine wichtige Rolle spielen. Im ersten Teil untersuchen wir die persistente Bewegung aktiver Brownscher Teilchen mit zusätzlichem Drehmoment, wie sie z.B. für Spermien oder Janus Teilchen auftritt. Wird ihre Bewegung auf einen Tunnel variierender Breite beschränkt, so setzt im thermischen Nichtgleichgewicht Transport ein; ungerichtete Fluktuationen des rauschhaften Antriebs werden gleichgerichtet. Hierdurch wird ein neuer Ratschentyp realisiert. Im zweiten Teil untersuchen wir den intrazellulären Cargotransport in den Axonen von Nervenzellen mithilfe molekularer Motoren. Sie werden als asymmetrischer Ausschlussprozess simuliert. Zusätzlich können die Cargos zwischen benachbarten Motoren ausgetauscht werden. Dadurch lassen sich charakteristische Eigenschaften des langsamen axonalen Transports mit einer einzigen Motorspezies reproduzieren. Bewerkstelligt wird dies durch die transiente Anbindung der Cargos an rückwärtslaufende Motorstaus. Im dritten Teil diskutieren wir resistive switching, die nicht volatile Widerstandsänderung eines Dielektrikums durch elektrische Impulse. Es wird für Anwendungen im Computerspeicher ausgenutzt, dem resistive RAM. Wir schlagen ein auf Sauerstoffvakanzen basierendes stochastisches Gitterhüpfmodell vor. Wir definieren binäre logische Zustände mit Hilfe der zugrunde liegenden Vakanzenverteilung und definieren Schreibe- und Leseoperationen durch Spannungsimpulse für ein solches Speicherelement. Überlegungen über die Unterscheidbarkeit dieser Operationen unter Fluktuationen zusammen mit der Deutlichkeit der unterschiedlichen Widerstandszustände selbst ermöglichen es uns, eine optimale Vakanzenzahl vorherzusagen.Transport phenomena occur in biological and artificial systems at all length scales. In this thesis, we investigate them for various systems from a mesoscopic perspective, in which fluctuations around their average properties play an important role. In the first part, we investigate the persistent diffusive motion of active Brownian particles with an additional torque. It can appear in many real life systems, for example in sperm cells or Janus particles. If their motion is confined to a tunnel of varying width, transport arises out of thermal equilibrium; unbiased fluctuations of the noisy drive are rectified. This way, we have realized a novel kind of ratchet. In the second part, we study intracellular cargo transport in the axons of nerve cells by molecular motors. They are modeled by an asymmetric exclusion process. In a new approach, we add a cargo exchange interaction between the motors. This way, the characteristics of slow axonal transport can be accounted for with a single motor species. It is explained by the transient attachment of cargos to reverse walking motors jams. In the third part, we discuss resistive switching, the non-volatile change of resistance in a dielectric due to electric pulses. It is exploited for applications in computer memory, the resistive random access memory (ReRAM). We propose a stochastic lattice hopping model based on the on oxygen vacancies. We define binary logical states by means of the underlying vacancy distributions, and establish a framework of writing and reading such a memory element with voltage pulses. Considerations about the discriminability of these operations under fluctuations together with the markedness of the resistive switching effect itself enable us to predict an optimal vacancy number
    • …
    corecore