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Microscopic Theory of Linear Response in Amorphous
Materials

Bingyu Cui

This thesis provides an analytical and systematic framework from first-principles to study
dielectric and mechanical properties of disordered materials, as well as non-centrosymmetric
crystals. The Caldeira-Leggett Hamiltonian opens a route to the (both Markovian and non-
Markovian) fluctuation-dissipation theorem (FDT) and gives rise to the generalised Langevin
equation (GLE) in classical dynamics.

In the first place, I extend the GLE and the corresponding FDT for more general cases
where both the tagged particle and bath oscillators respond to an external oscillatory field.
This is the example of a charged or polarisable particle immersed in a bath of other particles
that are also charged or polarisable, under an external AC electric field. Being linked to the
vibrational density of states (VDOS), the dielectric function calculated based on the GLE is
compared with experimental data for the paradigmatic case of molecular glasses: glycerol
and Freons 112 & 113, around and above the glass transition temperature, Tg.

Moving to the mechanical aspect, the theory of nonaffine lattice dynamics is able to
describe the various relaxation processes in the linear viscoelastic response of metallic
glasses. In particular, to understand universal properties of relaxation, the VDOS obtained
in simulations, or in experiments, is substituted into the model. The nonaffine contribution
to elasticity is also important for the pre-stressed/stretched harmonic networks. In order
to give an insight on nonaffinity, I compute static elastic constants of α-quartz, taking into
account the long-range Coulomb interaction. The nonaffine (softening) correction is found
very large, such that the overall elastic constants are at least 3-4 times smaller than the affine
Born-Huang estimate.

Finally, I formulate the analytical expression of the dynamical structure factor by aver-
aging over all quenched disorder along the acoustic branch, which stores the information
of phonon transport in disordered materials. The Rayleigh scattering may be enhanced by
a logarithmic factor in an intermediate range of wavenumber. I present a tensorial replica
field-theoretic derivation based on heterogeneous or fluctuating elasticity, which suggests that
long-range spatial correlations (in power-law decay) of elastic constants (or stress tensors)
might be responsible for the logarithmic enhancement to Rayleigh scattering of phonons in
amorphous solids.
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Chapter 1

Preface

The theory of Brownian motion is so far the simplest approximation to the dynamics of
nonequilibrium systems. The Langevin equation, and its equivalent counterpart, the Smolu-
chowski diffusion equation, describe the motion of a Brownian particle in an external force
field and under the action of thermal agitation from the bath of solvent molecules, in which
the Brownian particle is immersed. At steady-state, the thermal fluctuations that cause rapid
changes in the particle velocity are dissipated by viscous drag.

This is a manifestation of the fluctuation-dissipation theorem (FDT), as was originally
formulated in different contexts by Einstein and by Nyquist, and generalised by Onsager
(1931) and by Callen and Welton (1951). Later, the theorem has been further elaborated
in many different contexts (Akhiezer et al., 1967; Bernard and Callen, 1959; Blickle et al.,
2006; Kubo, 1957; Landau and Lifshitz, 1960; Leontovich and Rytov, 1952; Pérez-Madrid
et al., 2003; Rytov, 1953; Seifert and Speck, 2010). FDT stipulates that the response of a
system in thermodynamic equilibrium to a small applied force is the same as its response
to a spontaneous fluctuation, thus connecting the linear response relaxation of a system to
equilibrium, from a prepared nonequilibrium state, with its statistical fluctuation properties
in equilibrium. FDT applies to both classical and quantum mechanical systems (Ford, 2017;
Hänggi and Ingold, 2005) and has been generalised to non-Markovian processes for classical
systems (Zwanzig, 2002). In the latter case, the noise is no longer uncorrelated in time, and
the time correlation of the stochastic force is dictated by the time correlation of the friction
which plays the role of the memory function in the generalised Langevin equation (GLE).
The non-Markovianity arises from the dynamical coupling of the tagged Brownian particle
with many particles (harmonic oscillators) forming the heat bath. This coupling, which in
physical systems may be provided by long-range molecular interactions, is thus responsible
for both the thermal agitation and the damping experienced by the tagged particle.
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All versions of the GLE, and of the associated FDT which can be derived from it, that
have been considered in the past are limited to either systems in the absence of external time-
dependent forces or, if an external time-dependent force is present, its action is restricted to the
tagged Brownian particle, leaving the bath oscillators unaffected by the external field (Fisher
and Zwerger, 1985; Kubo, 1957). Harada and Sasa considered time-dependent driving forces
being exerted on the tagged particle and they found a violation of the fluctuation-response
relation in driven nonequilibrium systems (Harada and Sasa, 2005, 2006). More recently,
Maes and co-workers derived FDT for nonequilibrium systems by implementing mutual
interactions between bath particles and also the effect of stochastic white-noise force on
the bath particles dynamics (Maes, 2014, 2015). But none of the previous works takes
into account the effect of external time-dependent fields on both the tagged particle and
the bath particles dynamics. After introducing background theory used in this thesis in
Chapter 2, important physical results (GLE and FDT) ignored due to the absence of external
time-dependent forces acting on bath oscillators will be discussed in detail in Chapter 3.

The GLE elucidates microscopic system of its (linear) response to external fields. The
α-relaxation, typically associated with collective and strong cooperative motions of a large
number of entities rearranging in a long-range correlated way, is related to the slowest
decay of density correlations and is widely observed in dielectric and mechanical responses.
Within the energy landscape picture, the α-relaxation can be interpreted as the transition
of the system from one meta-basin to another, by means of a collective thermally activated
jump over a large energy barrier, a process that, for high-dimensional systems, can be well
described by replica symmetry-breaking and related approaches (Yoshino, 2012; Yoshino
and Mézard, 2010; Yoshino and Zamponi, 2014). While the calorimetric glass transition
may be quite smooth, the vanishing of the low-frequency shear modulus near glass transition
temperature Tg can be, instead, very dramatic, with a sudden drop by orders of magnitude
that can be related to marginal stability (Liu et al., 2015; Zaccone and Terentjev, 2013).
Developed by Fuchs et al. (1991), Mode-Coupling Theory (MCT) has provided a general
interpretation of the α-peak in dielectric relaxation using a framework where the many-body
microscopic dynamics of charges is treated statistically, in the same way as for an ensemble of
classically interacting spherical particles (Goetze, 2008). The most striking success of MCT
has been the first-principles derivation of the Kohlrausch stretched-exponential relaxation
for α-relaxation in the liquid phase. While MCT has tremendous success in describing
supercooled liquids at T > Tg, the situation is quite different at T ≃ Tg or in the glass at
T < Tg. For supercooled liquids, the empirical Kohlrausch stretched-exponential function
∼ exp[−(t/τ)β ] provides a good fit for the loss modulus of the α-relaxation, by taking the
Fourier transform from time into frequency domain (Cardona et al., 2007; Williams and Watts,
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1970). Although MCT provides a theoretical foundation for Kohlrausch stretched-exponential
behaviour, direct comparisons with experimental data have not been possible due to the
difficulty of calibrating various parameters in the theory. Other theories have focused on the
mesoscopic-level description of nonlinear deformation such as the Shear-Transformation-
Zone (STZ) (Argon, 1979; Falk and Langer, 1998; Langer, 2008). A recent theory based
on coherent-potential approximation and on the continuum assumption of heterogeneously
fluctuating modulus has achieved success in the comparison with experimental data of linear
dynamic moduli of metallic glasses (MGs) (Schirmacher et al., 2015a), but does not provide
microscopic atomic-scale insights and does not account for electronic effects. Presenting an
alternative method that is microscopic, analytical and can be compared with experimental
results constitutes the core topic in Chapter 3.

In addition to α-relaxation, an extra shoulder or wing also decorates the imaginary part
of the modulus response, which is referred to as the β -relaxation, or as Johari-Goldstein
or secondary relaxation. As discovered in Johari and Goldstein (1970) (JG) in glasses of
rigid molecules and as described by the coupling model, the secondary relaxation involves
the motion of the entire molecule. The Johari-Goldstein β -relaxation is the most well
known amongst these, due to its ubiquity in all types of glasses (Johari and Goldstein,
1970; Ngai, 2000). Although the exact atomic-scale mechanism underlying the JG β -
relaxation is still not clear, there appears to be a correlation to the α-relaxation, deformation
and mechanical properties (Yu et al., 2014). In this regard, unraveling the atomic-scale
dynamical features of the JG β -relaxation would represent considerable progress in our
current understanding of its microscopic origin and its impact on the physical and materials
properties of glasses (Ruta et al., 2017). Knowing the underlying mechanism of β -relaxation,
is also of great importance for understanding many crucial unresolved issues in glassy physics
and materials science and consequently for a wide potential application in technologies,
ranging from glass transitions, deformation mechanisms, to diffusion and the breakdown of
the Stokes-Einstein relations, physical aging, as well as the conductivity of ionic liquids and
the stability of glassy pharmaceuticals and biomaterials. A key open question is about the
role of different atomic/molecular constituents in the various relaxation processes, and in
particular whether a relaxation process is controlled by the dynamics of a particular type of
constituent(s). In the case of organic molecular glasses, it has been recently argued that all
molecules seem to participate in the JG relaxation, although not all at the once (Cicerone and
Tyagi, 2017). While many studies have examined both the structural and relaxational features
of the JG β -relaxation in MGs (Evenson et al., 2014; Liu et al., 2014; Wang et al., 2015b; Yu
et al., 2017), the connection to the atomic-scale vibrational properties remains to date greatly
unexplored. The JG β -relaxation in MGs generally occurs on microsecond time scales, some
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several orders of magnitude smaller than the α-relaxation of the glass (Liu et al., 2017; Yu
et al., 2017). However, accessing the atomic-scale dynamics of MGs in this temporal regime
is both experimentally and computationally challenging. Novel coherent X-ray scattering
techniques probe collective atomic motion on time scales larger than about one second (Baldi
et al., 2010; Wang et al., 2015b), while molecular dynamics (MD) simulations of the MG
glassy-state dynamics have been only recently successfully tested up to 10 microseconds (Yu
et al., 2017).

The main limitations for developing an atomic-scale theory of linear response in (dy-
namic) viscoelasticity are as follows: (i) the vibrational density of states (VDOS) which
governs the atomic-scale dynamics is rich in low-energy soft modes (boson peak) whose
physical origin has been elusive (Brink et al., 2016; Derlet et al., 2012), and only recently
have been traced back to mesoscopic phonon scattering processes and the Ioffe-Regel
crossover (Shintani and Tanaka, 2008), which are also in relation to the lack of centrosymme-
try; (ii) there is currently no established understanding for the atomic-scale internal friction,
which is crucial to deriving viscoelastic sum-rules, and is associated with memory effects
which are known to be important for metallic glass (Luo et al., 2016); (iii) the atomic-scale
dynamics of glasses under deformation is strongly nonaffine (Hufnagel et al., 2016; Zaccone
and Scossa-Romano, 2011), meaning that additional displacements on top of the affine
displacements prescribed by the strain tensor, are required to relax quenched neighbouring
forces caused by the lack of centrosymmetry of the disordered lattice (Milkus and Zaccone,
2016); (iv) the interatomic interaction is strongly non-local, also due to the role of delocalised
electrons which affect the interatomic interaction.

Lattice dynamics formulated through the pioneering work of Max Born and co-workers
on the simplifying assumption that deformations are homogeneous, or in modern language,
affine, is believed to resolve all issues above (Born and Huang, 1954). In practice, this
implies that every atom is displaced under deformation by the macroscopic strain tensor
operating on the original position vectors. This transformation defines the affine positions in
the deformed lattice. Such a description assumes however that mechanical equilibrium is
satisfied at the affine positions, which is certainly true for centrosymmetric lattices, where,
owing to each atom being a local center of inversion symmetry, the forces transmitted by the
neighbours cancel out by symmetry at the affine positions. The situation is however different
for disordered systems like glasses and for non-centrosymmetric crystals as well as near
crystalline defects like grain boundaries. In such cases, the atoms are not centers of symmetry
and therefore receive forces from their neighbours, which sum up to a net force. The latter is
released via an extra displacement, called nonaffine displacement or relaxation, which brings
the atoms to final positions that do not coincide with the affine positions. Reformulating the
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equations of motion by explicitly requiring that the atoms move along nonaffine pathways
of mechanical equilibrium (where the net force on each atom is zero at all steps) leads to a
negative (softening) correction to the elastic constants, which was first expressed analytically
in Lemaitre and Maloney (2006) for systems of particles which interact through short-ranged
pairwise potentials, although Born and Huang (BH) have actually discussed the nonaffine
deformation case in great detail (but have not derived complete analytical expressions for
nonaffine corrections) (Born and Huang, 1954). The resulting framework is known as the
nonaffine response theory or nonaffine lattice dynamics and has recently been applied to
various systems and materials, from packings where it recovers the ∼ (Z− 2d) jamming
scaling (Zaccone and Scossa-Romano, 2011), with Z the coordination number and d the
spatial dimension, to polymers (Zaccone and Terentjev, 2013), and to analyse dissipation
in high-frequency oscillatory rheology (Damart et al., 2017). The framework also provides
quantitative predictions of dynamic viscoelastic moduli of coarse-grained (Kremer-Grest)
glassy polymers (Palyulin et al., 2018). Especially, the nonaffine contribution to elastic
constants can be prominent, which has been found in simulating a non-centrosymmetry
lattice (Cui et al., 2019b). The detailed discussion of (static) nonaffinity is the theme of
Chapter 4, while the application of nonaffine lattice dynamics to dynamical moduli in MGs
is the topic of Chapter 5.

The framework of nonaffine lattice dynamics is essentially a mean field theory. Many
features of sound wave propagating in the materials are stored in the dynamical structure
factor (DSF), which can be directly measured in scattering experiments or calculated in
numerical simulations. In particular, the width of the structural peaks in DSF is representative
of the mechanical damping in the material. It is well known that, there is no sound attenuation
in perfect crystals, upon the harmonic approximation, whereas in glasses, long-wavelength
phonons are more damped than those in ordinary crystalline solids. A compilation of many
experiments with X-ray and light scattering demonstrates that the wavenumber dependence
of the longitudinal sound attenuation coefficient, ΓL(q) is in general divided into three
regimes (Baldi et al., 2011, 2010, 2014, 2016; Carini et al., 1993; Masciovecchio et al., 2006;
Monaco and Giordano, 2009; Monaco and Mossa, 2009; Rufflé et al., 2006): (1) ΓL(q)∼ q2

for low q; (2) ΓL(q)∼ q4 for an intermediate q regime; and (3) ΓL(q)∼ q2 for large q. Most
computer studies address the sound attenuation problem at zero temperature in order to
remove anharmonic effects and thus isolate the effect of disorder. It has been proven that
the q2 to q4 transition for sound attenuation in large frequency regime is mainly harmonic
(Schirmacher et al., 2007). To study the low vibrational modes, Schirmacher et al. (1998)
constructed a cubic lattice of coupled classical harmonic oscillators with spatially fluctuating
nearest neighbor force constants, and found the excess of a low-frequency peak in the scaled
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density of states D(ω). Montagna et al. (1999) presented a mechanism reproducing q2

dependence of the broadening of the Brillouin peaks. Yet there is no fully analytical approach
to deal with the damping mechanism in the practically relevant range of low wavevectors.
Accounting for the disorder via a Gaussian distribution of spring constant values in a perfectly
ordered lattice makes it possible to carry out the analysis of DSF and the associated damping
effects in a lattice with quenched random disorder. The sound (elastic) wave is replaced by
lattice wave considered in the harmonic theory, which is valid for low wavevectors. The
(observable) average DSF obtained in this way has a characteristic widening of structural
peaks that lead to the analytical expression for the damping coefficient Γ(q).

The Γ(q)∼ qd+1 scaling law is known as Rayleigh scattering, whose validity has never
been questioned in the last fifty years of studies of sound attenuation in amorphous materials
(Strutt, 1871), although an additional logarithmic enhancement has been investigated in
recent numerical simulations (Gelin et al., 2016; Mizuno and Ikeda, 2018). In particular,
regardless of system size, a recent numerical study of 2D systems reveals that the logarithmic
correction to the cubic scaling, Γλ (q) ∼ −q3 lnq (λ = L,T stands for longitudinal and
transverse) emerges in the boson peak (BP) regime, while it disappears as the wavenumber
approaches the continuum limit, where Γλ (q)∼ q3 is recovered (Mizuno and Ikeda, 2018).
Gelin et al. (2016) even revisited data in experimental systems to confirm the damping
coefficient indeed corresponds to the enhanced −qd+1 lnq law. To rationalise the observed
logarithmic correction to the Rayleigh law, one interpretation is to invoke the existence of
correlated inhomogeneities of the elastic constants within the framework of fluctuating or
heterogeneous elasticity (HE), yet neither quantitative nor qualitative arguments have been
presented (Marruzzo et al., 2013a,b; Mizuno and Mossa, 2019; Mizuno et al., 2013, 2014;
Wang et al., 2019). Also, the possible relation between the logarithmic correction to the
Rayleigh law and the long-range nature of elastic modulus has been questioned (Mizuno
and Ikeda, 2018; Moriel et al., 2019). Simulation in Moriel et al. (2019) indicates that the
log-enhancement to Rayleigh scattering does not correlate with fluctuations in the elastic
constants, but appears, instead, to be strongly correlated with spatially heterogeneous internal
stresses. Finally, a recent analysis in Caroli and Lemaître (2019) even argues that HE is
unable to predict the logarithmic enhancement. With a fully tensorial replica field theory
to athermal amorphous systems with power-law decay in elastic constant correlations, it
becomes possible to make an attempt to reveal the origin of the enhanced phonon damping,
especially where the logarithmic enhancement is prompted. The analytical theory shows
that the logarithmic enhancement is either due to the long-range power-law correlations of
elastic constants (John et al., 1983; John and Stephen, 1983; Maurer and Schirmacher, 2004)
or to long-range power-law correlations of the internal stresses (with no fluctuations in the
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elastic constants) (Maier et al., 2018; Wang et al., 2020), which is the key ingredient in the
framework leading to the prediction of the logarithmic enhancement. Some previous works
dealing with mean-field theory confirm the Rayleigh scattering law without the logarithmic
factor. In those works, there is no power-law decay in correlations of elasticity (DeGiuli
et al., 2014; Köhler et al., 2013; Maurer and Schirmacher, 2004; Shimada et al., 2020; Wyart,
2010). In Chapter 6, I will develop mean-field theories for disordered crystals and amorphous
systems to elaborate the mechanism of phonon transport. In the last, conclusions and future
insights will be presented in Chapter 7.



Chapter 2

Literature and background theory

This chapter provides the theroetical background serving as a starting point for the rest of
the thesis. It starts with a textbook explanation of the lattice dynamics framework used to
calculate the vibrational density of states that will be used throughout the thesis. It then
goes on to introduce the standard Langevin equation describing the stochastic motion of
a Brownian particle, and the non-Markovian extension to it that enables the inclusion of
memory effects in the friction term. The non-Markovian (generalised) Lagenvin equation is
essential to describe the dielectric (Chapter 3) and mechanic (Chapter 5) dynamic moduli of
supercooled liquids, which consist of multistage relaxation processes that are then reviewed in
the following section. In particular, a framework called nonaffine lattice dynamics witnesses
its success in calculating static elastic constants (Chapter 4) and moduli (Chapter 5), only
based on the information of microscopic structure of glasses. Reviews of some equivalent
interpretations of this framework, i.e. the Lemaitre-Maloney formalism, the Born-Huang
method and long-range collective motions of lattice, are presented in Section 2.4 - Section 2.6.
The analysis of phonon transport in disordered solids, namely Chapter 6, is also an integral
part of the thesis. Presenting the complete theory requires me to put details of Green’s
functions in the context of the present thesis, as well as an exposition of the dynamical
structure factor for both crystalline and disordered systems, in the last two sections in this
chapter.

Focusing on a tagged particle (e.g. a molecular subunit carrying a partial charge which
reorients under the electric field), it is possible to describe its motion under the applied field
using a particle-bath Hamiltonian of the Caldeira-Leggett type, in classical dynamics. The
particle’s Hamiltonian firstly studied in Zwanzig (1973) is bi-linearly coupled to a bath of
harmonic oscillators which represent all other molecular degrees of freedom in the system.
Any complex system of oscillators can be reduced to a set of independent oscillators by
performing a suitable normal mode decomposition. This allows us to identify the spectrum
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of eigenfrequencies of the system, i.e. the VDOS, as the spectrum of the set of harmonic
oscillators forming the bath.

2.1 The vibrational density of states

Recall the theory of lattice dynamics leading to the definition of VDOS. In d-dimensional
space, I expand the potential energy up to the 2nd order around an arbitrary surface for N
particles occupying {R1,R2, ...,RN} in space, which gives:

U (R1,R2, ...,RN) = U (R◦I )+
N

∑
I

d

∑
µ

sµ

I

[
∂U

∂Rµ

I

]
R◦I

+
1
2

N

∑
IJ

d

∑
µν

sµ

I sν
J

[
∂ 2U

∂Rµ

I ∂Rν
J

]
R◦I

, (2.1)

where µ,ν run over all Cartesian components and the starting configuration surface is denoted
to be {R◦I }. The displacement of particle I along µ-axis is sµ

I . I can define a d-vector with
respect to RI and a d×d matrix on RI,RJ:

f µ

I =−
[

∂U

∂Rµ

I

]
R◦I

; Hµν

IJ =

[
∂ 2U

∂Rµ

I ∂Rν
J

]
R◦I

. (2.2)

Physically, f µ

I is the force along the µ-axis on particle I in the reference configuration {R◦I },
while −Hµν

IJ is the linear response coefficient of the µ-component of force acting on I due to
the ν-component of the displacement of J. The total energy of N particles, each with mass
MI , can be written as

H =
N

∑
I=1

d

∑
µ=1

MI

2
(
ṡµ

I
)2

+U (R1,R2, ...,RN), (2.3)

where the dot above s represents the 1st order derivative with respect to time. The classical
equation of motion of the particle I (within the harmonic approximation) can be written as

MI s̈
µ

I =−∑
Jν

Hµν

IJ sν
J + f µ

I . (2.4)

The right hand side represents the µ−component of the force vector acting on I.
In lattice, every particle (I) lies in a (unit) cell (l). Because of the periodicity, I can write

f µ

I (l) = f µ

I ; Hµν

IJ (l, l′) = Hµν

IJ (l− l′,0)≡ Hµν

IJ (l− l′). (2.5)
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Following properties can be verified:

(1) Translation invariance: the potential remains unchanged if the system is displaced
by an arbitrary vector e. Expanding the potential up to the 1st order, I have

∑
Iµ

f µ

I (l)eµ = 0⇒∑
I

f µ

I (l) = 0, (2.6)

which is equivalent to ∑I f µ

I = 0.

(2) Homogeneous deformation about (l, I): after the deformation, the structure still remains
as a perfect lattice. Thus,

∑
I

∂U

∂ sµ

I (l)
= 0⇒∑

I
{− f µ

I − ∑
l′Jνξ

Hµν

IJ (l− l′)sνξ Rξ

IJ(l− l′)+ ...}= 0

⇒∑
IJl′

Hµν

IJ (l− l′)Rξ

IJ(l− l′) = 0. (2.7)

where sµ

J (l
′) = ∑ν sµν(Rν

J (l
′)− Rν

I (l)) ≡ ∑ν sµνRν
JI(l
′− l) are displacements and sµν =

∂ sµ/∂Rν are known as deformation parameters.

(3) If all particles are displaced from the equilibrium configuration by the same vector
sµ

I (l) = eµ , I get

∂U

∂ sµ

I (l)
=− f µ

I + ∑
l′Jν

Hµν

IJ (l, l′)eν +
1
2 ∑

l′l′′Jkνξ

Kµνξ

IJK (ll′l′′)eνeξ + ... (2.8)

where coefficients of all orders of eµ are zero.

(4) If particles are displaced by sν
J (l
′) = ∑ξ ωνξ (R

ξ

J (l
′)− Rξ

I (l)) = −∑ξ ωξ νRξ

JI(l
′− l),

which is essentially a rotation, then

∂U

∂ sµ

I (l)
=− f µ

I −∑
ξ l′J

Hµν

IJ (l− l′)ωνξ Rξ

IJ(l− l′)+ ... (2.9)

On the other hand, for a rigid rotation, ∂U /∂ sµ

I (l) = −∑ν(δµν +ωµν) f ν
I (l) = − f µ

I −
∑ν ωµν f ν

I , where δµν is the Kronecker delta function. Objects in the bracket after the first
equality make the whole term behave as the µ-component of a vector, which corresponds to
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the transformation matrix for rotation. Thus, by equating two expressions, I have

∑
ν

ωµν f ν
I = ∑

l′Jξ

Hµν

IJ (l− l′)ωνξ Rξ

IJ(l− l′) = ∑
lJξ

Hµν

IJ (l)ωνξ Rξ

IJ(l)+ ... (2.10)

Differentiating both sides with respect to ωµν =−ωνµ , I obtain

δκµ f ν
I −δκν f µ

I = ∑
lJ

{
Hκµ

IJ (l)Rν
IJ(l)−Hκν

IJ (l)Rµ

IJ(l)
}
. (2.11)

Equilibrium conditions in lattice systems are in general twofold: (i) every particle is
in mechanical equilibrium; (ii) the whole configuration corresponds to vanishing stresses
(this condition could be relaxed, as will be shown in Chapter 4). Assuming the mechanical
equilibrium condition, when the particle moves from Rµ

I (l) to Rµ

I (l)+ sµ

I (l), it obeys the
equation of motion

MI s̈
µ

I (l) =−∑
l′Jν

Hµν

IJ (l, l′)sν
J (l
′). (2.12)

To solve Eq. (2.12), I take the ansatz sµ

I (l) = eµ

I eiq·RI(l)−iωt/
√

MI , where q is an arbitrary

vector (wavevector) in the reciprocal space, i.e. q ∈ span
{

2πa2×a3
a1·(a2×a3)

, 2πa3×a1
a1·(a2×a3)

, 2πa1×a2
a1·(a2×a3)

}
where a1,a2,a3 are lattice vectors forming the periodic cell. The magnitude of q is the
wavenumber. Substituting the ansatz into Eq. (2.12) gives

ω
2(q,m)eµ

I (q,m) = ∑
Jν

Dµν

IJ (q)eν
J (q,m), m = 1,2, ...,Nd, (2.13)

with the dynamical matrix defined as

Dµν

IJ (q) =
1

(MIMJ)1/2 ∑
l′

Hµν

IJ eiq·RJI(l
′−l). (2.14)

This is the eigenvalue/eigenvector problem. There are Nd solutions for each wavevector q. It
is clear to see the symmetric properties of the dynamical matrix from its definition:

Dµν

IJ (q)∗ = Dνµ

JI (q) = Dµν

IJ (−q). (2.15)

where ∗ means the complex conjugate. In a nutshell, the spectrum of ω denotes the density
of particles in frequency scale and is called the vibrational density of states (VDOS). The
VDOS is an intrinsic property of the system and influence its response to external fields.
For example, in the Lorentz dielectric model, displacements of all particles in the applied
oscillating electric field have to be evaluated to obtain the polarisation. This requires a sum
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over all degrees of freedom of all particles, which can be done by using the VDOS and
integrating over the eigenfrequency. This protocol will be explained in detail in following
sections.

2.2 The generalised Langevin equation

Markovian Langevin equation

In soft materials, the thermal energy kBT available at room temperature is sufficient to induce
deformation. The random motion of a small particle immersed in a fluid is called Brownian
motion. The Brownian motion is the broad phenomenon investigated on nano- to micro-scale
systems like pollen grains, dust particles, colloids etc. In the theory of Brownian motion, the
"Brownian particle" is not necessarily a real particle, but could be some collective properties
of a macroscopic system, which might be important for the instantaneous concentration of
any component of a chemically reacting system in thermal equilibrium.

For a particle (mass M, position x, velocity v) suspended in a solvent (drag coefficient γ),
its equation of motion reads (in 1d)

M
dv
dt

= Ftotal(t), (2.16)

where Ftotal(t) is the total instantaneous force induced by the multiple collisions from the
surrounding solvent molecules to the particle at time t. In principle, if the position of the
particle is known, as a function of time, then the form of force can be determined. In this
sense, it is not random. For example, fluid dynamics tells us that this force is dominated by a
drag force −γv, proportional to the velocity of the Brownian particle. We can approximate
the particle as a spherical object with radius r, then Stokes’ law tells that γ = 6πηr, where
η is the viscosity of the solvent. Replacing Ftotal(t) by −γv and solving the linear 1st order
differential equation gives

v(t) = v(0)e−
γt
M . (2.17)

This shows that, the velocity of the Brownian particle decays to zero at long time, which is
not true because the mean squared velocity of the particle at thermal equilibrium should be
⟨v2⟩eq = kBT/M with kB being the Boltzmann constant and T being the temperature. The
assumption that Ftotal(t) is dominated by the Stokes’ drag force must be modified.

The drag force actually reflects the slow degrees of freedom associated with the overall
motion of the particle. There are faster counterparts coupled to the motion of solvent. To
describe this effect, we note that, over two successive time intervals τ , which are longer
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than the inverse of the characteristic of rate of collisions from the solvent τ−1 ∼ 1013s−1,
the motion of the particle is uncorrelated between the two successive timesteps. Over these
timescales, we can add an additional "random" or "fluctuating" force Fν(t) to the frictional
force, so that the equation of motion becomes

M
dv
dt

=−γv+Fv(t)≡ Ftotal(t). (2.18)

This is the Langevin equation for a Brownian particle, which was historically one of the
first examples of a stochastic differential equation. In effect, the total force is split into a
systematic part (friction) and a fluctuation part (noise), both come from the interaction of
the Brownian particle with its surroundings. Note that, for each Fv(t), there is a different
trajectory v(t). Thus, the physically interesting quantities will be average ⟨·⟩ over different
realisations of the random process Fv(t). In an isotropic fluid, molecular collisions with the
solvent do not have a preferential direction. This gives ⟨Fv(t)⟩= 0. Moreover, there should
be no correlation between impacts in any distinct time, thus ⟨Fv(t)Fv(t ′)⟩= Bδ (t− t ′), where
B measures the strength of the fluctuating force.

The Langevin equation Eq. (2.18) can be solved to give

v(t) = v(0)e−
γt
M +

∫
∞

0
e−

γ

M (t−t ′)Fv(t ′)
M

dt ′ (2.19)

The integral on the RHS is a stochastic integral, i.e. it takes a different value for each
realisation of the stochastic process Fv(t). Examining averages over different realisations of
Fv(t), it is not hard to show that the mean squared velocity has the form

⟨v(t)2⟩= B
2Mγ

. (2.20)

In the long time limit, the equipartition theorem fix the value of ⟨v2⟩ → kBT/M (as t→ ∞).
This constraint therefore determines the value of the constant B = 2γkBT . Consequently, the
time correlation of noise Fv reads

⟨Fv(t)Fv(t ′)⟩= 2kBT γδ (t− t ′). (2.21)

This result is known as the fluctuation-dissipation theorem (FDT). It relates the strength B of
the fluctuation of a particle to the dissipation drag γ that the same particle experiences when
it is actively moved through a fluid. It expresses the balance between friction, which tends to
drive any system to a "dead" state, and noise, which tends to keep the system "alive", which
is required to have a thermal equilibrium state at long times (Zwanzig, 2002).
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The velocity correlation function might also find its connection with the self-diffusion
coefficient D. The 1d diffusion equation of the concentration P(x, t) (i.e. probability) of a
tagged particle on space and time reads

∂P(x, t)
∂ t

= D
∂ 2P(x, t)

∂x2 . (2.22)

The mean square displacement at time t can be found by multiplying the diffusion equation
by x2 and integrating over x:

∂ ⟨x2⟩
∂ t

=
∫

x2 ∂P(x, t)
∂ t

dx = D
∫

x2 ∂ 2P(x, t)
∂x2 dx = 2D

∫
P(x, t)dx = 2D. (2.23)

The last line holds since the concentration is normalised to unity. Upon integrating over
time, the result is the well-known Einstein formula for diffusion in 1d, which is ⟨x2⟩= 2Dt.
Meanwhile, from Eq. (2.19) one can also find the equivalent form of time correlation of
displacement, which gives us (Zwanzig, 2002)

D =
∫

∞

0
⟨v(0)v(t)⟩dt =

kBT
γ

. (2.24)

The generalisation of the Langevin equation

There are in general two generalisions of the Langevin equation: nonlinear Langevin equa-
tions and non-Markovian Langevin equations. I only review the latter. The Langevin equation
considered up to now is called "Markovian", since it indicates the friction at time t is propor-
tional to velocity at the same time, and that the noise is delta-function correlated. However,
real problems are often not Markovian. The friction at time t might depend on the history of
the velocity v(t ′) for time t ′ earlier than t. In this regard, the drag (friction) is replaced by a
memory function ν(t) (note the symbolic difference from velocity), so that the friction force
at time t becomes

− γv(t)→−
∫ t

−∞

ν(t− t ′)
dx(t ′)

dt ′
dt ′. (2.25)

Problems of this kind are called non-Markovian and the corresponding Langevin equation is
named as the generalised Langevin equation (GLE). Likewise, the diffusion equation, Eq.
(2.22), would also be modified in a similar way in the non-Markovian case, which is

∂P(x, t)
∂ t

=−divJ → ∂P(x, t)
∂ t

=−
∫ t

−∞

ν
′(t− t ′)

(
−kBT

∂P
∂x

)
dt ′, (2.26)
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where J(x, t) is the flux and ν ′(t− t ′)∼ 1/γ is the mobility kernel. Thus, the non-Markovian
version of diffusion constant becomes D = kBT ν ′(t− t ′). This means, if a system approaches
to equilibrium at long times, the FDT must be modified and the noise is no longer white (the
Fourier transform of the correlation function of the noise is independent of frequency).

To give a simple illustration of how non-Markovian behaviour can arise, I start from
Markovian Langevin equations:

dx
dt

=
P
M

;
dP
dt

=−Mω
2x− γ

P
M

+FP(t) (2.27)

where P(t) = Mv(t) is the momentum vanishing in the infinite past, P(−∞) = 0. I solve the
second equation for P(t) by integrating from −∞ to t:

P(t) =
∫ t

−∞

e−
γ(t−t′)

M (−Mω
2x(t ′)+FP(t ′))dt ′ (2.28)

Putting this back to the equation of dx/dt, I obtain

dx(t)
dt

=−
∫

∞

0
ν(t ′)x(t− t ′)dt ′+Fx(t), (2.29)

where the memory function ν(t) and the new fluctuating force Fx(t) are

ν(t) = ω
2e−

γ|t|
M ; Fx(t) =

1
M

∫
∞

0
e−

γt′
M Fp(t− t ′)dt ′. (2.30)

The second momentum of x at equilibrium is ⟨x2⟩eq = kBT/(Mω2), so after some algebra,
the correlation of Fx(t) is (Zwanzig, 2002)

⟨Fx(t)Fx(t ′)⟩= ⟨x2⟩eqν(|t− t ′|). (2.31)

This is a non-Markovian version of the FDT. The correlation function of the new noise is
proportional to the memory function for the new friction. If the friction is very large, or if
we are concerned with times much longer than M/γ , then the memory function ν(t) can be
approximated by a delta function,

ν(t)≈ 2
Mω2

γ
δ (t), (2.32)

corresponding to the Markovian friction. Then, Eq. (2.29) is approximately the (Markovian)
Langevin equation for the position x(t).
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2.3 Multi-stage relaxation processes in supercooled liquids

Supercooled liquids and the glass transition

Unlike crystalline solids and disordered liquids, the ordinary structural glass (SG) formers
represent an intermediate state of matter without long-range structural order. In general,
a liquid enters into a supercooled regime, i.e. its viscosity becomes too large to stop
flowing on any practical time scale, when it is rapidly cooled to below its melting point.
Supercooled liquids exhibit a complex response function on vibrational excitations (Angell
et al., 2000; Dean, 1972; Donth, 2001; Martinez and Angell, 2001). Many experiments
and computer simulations have shown that the structural and thermodynamic properties of
supercooled liquids only exhibit weak dependence on temperature. Because of different
characteristic temperatures in various materials (e.g. melting point), it is useful to analyse
temperature (T ) dependence of viscosity or relaxation time (τ) using a reduced temperature
scale. The glass transition temperature (Tg) is defined as the temperature at which the
viscosity exceeds 1012 Pa.s or the (structural) relaxation time exceeds 100 seconds. To
quantitatively characterise the difference in the growth of relaxation time (or viscosity) as a
function of (inverse of) T from one material to another, one can further define the kinetic
fragility index as m = (∂ logτ/∂ (Tg/T ))

∣∣
T=Tg

, ranging between ≈ 16 (strong glasses) and
200 (fragile glasses) (Angell, 1988; Böhmer et al., 1993). Fragility is an important quantity
with profound physical significance. For example, silica are strong glass formers whose
viscosity satisfies an Arrhenius-type growth, i.e. τ = τ0 exp(Eα/kBT ) where the activation
energy, Eα , is temperature independent (for strong glass), upon cooling. On the other hand,
fragile materials have a viscosity increasing faster than an Arrhenius law (super-Arrhenius
behavior). Although there is no theory to date has been able to predict a material’s degree of
fragility from the sole knowledge of its microscopic structure, it has been widely believed
that a thorough understanding of the mechanisms underlying fragility will be the key to
achieving a universal description of the glass transition (Kob, 2003).

In addition to the structural glasses, orientational glasses (OGs) can be obtained from
orientationally disordered (OD) phases that are high-symmetry lattices in which weakly
interacting molecules are orientationally disordered (Brand et al., 2002; Ramos et al., 1997;
Suga and Seki, 1974; Tamarit et al., 1997). On cooling, some OD phases exhibit the same
features as structural (canonical) glass formers. With respect to the fragility index, OGs are
usually strong whereas for SGs a wide range of fragility values are found: the most fragile
being the cis- or trans-decahydronaphthalene (m≈ 147) (Kalyan and Richert, 2002). The
most fragile OGs known to date are Freon 112 (CCl2F-CCl2F, hereinafter F112) with m = 68
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Fig. 2.1 Time dependence of a typical time correlation function Φ(t). Left curve corresponds
to relatively high T while the curve on the right represents the typical glassy system in low
temperature (Kob, 2003).

(Pardo et al., 2006). For Freon 113 (CCl2F-CClF2, hereinafter F113), m = 127 (Vispa et al.,
2017).

Relaxations in time and frequency

I only discuss the temperature dependence of macroscopic quantities, such as viscosity or
characteristic time, in the last subsection. Many experiments like dynamic light scattering,
dielectric measurements, ect., give also direct access to the time dependence of microscopic
correlation functions, e.g. the density-density correlator. Correlation functions contain more
information than the mentioned macroscopic quantities since the latter can be expressed as
the time integral over such correlation functions. For example, viscosity is related to the
integral over the stress-stress correlation function (Balucani and Zoppi, 1994; Hansen and
McDonald, 2008).

Figure 2.1 shows a schematic way the time dependency of a typical correlation function
(e.g. the intermediate scattering function F(q, t) discussed in Chapter 5 ). At high temperature,
the system is in its normal liquid state, and the relaxation is relatively simple: At very short
times, Φ(t) is quadratic in t, which follows directly from the Taylor expansion of the Newton’s
equations for particles (Balucani and Zoppi, 1994; Hansen and McDonald, 2008). This time
window is often called "ballistic regime". When t becomes larger, Φ(t) is governed by the
interactions between particles and it is called the "microscopic regime". For even longer
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times, the t-dependence of Φ(t) can be approximated by an exponential function, i.e. the
system shows a Debye relaxation (the form of dielectric relaxation is shown in Chapter 3).

On the other hand, Φ(t) exhibits a more complex time dependence at low temperature.
The ballistic regime again emerges at short times. In contrast to the correlator at high T ,
Φ(t) shows a plateau at intermediate times. The corresponding time window is called the
"β -relaxation". For much longer time, the correlation function decays to zero. The time
interval where the correlator drops below the plateau is known as the "α-relaxation". The
early part of the α-relaxation might coincide with the late part of β -relaxation. At low T ,
each particle is surrounded by neighbouring particles forming a temporary cage. At very
short times, the particles move ballistically and reflect t2 dependence in the correlation
function. At somewhat longer times, the particles start to interact with their neighbours and
the correlator enters into the microscopic regime. For intermediate time range, particles are
trapped by their neighbours and hence the correlation function is almost constant. Only for
much larger times they are able to escape from trappings and hence the correlation function
starts to decay to zero. The physical mechanism behind the plateau is understood as "cage
effect".

The correlation function exhibiting dependence on time has its counterpart in the fre-
quency domain. As a result of linear response theory, calculating the time-Fourier transform
of a correlation function and multiplies its imaginary part with ω/(2kBT ) gives a frequency
dependent susceptibility χ ′′(ω) (Balucani and Zoppi, 1994; Hansen and McDonald, 2008).
There is a particular concern to the evolution of the main relaxation (α-process), its suscepti-
bility has derivations at high frequencies, which fills the gap between the slow relaxation
dynamics (α-peak) and fast dynamics (ν > 1GHz) (Davidson and Cole, 1951; Dixon et al.,
1990; Kudlik et al., 1995; Schönhals et al., 1993). The interplay of fast and slow dynamics
usually leads to a minimum in susceptibility χ ′′(ω). Here, it is important to note that, the
secondary relaxation process, i.e. β -process, which is faster than the α-process, is still
significantly slower than the fast relaxation. Fast dynamics is described in some cases by
assuming thermally activated transitions in asymmetric double well potentials (ADWPs), e.g.
within the Gilroy and Philips approach (GP) (Gilroy and Phillips, 1981; Tielbürger et al.,
1992). Light scattering (LS) study presented the first survey of fast dynamics well below Tg

extending down to ν ≈ 1GHz. Also, in contrast to the α-relaxation, the β -relaxation is not
necessarily found in all glass formers and the relaxation strength varies significantly among
the different systems (Wiedersich et al., 1999).

So far, three distinguished relaxation processes have been reviewed: (i) fast dynam-
ics (ii) β -process and (iii) some kind of background noise being reminiscent of the high
frequency-wing of the α-relaxation. In addition to structural and dynamical observables,
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other thermodynamics quantities, such as the pressure, specific heat, enthalpy, entropy etc.,
show a smooth and relatively mild T -dependence. Reviews on these properties can be found
in Kob (2003); Nielsen (1999); Scheidler et al. (2001); Stillinger (1988); Wolfgardt et al.
(1996); Zaccone (2020). Further, most of the system discussed here are liquids in supercooled
state. However, a slow relaxation dynamics is not necessarily related to the supercooled state.
In other words, in order to understand the physics for the slow relaxation of a system, its
supercooled state cannot be a relevant factor. Thus, one sometimes also uses "glassy liquids"
to describe a liquid whose relaxation time is already much larger than the typical microscopic
timescale. In this thesis, I will only use "supercooled liquids" or "glass".

2.4 Nonaffine lattice dynamics

Aiming at deriving a suitable equation of motion for a tagged atom (or ion) in a glass in
response of applied strain, I extend the Zwanzig-Caldeira-Leggett (ZCL) approach to atomic
dynamics in disordered materials by taking into account the disordered environment as well
as the dissipation. In the construction of this approach, it is well known that one cannot
consider anharmonicity, as illustrated in Weiss (2012). However, anharmonicity is indirectly
taken into account in the framework through the VDOS and the emergent friction kernel.

In the ZCL approach, the Hamiltonian of a tagged atom (mass M, position Q and
momentum P) coupled to all other atoms (treated as harmonic oscillators with mass Mm,
position Qm and momentum Pm) in the material has expression in 1d as (Zwanzig, 2002)

H =
P2

2M
+U (Q)+

1
2 ∑

m

[
P2

m
Mm

+Mmω
2
m

(
Xm−

Fm(Q)

Mmω2
m

)2
]
. (2.33)

The extension of the ZCL formalism to the presence of external field is shown in Chapter 3.
The coupling force between the tagged particle and the mth-oscillator is defined as Fm(Q).
Introducing the mass-scaled tagged-particle displacement s = Q

√
M, the resulting equation

of motion for the tagged particle becomes

s̈ =−U ′(s)−
∫ t

−∞

ν(t− t ′)
ds
dt ′

dt ′+Fp(t), (2.34)

where Fp(t) is the noise. Upon focusing on the athermal limit of the dynamics for T < Tg, the
noise term Fp(t) that amounts to assuming low thermal noise and frozen-in atomic positions
can be ignored, which is a meaningful approximation below Tg. Also, for dynamical response
to an oscillatory strain, one can average the dynamical equation over many cycles, which
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amounts to a time-average. Since the noise Fp is shown to have zero-mean, an average over
many cycles could be effectively similar to an ensemble average thus leaving ⟨Fp⟩= 0 in the
above equation. According to Damart et al. (2017), when the system is non-ergodic below Tg,
nothing guarantees this is true a priori, but there is initial evidence that this approximation
might be reasonable in the linear regime where the response converges to a reproducible
noise-free average stress.

Nonaffine deformations

Nonaffine lattice dynamics has been studied systematically in work of Lemaitre and Maloney
(LM), which is applicable to both amorphous materials and ordered crystals (Lemaitre and
Maloney, 2006). In this formalism, the response directly to external strain is called affine
if particles’ displacements are just the old positions transformed by the macroscopic strain
tensor. In a disordered, or a non-centrosymmetric lattice where local inversion symmetry is
absent, the situation becomes different since forces from the surrounding environment acting
on every particle no longer cancel by symmetry. However, they have to be relaxed with
additional displacements of particles, such that the whole system remains in mechanical equi-
librium at every step in the deformation (Milkus and Zaccone, 2016). These additional atomic
displacements are called nonaffine displacements. The nonaffine deformation mechanism is
depicted in the cartoon in Fig. 2.2.

In the language of elasticity, particles (atoms) are assumed to lie in a unit cell described by
three Bravais vectors h = (a,b,c). Thus, the interaction potential depends on both Rµ

I and h,
U = U (Rµ

I ,h) and any vector R is mapped onto a reference cell: R = hw,wν ∈ [−0.5,0.5].
We can call the unit cell before deformation the reference frame h̊, and denote the deformed
cell by the new set h. When a given particle undergoes a displacement to the position Rµ

I , the

process can be interpreted in two steps: initially, we have RI = FR̊I where F = hh̊
−1

is the
deformation gradient tensor. In other words, F describes an affine transformation of the unit
cell, whereas R̊I remains unchanged. The deformation tensor F is related to the (generalised)
Cauchy-Green strain tensor as η = (FT F − I)/2 describing even nonlinear deformations
(Ray, 1983; Ray et al., 1985; Ray and Rahman, 1984). The potential energy can be written
either in the reference frame, or in the deformed frame, Ů ({R̊µ

I },η)≡U ({Rµ

I },F). In the
second step of the process, particles perform nonaffine displacements by relaxing to their
nearest equilibrium position {Rµ

I }, while the shape of the cell, h (and hence the tensor F),
remains unchanged. Thus, in the reference frame {R̊µ

I }, changing η means the response

to affine strain of the whole system, while the change in the reference configuration {R̊µ

I }
corresponds to additional nonaffine displacements. Those new coordinates are generally
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(a)

(b)

Fig. 2.2 Panel (a) shows the nonaffine displacements for two bonded atoms: if the displace-
ments were purely affine, which is the case in a centrosymmetric crystal, the atoms would
still lie in the deformed (sheared) configuration. In contrast in glasses, they are to be found
away from the affine (deformed) positions. The nonaffine displacements are defined as the
distance between the actual end position (away from the dashed line) and the affine position
(on the dashed line). The interatomic distance at rest is indicated as Ri j, whereas that in
affine positions is labeled as rA

i j. The bottom cartoon, or panel (b), depicts a comparison of
the force-balance in the affine position (prescribed by a strain tensor) in a centrosymmetric
crystal (left) and in a glass (right). In the former case, all forces from nearest neighbours
cancel by symmetry and the atom i is in mechanical equilibrium, i.e. fi = 0, no further
(nonaffine) displacement is needed. In glasses, the forces do not cancel due to the lack of
inversion symmetry, hence for each tagged particle, a net non-zero force remains in the affine
position, which has to be relaxed through an additional displacement. For a fixed strain γ ,
the net force is related to affine force field ΞΞΞ as fi = ΞΞΞiγ (Zaccone, 2020).
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different from the affine positions derived by the reference coordinates, {RI} ̸= {FR̊I}. For
small deformations, the nonaffine equilibrium positions of the particles are a continuous
function of h : {Rµ

I }= {R
µ

I (h)}.

Static elastic constant

When the linear strain is applied slow enough, the deformation can be regarded as static, and
mechanical equilibrium is valid at any stage. I can expand the force acting on an individual
particle I, f µ

I =−∂ Ů /∂ R̊µ

I (share the same meaning of force as defined before), in terms of
the components of the strain tensor η and {RI} (Lemaitre and Maloney, 2006; Zaccone and
Scossa-Romano, 2011):

δ f µ

I = ∑
Jν

∂ 2Ů

∂ R̊µ

I ∂ R̊ν
J

δ R̊ν
J +

∂ 2Ů

∂Rµ

I ∂ηξ ι

δηξ ι = 0. (2.35)

This is equivalent to the Nd linear system of equations for the nonaffine displacements δ R̊µ

I :

∑
Jν

Hµν

IJ δ R̊ν
J = Ξ

µ

I,ξ ι
δηξ ι , (2.36)

where the Hessian matrix Hµν

IJ defined earlier and the affine force field Ξ
µ

I,ξ ι
is:

Ξ
µ

I,ξ ι
=− ∂ 2Ů

∂ R̊µ

I ∂ηξ ι

, with Hµν

IJ =
∂ 2Ů

∂ R̊µ

I ∂ R̊ν
J
. (2.37)

Assuming pairwise interaction, it is easy to see the Hessian matrix is real and symmetric.
Hence, it can be diagonalised as H = PΛPT where Λ is the diagonal matrix consisting of
eigenvalues of H, and P is the orthogonal matrix (with PPT = PT P = I) whose columns

are made of corresponding normalised eigenvectors. Denoting δ
˚⃗R ≡ PT δ

ˆ⃗R, I have, from
transforming Eq. (2.36),

Λδ
ˆ⃗R = PT

Ξ⃗ξ ιδηξ ι (2.38)

for fixed ξ ι . Here, vectors originally written in d-dimensional space are transformed to
Nd-vectors labeled by an arrow above the symbol. Because of translation invariance, the
Hessian matrix contains d zero eigenvalues, so Λ = diag{0, ...,0,λd+1, ...,λNd} where I
assume the (increasing) order in eigenvalues without loss of generality. This means, only
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δ R̂m,m = d +1, ...,Nd can be solved:


δ R̂d+1

.

.

.

δ R̂Nd

=



e⃗d+1 ·⃗Ξξ ι

λd+1

.

.

.
e⃗Nd ·⃗Ξξ ι

λNd


(2.39)

where e⃗m,m = 1, ...,Nd are orthonormal eigenvectors of the Hessian matrix. Transferring
back to δ R̊m, I obtain

δ R̊m

δηξ ι

=
d

∑
n=1

enmδ R̂n +
Nd

∑
n=d+1

(⃗en · Ξ⃗ξ ι)enm

λn
. (2.40)

Here, enm is the (n,m)-entry of P and δ R̂n,n = 1, ...,d are unknown. The elastic constant
is defined as the second derivative of potential energy Ů with respect to the strain tensor
per unit volume: Cµνξ ι = (D2Ů /DηµνDηξ ι)/V̊ . The material derivative is denoted as
DŮ /Dη = ∑Iµ(∂ Ů /∂ R̊µ

I )(∂ R̊µ

I /∂η) + ∂ Ů /∂η . Because of mechanical equilibrium,

f µ

I = 0 for all I,µ , it is easy to have DŮ /Dη = ∂ Ů /∂η . Then the elastic modulus is
calculated as

Cµνξ ι =
1
V̊

D2Ů

DηµνDηξ ι

=
1
V̊

(
∂ 2Ů

∂ηµν∂ηξ ι

+∑
Iκ

∂ 2Ů

∂ R̊κ
I ∂ηµν

· D R̊κ
I

Dηξ ι

)

=
1
V̊

∂ 2Ů

∂ηµν∂ηξ ι

− 1
V̊ ∑

Iκ

Ξ
κ
I,µν

D R̊κ
I

Dηξ ι

≡CA
µνξ ι

+CNA
µνξ ι

. (2.41)

The affine moduli, CA
µνξ ι

, is also called high-frequency moduli that an external constraint
(or perturbation) is rapidly transmitted affinely to the system before the relaxational response
of the system has a chance to relax fully. The isothermal elasticity tensor is derived in Tadmor
and Miller (2011), which reduces to the same form as given in Lemaitre and Maloney (2006)
at T = 0K. In experiments, the calculated affine moduli is relevant in the high-frequency
limit of standard rheological measurements, e.g. shear modulus of glassy polymers in high-
frequency oscillatory context (Wittmer et al., 2015; Zaccone and Terentjev, 2013). Wallace
(1970) compares the bewildering different forms the affine moduli may take if different strain
definitions (transformations) are used. This matters especially if external stresses are present.
This is the case in virtually all soft matter systems and glasses and also in all systems with
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internal and external surfaces (surface tension). These stresses contribute linearly to the
experimentally relevant small-strain elasticity tensor (Birch, 1938) and drop out if the energy
or free energy is differentiated insisting on a Lagrangian or Eulerian strain. Using the affine
terms presented here, a shear modulus of a liquid at a finite pressure would not vanish. This
can also be verified using the standard stress-fluctuation formalism (Wittmer et al., 2013). At
finite pressure, the presented affine terms are not consistent with the well-known compressed
modulus of a standard liquid, according to the Rowlinson relation (Allen and Tildesley,
2017).

Using Eq. (2.40), I can explicitly write the nonaffine elasticity, CNA
µνξ ι

, as

CNA
µνξ ι

=− 1
V̊

Nd

∑
m=1

Ξm,µν

δ R̊m

δηξ ι

=− 1
V̊

Nd

∑
m=1

Ξm,µν

(
d

∑
n=1

enmδ R̂n +
Nd

∑
n=d+1

enm
e⃗n · Ξ⃗ξ ι

λn

)

=− 1
V̊

d

∑
n=1

(⃗en · Ξ⃗µν)δ R̂n−
1
V̊

Nd

∑
n=d+1

(⃗en · Ξ⃗µν)(⃗en · Ξ⃗ξ ι)

λn
(2.42)

As for the inner product in the 1st term on the RHS, since the corresponding eigenvalues
of eigenvectors e⃗n,n = 1, ...,d, are all zero, forms of eigenvectors are enm = 1/

√
N if m is a

multiply of n and enm = 0 otherwise, for n = 1, ...,Nd. Therefore, e⃗n · Ξ⃗µν ∝ ∑I Ξn
I,µν

. In this
thesis, I only consider pairwise interaction in harmonic approximation, so the affine force
field Ξκ

I,µν
can be expressed as follows (Lemaitre and Maloney, 2006)

Ξ
κ
I,µν =−∑

J

∂ 2Ů

∂ R̊κ
IJ∂ R̊κ

IJ

∂ R̊κ
IJ

∂ηµν

=−∑
J

[
(R̊IJsIJ− tIJ)nκ

IJnµ

IJnν
IJ +

1
2

tIJ(δκµnν
IJ +δκνnµ

IJ)

]
=−∑

J
(R̊IJsIJ− tIJ)nκ

IJnµ

IJnν
IJ, (2.43)

with the orientation unit vector nµ , tension of a bond tIJ and stiffness of the bond sIJ defined
as

nµ

IJ =
R̊µ

IJ

R̊IJ
, tIJ =

∂ Ů

∂ R̊IJ
, sIJ =

∂ 2U

∂ R̊2
IJ
. (2.44)

Here, by R̊µ

IJ , I mean R̊µ

IJ = R̊µ

J − R̊µ

I . To get the 2nd equality in Eq. (2.43), I used the identity
∂ R̊κ

IJ/∂ηµν = (δκµ R̊ν
IJ +δκν R̊µ

IJ). The 2nd term in square bracket vanishes because of the
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mechanical equilibrium condition. Likewise, the Hessian matrix is expressed as:

Hµν

IJ =

−(sIJ− tIJ
RIJ

)nµ

IJnν
IJ−

tIJ
RIJ

δµν , I ̸= J

∑K ̸=I(sIK− tIK
RIK

)nµ

IKnν
IK + tIK

RIK
δµν , I = J.

(2.45)

Now it is clear that the first term in Eq. (2.42) vanishes due to the inversion symmetry of nIJ ,
i.e. nIJ =−nJI . Thus, the remaining (negative) nonaffine elastic constant can be written as

CNA
µνξ ι

=− 1
V̊

Nd

∑
n=d+1

(⃗en · Ξ⃗µν)(⃗en · Ξ⃗ξ ι)

λn
< 0 (2.46)

where contributions from zero eigenvalues are excluded in the summation. Although this
derivation and argument are different from original LM’s formalism, the final result, Eq.
(2.46), reproduces the key LM result.

Accounting for the thermal effect, the Strasbourrg theory shows this affine moduli
corrected by nonaffine contribution may be obtained more generally, by averaging different
ensembles (Wittmer et al., 2015, 2013). One can use the integral by parts to reduce the
fluctuation of an intensive variable in an ensemble where the average intensive variable is
imposed, to a simple average. Imposing a vanishing or finite average intensive variable,
one may switch off or on Birch coefficients. Then using the Lebowitz-Percus-Verlet (LPV)
transformation between different conjugated ensembles, one can see the complete modulus is
given by the affine modulus minus a correction term. As is already shown in Lutsko (1988),
the argument holds in the zero-temperature limit.

Viscoelastic modulus

I rewrite the Eq. (2.34) for a tagged atom in d dimension, which moves with an affine velocity
prescribed by the deformation gradient tensor Ḟ :

R̈µ

I = f µ

I −
∫ t

−∞

ν(t− t ′)
(
Ṙµ

I −uµ
)

dt ′ (2.47)

where f µ

I =−∂U /∂Rµ

I generalises the −U ′(s) to the tagged atom. Furthermore, I used the

Galilean transformations to express the particle velocity in the moving frame: ṘI = F ˙̊RI +u
where u = ḞR̊I represents the local velocity of the moving frame. This is consistent with
the use of the circle on the variables to signify that they are measured with respect to the
reference rest frame. In terms of the original rest frame {R̊I}, the equation of motion can be
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written as

F ¨̊RI = fI−
∫ t

−∞

ν(t− t ′) ·
FdR̊I

dt ′
dt ′−2Ḟ

dR̊I

dt
. (2.48)

Terms F̈R̊I and
∫ t
−∞

ν(t− t ′)Ḟ · R̊Idt ′ are not allowed into the equation of motion because
they depend on the position of the particle, and therefore have to vanish for a system with
translation invariance, already noted by Andersen (1980) and by Ray and Rahman (1984).

I work in the linear regime of small strain ∥ F − 1 ∥≪ 1 by making a perturbative
expansion in terms of the small displacement {sI(t) = R̊I(t)− R̊I} around a known rest
frame R̊I . That is, I take F = 1+δF + ... where δF ≈ F−1 is the small parameter. For the
term δ fI , considering mechanical equilibrium again, which is fI = 0. I can write Eq. (2.48)
in linear order:

d2sI

dt2 +
∫ t

−∞

ν(t− t ′)
dsI

dt ′
dt ′+HIJsJ = ΞΞΞI,κχηκχ , (2.49)

which can be solved by performing the Fourier transformation followed by taking the normal
mode decomposition. If I specialise on time-dependent uniaxial strain ηxx(t), the vector
ΞΞΞI,xx represents the force per unit strain acting on particle I due to the motion of its nearest-
neighbors which are moving towards their respective affine positions (see e.g. Lemaitre
and Maloney (2006) for a more detailed discussion). In metallic glasses, it also includes
electronic effects empirically via the embedded-atom model (EAM) (see Appendix A for
explicit formulas).

Now I extend all matrices and vectors to be Nd×Nd and Nd-dimensional, respectively.
After taking the Fourier transformation of Eq. (2.49), I have

−ω
2⃗s̃+ iν̃(ω)ω⃗̃s+H⃗̃s = Ξ⃗κχ η̃κχ . (2.50)

where ν̃(ω) is the Fourier transform of ν(t). Next, I take the normal mode decomposition.
This is equivalent to diagonalising the Hessian matrix H. Same as the static case, I have, the
m-th mode of displacement written as:

−ω
2 ˆ̃sm(ω)+ iν̃(ω)ω ˆ̃sm(ω)+ω

2
m ˆ̃sm(ω) = Ξ̂m,κχ(ω)η̃κχ , (2.51)

It was shown in previous work of Lemaitre and Maloney (2006) that Ξ̂m,κχ = e⃗m · Ξ⃗κχ

is self-averaging, and one might introduce the smooth correlator function Γµνκχ(ω) =

⟨Ξ̂m,µν Ξ̂m,κχ⟩ωm∈{ω,ω+δω} on frequency shells. Following the general procedure of Lemaitre
and Maloney (2006) to find the oscillatory stress for a dynamic nonaffine deformation, the
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stress is obtained to first order in strain amplitude as a function of ω:

σ̃µν(ω) = ∑
κχ

CA
µνκχ η̃κχ(ω)− 1

V̊ ∑
mκχ

Ξ̂m,µν
ˆ̃sm(ω)

= ∑
κχ

CA
µνκχ η̃κχ(ω)+

1
V̊ ∑

mκχ

Ξ̂m,µν Ξ̂m,κχ

ω2−ω2
m− iν̃(ω)ω

η̃κχ(ω)

≡∑
κχ

Cµνκχ(ω)η̃κχ(ω). (2.52)

In the thermodynamic limit with continuous spectrum, I replace the discrete sum over Nd
degrees of freedom in Eq. (2.52) with an integral over vibrational frequencies up to the
Debye (cut-off) frequency ωD, and the complex elastic constant defined on the last line can
be written as:

C(ω)µνκχ =CA
µνκχ −ρd

∫
ωD

0

D(ωp)Γ(ωp)µνκχ

ω2
p−ω2 + iν̃(ω)ω

dωp, (2.53)

where ρ = N/V̊ denotes the atomic density of the solid. This is a crucial result, which
differs from a previous result obtained in Lemaitre and Maloney (2006) because the friction
coefficient is non-Markovian, hence frequency-dependent, whereas in Lemaitre and Maloney
(2006) it is just a constant, corresponding to Markovian dynamics. This turns out to be a
fundamental difference, because as I will show later, SGs data cannot be described by a
friction coefficient which is constant with frequency. Furthermore, this result is derived from
a microscopic (ZCL) Hamiltonian.

In the numerical simulations, the VDOS is actually not a continuous function, but discrete.
Thus, in Eq. (2.53) I replace the VDOS with its spectral representation given by a sum of
delta-functions and rewrite C(ω) as a sum over a discrete distribution of ωm from the
molecular dynamics (MD) simulation of VDOS, C(ω) =C′(ω)+ iC′′(ω):

C′(ω) =CA−A∑
m

Γ(ωm)(ω
2
m−ω2 + ν̃2ω)

(ω2
m−ω2 + ν̃2ω)2 +(ων̃1)2 (2.54)

C′′(ω) = B∑
m

Γ(ωm)(ων̃1)

(ω2
m−ω2 + ν̃2ω)2 +(ων̃1)2 (2.55)

where CA, A, and B are rescaling constants; ν̃1 and ν̃2 are the real and (minus) imaginary
parts of ν̃(ω), respectively. I have dropped Cartesian indices.

Apart from ZCL Hamiltonian, the Nose-Hoover method developed by Hoover (1985) also
provides a route towards estimating the time-dependent non-Markovian friction. It has been
verified by my colleagues (Jie Yang et al.) that, after carrying out numerical simulations for
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the model system below Tg, one obtains a simple-exponential decay of the friction coefficient,
with which, however, one cannot reproduce the experimentally-measured curves of C′ and
C′′, over any interval in frequency. This problem might be due to the limitations of using the
Nose-Hoover method for nonequilibrium systems (Cui et al., 2017b).

2.5 The Born-Huang method to obtain static elasticity

This section and the following one reproduce the BH analysis (Born and Huang, 1954). In
non-ionic crystals, only the short-range pairwise interaction is considered. The long-range
Coulombic effect which usually causes divergence will be ignored here, although there exist
ways to tackle the issue of divergence (see Chapter 4 for details). In continuum media, the
deformation in a small neighborhood of R◦ can be expressed as:

sµ(R◦+δR) = sµ(R◦)+∑
ν

∂ sµ

∂Rν
δRν (2.56)

The first term on the RHS represents the translation of the small region as a whole, while the
last term is the elastic deformation. Making analogue to a lattice, since particle (atom) I lies
in cell l has displacement sµ

I (l), Eq. (2.56) is equivalent to

sµ

I (l) = sµ

I +∑
ν

∂ sµ

∂Rν
Rν

I (l) (2.57)

where sµ

I is the nonaffine displacement all particles of each type has in response to elastic
deformation. From this, setting l = 0 as the reference cell, I have sµ

J (l
′)− sµ

I (0) = sµ

J −
sµ

I +∑ν(∂ sµ/∂Rν)Rν
JI(l
′). In this section, by Rν

JI(l
′), I mean the relative displacement

Rν
J (l
′)−Rν

I (0). To make it convenient for calculation, I assume the potential depends on the
square of interparticle distance, U (RI(l),RJ(l′)) = U (|RI(l)−RJ(l′)|2). The total energy
is U = ∑IJll′U (RI(l),RJ(l′))/2. In the BH method, there is no internal tension and the
temperature is zero, so that the system will stay in mechanical equilibrium. Due to the
deformation, the change of square of separation between RJ(l′) and RI(0) is

|RJ(l′)+ sJ(l′)−RI(0)− sI(0)|2−|RJ(l′)−RI(0)|2 = ∑
µ

(
sµ

J − sµ

I +∑
ν

sµνRν
JI(l
′)

)2

+2∑
µ

Rµ

JI(l
′)

(
sµ

J − sµ

I +∑
ν

sµνRν
JI(l
′)

)
. (2.58)
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The corresponding change in U (RI(0),RJ(l′)) is the difference of U with arguments in
(2.58) and the original U (RI(0),RJ(l′)). Then, up to the 2nd order, this change is:

U ′(|RJI(l′)|2)

[
∑
µ

(
sµ

J − sµ

I +∑
ν

sµνRν
JI(l
′)

)2

+2∑
µ

Rµ

JI(l
′)

(
sµ

J − sµ

I +∑
ν

sµνRν
JI(l
′)

)]

+2U ′′(|RJI(l′)|2)

[
∑
µ

Rµ

JI(l
′)

(
sµ

J − sµ

I +∑
ν

sµνRν
JI(l
′)

)]2

(2.59)

Summing these increments of pairwise energy over the unit cell, I have:

Uva =−2∑
Iµ

(
sµ

I +∑
ν

sν
I sνµ

)
∑
l′J
[U ′Rµ ]RJI(l′)+∑

µν

(
sµν +

1
2 ∑

ξ

sξ µsξ ν

)
∑
l′IJ

[U ′RµRν ]RJI(l′)

+ ∑
IJµν

sµ

I sν
J ×

(
δJIδµν ∑

l′K
[U ′]RKI(l′)−δµν ∑

l′
[U ′]RIJ(l′)+2δIJ ∑

l′K
[U ′′RµRν ]RKI(l′)

−2∑
l′
[U ′′RµRν ]RJI(l′)

)
−4 ∑

Iµνξ

sµ

I sνξ ∑
l′J
[U ′′RµRνRξ ]RJI(l′)+ ∑

µνξ ι

sµξ sνι ∑
l′JI

[U ′′RµRνRξ Rι ]RJI(l′),

(2.60)

where va is the volume of the unit cell and U is the energy density. This calculation is
reproducing the BH analysis. Equilibrium conditions require terms linear in sµ

I and sµν to
vanish, which gives

∑
l′J
[U ′Rµ ]RJI(l′) = 0; ∑

l′JI
[U ′RµRν ]RJI(l′) = 0 (2.61)

Eliminating these linear terms, U is rewritten as
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U =
1
2 ∑

IJµν

{
I J
µ ν

}
sµ

I sν
J + ∑

Iµνξ

{
I νξ

µ

}
sµ

I
∂ sν

∂Rξ
+

1
2 ∑

µνξ ι

{µνξ ι} ∂ sµ

∂Rν

∂ sξ

∂Rι
, where{

I J
µ ν

}
=

2
va

{
δIJδµν ∑

l′K
[U ′]RKI(l′)−δµν ∑

l′
[U ′]RJI(l′)+2δIJ ∑

l′K
[U ′′RµRν ]RKI(l′)

−2∑
l′
[U ′′RµRν ]RJI(l′)

}
;{

I νξ

µ

}
=− 4

va
∑
l′J
[U ′′RµRνRξ ]RJI(l′);

{µνξ ι}= 2
va

∑
l′JI

[U ′′RµRνRξ Rι ]RJI(l′). (2.62)

Denoting the symmetric (external) strain η by

ηµν = ηνµ =
1
2

(
∂ sµ

∂Rν
+

∂ sν

∂Rµ

)
, (2.63)

the energy density U is rewritten as

U =
1
2 ∑

IJµν

{
I J
µ ν

}
sµ

I sν
J + ∑

Iµνξ

{
I νξ

µ

}
sµ

I ηνξ +
1
2 ∑

µνξ ι

{µνξ ι}ηµνηξ ι (2.64)

Note that the symmetric strain η defined here is the linear version of the general Cauchy-
Green strain tensor defined in Section 2.4. Thus, I use the same convention. Physically, the
internal nonaffine displacements sµ

I adjust themselves such that the energy density becomes
minimum, for the given external elastic strain components ηµν . That is,

0 =
∂U
∂ sµ

I
= ∑

Jν

{
I J
µ ν

}
sν

J +∑
νξ

{
I νξ

µ

}
ηνξ , (2.65)

which gives (N−1)d independent equations. The solutions sµ

I (η) of these mechanical equi-
librium conditions are, in fact, the nonaffine displacements. Because of the free translation,
without loss of generality, I can let s1 = 0. When the internal displacements are eliminated
as independent variables, the energy density becomes a quadratic expression in η , whose
coefficients matrix, {µνξ ι}, will receive a correction after solving for sI , which I denote as
{µνξ ι}′. The detailed analysis of the resultant correction to elastic constant will be shown
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in Section 4.3. Since the stress tensor is defined as

σµν = ∑
ξ ι

Cµνξ ιηξ ι ≡∑
ξ ι

{µνξ ι}′ηξ ι , (2.66)

which represents the µ-component of the force exerted on the medium which is on the
negative of a unit surface normal to the ν-direction, its divergence is the local force per unit
volume. The local equation of motion is then expressed as,

ρ s̈µ = ∑
νξ

∂σµν

∂Rξ
= ∑

νξ ι

Cµνξ ι

∂ 2sν

∂Rξ ∂Rι
, (2.67)

where ρ is the density. To solve this, I express the elastic wave with an amplitude vector
eµ(q):

sµ(R, t) = eµ(q)eiq·R−iωt ⇒ ρω
2eµ(q) = ∑

ν

(
∑
ξ ι

Cµνξ ιq
ξ qι

)
eν(q). (2.68)

This is the equation for the (global) elastic waves in solids.

2.6 Long-range acoustic waves from collective modes

Firstly I recall collective modes derived in Section 2.1, the equation due to lattice vibration is

ω
2(q,m)eµ

I (q,m) = ∑
Jν

Dµν

IJ (q)eν
J (q,m),m = 1,2, ...,Nd,

with Dµν

IJ (q) =
1

(MIMJ)1/2 ∑
l′

Hµν

IJ eiq·RJI(l
′−l). (2.69)

I consider the perturbation in the wavevector from q = 0 along one of acoustic branches.
Using a small number ε to track the order of magnitude of small vector q, I have:

Dµν

IJ (εq) = [Dµν

IJ ](0)+ iε ∑
ξ

[Dµν ,ξ
IJ ](1)qξ +

ε2

2 ∑
ξ ι

[Dµν ,ξ ι

IJ ](2)qξ qι + ...; (2.70)

ω(εq,m) = εω
(1)(0,m)+

ε2

2
ω

(2)(0,m)+ ...; (2.71)

eµ

I (εq,m) = [eµ

I (0,m)](0)+ iεeµ

I (0,m)](1)+
ε2

2
[eµ

I (0,m)](2)+ ... (2.72)
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Note that I use ε to highlight that the perturbation means the expansion in terms of a small
amplitude of q. The perturbation on Dµν

IJ (εq) reads:

[Dµν

IJ ](0) =
1√

MIMJ
∑

l
Hµν

IJ (l) = [Dνµ

JI ]
(0); (2.73)

[Dµν ,ξ
IJ ](1) =

−1√
MIMJ

∑
l

Hµν

IJ (l)Rξ

IJ(l) =−[D
νµ,ξ
JI ](1); (2.74)

[Dµν ,ξ ι

IJ ](2) =
−1√
MIMJ

∑
l

Hµν

IJ (l)Rξ

IJ(l)R
ι
IJ(l) = [Dνµ,ξ ι

JI ](2) = [Dµν ,ιξ

JI ](2). (2.75)

Using Eqs. (2.6, 2.7, 2.8, 2.11), it can be verified that the following properties hold:

∑
J

√
MJ[D

µν

IJ ](0) = ∑
J

√
MJ[D

νµ

JI ]
(0) = 0; (2.76)

∑
J

√
MJ[D

µν ,ξ
IJ ](1) = ∑

J

√
MJ[D

µξ ,ν
IJ ](1); (2.77)

∑
IJ

√
MIMJ[D

µν ,ξ
IJ ](1) = 0. (2.78)

Substituting Eqs. (2.70,2.71,2.72) into Eq. (2.69), for each order in ε , I have

ε
0 : 0 = ∑

Jν

[Dµν

IJ ](0)[eν
J (0,m)](0); (2.79)

ε
1 : 0 = ∑

Jνξ

[Dµν ,ξ
IJ ](1)qξ [eν

J (0,m)](0)+∑
Jν

[Dµν

IJ ](0)[eν
J (0,m)](1); (2.80)

ε
2 : [ω(1)(0,m)]2[eµ

I (0,m)](0) =
1
2 ∑

Jνξ ι

[Dµνξ ι

IJ ](2)qξ qι [eν
J (0,m)](0)

−∑
Jνξ

[Dµν ,ξ
IJ ](1)qξ [eν

J (0,m)](1)+
1
2 ∑

Jν

[Dµν

IJ ](0)[eν
J (0,m)](2). (2.81)

The LHS in equations of ε0 and ε1 are set to zero because the acoustic mode vanishes at
zero frequency. For the 0th order, the solution is obvious because of the specific symmetry
properties of matrix Dµν

IJ , i.e. Eq. (2.73). Then, I have [eµ

I (0,m)](0) =
√

MIuµ(m) for
arbitrary uµ(m). The linear order equation of ε1 can be written as

∑
Jν

[Dµν

IJ ](0)[eν
J (0,m)](1) =−∑

Jνξ

[Dµν ,ξ
IJ ](1)qξ [eν

J (0,m)](0). (2.82)

Also using these properties, the LHS vanishes by multiplying ∑I
√

MI on both sides, which
reduces to (N − 1)d independent equations for unknown [eν

J (0,m)](0). In this case, the
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symmetric matrix [Dµν

IJ ](0) is (N− 1)d× (N− 1)d and its inverse Γ
µν

IJ is also symmetric.
Without loss of generality, I can let [eµ

0 (0,m)] = 0,µ = 1, ...,d and extend Γ
µν

IJ , I,J ̸= 0 to
Nd×Nd by letting Γ

µν

IJ = 0 if I or J = 0. Then,

[eµ

K(0,m)](1) =−
N−1

∑
I=1

∑
α

Γ
µα

KI

N−1

∑
J=0

∑
νξ

√
MJ[D

αν ,ξ
IJ ](1)qξ uν(m)

=−∑
Iα

Γ
µα

KI ∑
Jνξ

√
MI[D

αν ,ξ
IJ ](1)qξ uν(m). (2.83)

Given solutions of the 0th and the 1st order, the 2nd order in ε2 can be written as:

1
2 ∑

Jν

[Dµν

IJ ](0)[eν
J (0,m)](2) = [ω(1)(0,m)]2

√
MIuµ(m)− 1

2 ∑
Jνξ ι

√
MJ[D

µν ,ξ ι

IJ ](2)qξ qιuν(m)

− ∑
Jαξ

[Dµν ,ξ
IJ ](1)qξ

∑
Kβ

Γ
νβ

JK ∑
Lξ ι

[Dβξ ,ι
KL ](1)

√
MLqιuξ (m). (2.84)

I can still use the properties of the matrix Dµν

IJ as before, so that after multiplying ∑I
√

MI on
both sides, the LHS vanishes. After this operation, I am left with (divided by the volume of
unit cell va):(

∑I MI

va

)
[ω(1)(0,m)]2uµ(m) = ∑

ν

{
∑
ξ ι

[µν ,ξ ι ]qξ qι +∑
ξ ι

(µξ ,νι)qξ qι

}
uν(m), (2.85)

where the matrix coefficients in the RHS are

[µν ,ξ ι ] =
1

2va
∑
IJ

√
MIMJ[D

µν ,ξ ι

IJ ](2) = [νµ,ξ ι ] = [µν , ιξ ];

(µξ ,νι) =
−1
va

∑
IJαβ

Γ
αβ

IJ

(
∑
K
[Dαµ,ξ

IK ](1)
√

MK

)(
∑
L
[Dβν ,ι

JL ](1)
√

ML

)
= (ξ µ,νι) = (νι ,ξ µ).

(2.86)

Comparing Eqs. (2.68) and (2.85), I obtain the relations defining the matrix elements of the
elastic coefficients:

∑
ξ ι

Cµνξ ιq
ξ qι = ∑

ξ ι

{[µν ,ξ ι ]+ (µξ ,νι)}qξ qι

⇒ Cµνξ ι +Cµνιξ = 2[µν ,ξ ι ]+ (µξ ,νι)+(µι ,νξ ) (2.87)
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Equation (2.87) connects the dynamical matrix and the elastic constants. In other words, Eq.
(2.87) obtained in BH framework, provides two paths to elastic constants: lattice vibrations
(RHS) or stress-strain relation (LHS). As will be shown later, the result would be exactly
the same as that of the LM formalism. However, the formula of Cµνξ ι is not derived in BH
framework. Thus, the way to write down full elastic constant from LHS is not feasible until I
report my findings in Section 4.1.

2.7 The Green’s functions

The notation of the Green’s function is very useful to solve ordinary differential equations.
Given the equation

L̂(r) f (r) = g(r) (2.88)

for some unknown function f , where L̂ is a time independent, linear, Hermitian operator and
the source term g(r) is known. Let G(r,r′) be some functions such that

L̂(r)G(r,r′) = δ (r− r′), (2.89)

one can easily verify that f (r) =
∫

V g(r)G(r,r′)ddr′ in domain V where G(r,r′) is subject to
some boundary conditions (BCs). Thus, it suffices to solve L̂(r)G(r,r′) = δ (r−r′). Consider
the equation in form of a damped harmonic oscillator (DHO):

ẍ+Γẋ+Ω
2x = F(t). (2.90)

Choosing F(t) = δ (t), the solution is x(t) = sin(Ωt)e−Γt/2H(t)/Ω, where H(t) is the Heav-
iside step function. In general, the arbitrary function F(t), t ∈R is real, can be expressed
as

F(t) =
∫

∞

t ′=−∞

F(t ′)δ (t− t ′)dt ′, (2.91)

Then, we can write x(t)=
∫

∞

t ′=−∞
G(t, t ′)F(t ′)dt ′ where G(t, t ′)= sin(Ω(t− t ′))e−Γ(t−t ′)/2H(t−

t ′)/Ω is the Green’s function of the DHO. Note that, we require G(t, t ′) = 0 for t < t ′. Write
L̂(r)≡ z− l̂(r) such that (z− l̂(r))G(r,r′,z) = δ (r− r′), where z is a complex variable. For
l̂(r), I look for eigenfunctions:

l̂(r)en(r) = λnen(r),n = 1,2,3..., (2.92)
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where {en(r)} satisfy the same BCs as G(r,r′,z). Since L̂(r) is Hermitian, so is l̂(r). Without
loss of generality, {en(r)} can be chosen to be orthonormal, i.e.∫

V
e∗n(r)em(r)ddr = δnm, (2.93)

where e∗m(r) is the conjugate of em(r). It can be verified that {en(r)} is complete (Economou,
2006). Therefore, any well-behaved function E(r) defined on V and satisfying proper BCs
can be written as a linear combination of em(r):

E(r) = ∑
n

cnen(r); cn =
∫

V
e∗n(r)E(r)d

dr, (2.94)

which gives

E(r) = ∑
n

∫
V

e∗n(r
′)en(r)E(r′)ddr′. (2.95)

Thus, I have

∑
n

en(r)e∗n(r
′) = δ (r− r′). (2.96)

Using the definition of the Green’s function, I write[
z− l̂(r)

]
G(r,r′,z) = ∑

n
en(r)e∗n(r

′)

G(r,r′,z) =
[
z− l̂(r)

]−1
∑
n

en(r)e∗n(r
′) (2.97)

Because en(r)=
[
z− l̂(r)

]−1 [
z− l̂(r)

]
en(r)= (z−λn)

[
z− l̂(r)

]−1
en(r), I can write G(r,r′,z)

as

G(r,r′,z) = ∑
n

en(r)e∗n(r′)
z−λn

(2.98)

G(r,r′,z) is not well defined when z lies in the spectrum of eigenvalues. This can be resolved
by replacing z with z+ iε and letting ε → 0:

G(r,r′,z) = lim
ε→0+

∑
n

φn(r)φ∗n (r′)
z+ iε−λn

. (2.99)

By using the fact

lim
ε→0+

1
x+ iε

= P

(
1
x

)
∓ iπδ (x), (2.100)
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where the first term on the RHS means taking the principal value, I have

∫
Im [G(r,r,z)]ddr =

∫
Im
[

lim
ε→0+

∑
n

φn(r)φ∗n (r)
z+ iε−λn

]
ddr

= Im
[

lim
ε→0+

∑
n

1
z+ iε−λn

]
=−π ∑

n
δ (z−λn)

≡−πD(z), (2.101)

where D(z) is called the density of states.

the lattice Green’s function

In lattice dynamics, upon assuming the same mass M for all particles, the matrix form of the
lattice Green’s function is

[Mω
2I−H]GL = I (2.102)

where the Hessian matrix H and dynamical matrix D are related as H = MD. In component
form, I have

∑
l′′
[Mω

2
δll′′−H(l, l′′)]GL(l′′, l′,ω) = δll′, (2.103)

where l, l′′ refer to lattice sites. Since matrix H(l, l′) has its eigenvalues and eigenvectors:

∑
l′

H(l, l′)em
l′ = Mω

2
mem

l , (2.104)

I have

∑
l′′
[Mω

2
δll′′−H(l, l′′)]em

l′′ = Mω
2em

l −Mω
2
mem

l = M(ω2−ω
2
m)e

m
l . (2.105)

To find GL(l, l′,ω), I try the following

∑
l′′
[Mω

2
δll′′−H(l, l′′)]∑

m
em

l′′ (e
m
l′ )
∗ 1

N(Mω2−Mω2
m)

=
1
N ∑

m
[Mω

2−Mω
2
m]e

m
l (em

l′ )
∗ 1
(Mω2−Mω2

m)

=
δll′

N ∑
m
[Mω

2−Mω
2
m]

1
(Mω2−Mω2

m)
= δll′ (2.106)
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To get the 2nd equality, I use the fact that eigenvectors em
l are orthonormal. This implies

GL(l, l′,ω) = ∑
m

em
l (em

l′ )
∗ 1

NM(ω2−ω2
m)

. (2.107)

To identify GL(q,ω), I can take the spatial Fourier transform of GL(l, l′,ω):

GL(q,ω)≡∑
l,l′

G(l, l′,ω)eiq(l−l′) = ∑
m

∣∣∑l em
l eiql

∣∣2
NM(ω2−ω2

m)
. (2.108)

When the system is subject to some perturbations (say V ), the new Green’s function can be
obtained in terms of the unperturbed one (H):

G′L = (ω2I−H−V )−1 = GL(I−GLV )−1. (2.109)

Writing V = Ω+ iΓ, the perturbed Green’s function is expressed in terms of Ω and Γ:

G′L =
ω2I−H−Ω+ iΓ

(ω2I−H−Ω)2 +Γ2 . (2.110)

By analogue to 1D DHO equation, Eq. (2.90), it can be understood that Γ is the "damping
coefficient" in the perturbed (lattice) Green’s function.

the elastic Green’s function

The elastic wave should contain information about local elastic properties (Gelin et al., 2016).
In a continuum, deformations cause a time-dependent displacement field u(r̊, t) = r(r̊, t)− r̊,
where the former is the current location at time t, while the latter is the initial position of any
material point. Ignoring the body force and assuming the uniform mass density ρ , the elastic
wave function writes as

ρ
∂ 2uµ(r̊)

∂ t2 = ∑
νκχ

∂

∂ r̊ν

[
Sµνκχ(r̊)

∂uκ(r̊)
∂ r̊χ

]
, (2.111)

with Sµνκχ(r̊) = Cµνκχ(r̊)+ δµκσνχ(r̊), where Cµνκχ(r̊) and σνχ(r̊) are the elastic con-
stants and the Cauchy stress in the reference configuration, respectively. The corresponding
equation of motion for the elastic Green’s function of waves then reads

∑
η

[
ρ

∂ 2uµ(r)
∂ t2 δµη − ∑

νκχ

∇νSµνκχ(r)∇κ

]
Gχη

E (r,r′, t) = δµηδ (r− r′), (2.112)
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where I have dropped˚for convenience. The solution of the elastic Green’s function will be
explored in Chapter 6.

2.8 Dynamical structure factor

I will derive the dynamical structure factor in both lattice and disordered systems.

Quantum theory of Neutron scattering in lattice

The classical theory of diffraction fails to describe the temperature dependence of the
scattering and ignores the effect of zero-point motion. A fully quantum calculation is called to
address these concerns (Ashcroft and Mermin, 1976; Van Hove, 1954). Imagine the scattering
takes place in a region with volume V . The initial (final) state of the neutron-ion system is
given by Ψi( f ) = φi( f )ψi( f ) with the energy εi( f ) = Ei( f )+ℏωi( f ),ℏωi( f ) = k2

i( f )/(2M), where

the wave function of the incident (transmitted) neutron is ψi( f ) = ei(ki( f )·r−ωi( f )t)/
√

V . I take
the full neutron-lattice interaction to be

U (r) = ∑
lI

U (r− rI(l)) = ∑
lI

UI(l)δ (r− rI(l))

= ∑
lI

UI(l)
V

∫
d3qeiq·(r−rI(l)) =

2πℏ2a
MV ∑

lI

∫
d3qeiq·(r−rI(l)) (2.113)

On the last line, I choose UI(l) = 2πℏ2a/M such that the total cross section calculated below
is σ = 4πa2, where a is the scattering length (Ashcroft and Mermin, 1976). Using Fermi’s
golden rule for time dependent perturbation theory (equivalent to the lowest-order Born
approximation), the probability per unit time for a neutron to scatter from state ki to k f is

Pr =
2π

ℏ ∑
f

δ (εi− ε f )
∣∣〈Ψ f |U (r)|Ψi

〉∣∣2
=

2π

ℏ ∑
f

δ (Ei +ℏωi−E f −ℏω f )

∣∣∣∣ 1
V

∫
d3rei(ki−kf)·r

〈
φ f |U (r)|φi

〉∣∣∣∣2

= a2 (2πℏ)3

(MV )2 ∑
f

δ (Ei−E f +ℏω)

∣∣∣∣∣∑lI
〈

φ f |eiK·rI(l)|φi

〉∣∣∣∣∣
2

(2.114)

The inelastic scattering takes place with momentum and energy transfer from neutron to
the lattice being K = ki−k f and ℏω = ℏ(ωi−ω f ), respectively. Note that a differential
volume element of momentum space d3k f contains V d3k f /(2πℏ)3 neutron states (Ashcroft
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and Mermin, 1976). The incident neutron flux of states (velocity times density) is

j =
ℏki

M
|ψi|2 =

ℏki

MV
. (2.115)

Since the number of neutrons is conserved, I have

jdσ = j
dσ

dEdΩ
dEdΩ =

ℏki

MV
dσ

dEdΩ
dEdΩ

= Pr ·V
d3k f

(2πℏ)3 = Pr ·V
k2

f dk f dΩ

(2πℏ)3 = Pr ·V
k f MdEdΩ

(2πℏ)3 . (2.116)

where dΩ is the differential of solid angle. The last equality holds since E = k2
f /2M for

thermal (non-relativistic) neutrons. Using the result of Pr, I obtain

dσ

dEdΩ
=

a2k f

ki
∑

f
δ (Ei−E f +ℏω)

∣∣∣∣∣∑lI ⟨φ f |eiK·rI(l)|φi⟩

∣∣∣∣∣
2

≡
a2Nk f

ℏki
S(K,ω) (2.117)

where

S(K,ω) =
ℏ
N ∑

f
δ (Ei−E f +ℏω)

∣∣∣∣∣∑lI ⟨φ f |eiK·rI(l)|φi⟩

∣∣∣∣∣
2

=
1
N ∑

f

∫
∞

−∞

dt
2π

e−i[(Ei−E f )/ℏ+ω]t
∑

ll′′IJ
⟨φi|
(

eiK·rJ(l′′)
)∗
|φ f ⟩⟨φ f |eiK·rI(l)|φi⟩ (2.118)

is the dynamic structure factor. I let the normalisation factor, N, be the number of particles
in the scattered region. Note that, any operators A,B obey relation ei(E f−Ei)t/ℏ(φ f ,Aφi) =

(φ f ,eiHt/ℏAe−iHt/ℏφi) and ∑ f (φi,Aφ f )(φ f ,Bφi) = (φi,ABφi). I can write S(K,ω) as

S(K,ω) =
1
N ∑

f

∫
∞

−∞

dt
2π

e−iωt
∑

ll′′IJ
⟨φi|
(

eiK·rl′′,J
)∗
|φ f ⟩⟨φ f |eiK·rl,I(t)|φi⟩

=
1
N

∫
∞

−∞

dt
2π

e−iωt
∑

ll′′IJ
⟨φi|
(

eiK·rl′′,J
)∗

eiK·rl,I(t)|φi⟩ (2.119)

in Heisenberg representation. Writing the lattice position from its equilibrium position
rl,I(t) = Rl,I + sl,I(t), I have

S(K,ω) =
1
N ∑

ll′′IJ

∫
∞

−∞

dt
2π

ei[K·(Rl,I−Rl′′,J)−ωt]⟨φ0|eiK·sl,I(t)
(

e−iK·sl′′,J
)
|φ0⟩ (2.120)
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This is correct at zero temperature. To account for effects of finite temperature, we need to
take the thermal average over all states:

⟨φi|A|φi⟩ → ⟨A⟩=
∑i e−Ei/(kBT )⟨φi|A|φi⟩

∑i e−Ei/(kBT )
. (2.121)

Thus, the dynamical structure factor is expressed as

S(K,ω) =
1
N ∑

ll′′IJ

∫
∞

−∞

dt
2π

ei[K·(Rl,I−Rl′′,J)−ωt]
〈

eiK·sl,I(t)
(

eiK·sl′′,J
)∗〉

(2.122)

Recall in lattice dynamics (in d-dimension), the lattice displacement sl,I(t) can be decom-
posed in terms of vibrational modes:

sl,I(t) =
∫

ddq∑
m

1√
MI

em
I ei(q·Rl−ωm(q)t). (2.123)

I express sl,I(t) in terms of creation and annihilation operators:

sl,I(t) =
1√

MINc

∫
ddq∑

m

√
ℏ

2ωm(q)
em

I (q)(am(q, t)+a†
m(−q, t))eiq·Rl , (2.124)

which consists of positive and negative-frequency parts. Here, Nc is the number of unit cells
(locating at Rl) in the scattered region. In the Heisenberg representation, we have

am(q, t) = eiH t/ℏam(q)e−iH t/ℏ

= eiωm(q)ta†
m(q)am(q)am(q)e−iωm(q)ta†

m(q)am(q)

= am(q)ei[ωm(q)ta†
m(q)am(q)−1]e−iωm(q)ta†

m(q)am(q)

= am(q)e−iωm(q)t (2.125)

by rules in commutators. Similarly, a†
m(q, t) = a†

m(q)eiωm(q)t . Therefore,

sl,I(t) =
1√

MINc

∫
ddq∑

m

√
ℏ

2ωm(q)
em

I (q)
(

am(q)e−iωm(q)t +a†
m(−q)eiωm(q)t

)
eiq·Rl

(2.126)

One can easily verify that ⟨sl,I(t)⟩ = ⟨sl,I⟩ = 0. Let operators A = iK · sl,I(t) and B =

(iK · sl′′,J(0))∗, since they are linear in a† and a of a harmonic crystal, then (Ashcroft and
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Mermin, 1976)

⟨eAeB⟩=
〈(

1+A+
1
2

A2 + ...

)(
1+B+

1
2

B2 + ...

)〉
=

〈
1+A+B+AB+

1
2

A2 +
1
2

B2 + ...

〉
= 1+

1
2
〈
2AB+A2 +B2〉+ ...

= e
1
2 ⟨2AB+A2+B2⟩. (2.127)

Thus,〈
eiK·sl,I(t)

(
eiK·sl′′,J

)∗〉
= ⟨eiK·sl,I(t)e−iK·s∗l′′,J⟩= e−

1
2 ⟨(K·sl,I(t))2⟩e−

1
2 ⟨(K·s

∗
l′′,J)

2⟩e⟨K·sl,I(t)K·s∗l′′,J⟩

(2.128)

For the first two terms on the RHS, I note

⟨(K · sl,I(t))2⟩= 1
MINc

∫
d3qd3 p∑

mn

ℏ
2
√

ωm(q)ωn(p)
K · em

I (q)K · en
I (p)e

iq·Rl eip·Rl ·

⟨[am(q)e−iωm(q)t +a†
m(−q)eiωm(q)t ][an(p)e−iωn(p)t +a†

n(−p)eiωn(p)t ]⟩

=
1

MINc
∑
m

∫
d3q

ℏ
2
√

ωm(q)ωm(−q)
K · em

I (q)K · em
I (−q)eiq·Rl ei(−q)·Rl ·

⟨[am(q)e−iωm(q)t +a†
m(−q)eiωm(q)t ][am(−q)e−iωm(−q)t +a†

m(q)e
iωm(−q)t ]⟩

=
1

MINc
∑
m

∫
ddq

ℏ
2ωm(q)

K · em
I (q)K · em

I (−q)⟨[am(q)a†
m(q)+a†

m(−q)am(−q)]⟩

= ⟨(K · sl,I)
2⟩

= ⟨(K · s∗l,I)2⟩
≡WI (2.129)

where the second equality holds because only when q =−p and m = n can relevant terms
survive. The elastic and inelastic process can be distinguished by expanding the expo-
nential, e⟨K·sl,I(t)K·s∗l′′,J⟩ = ∑r(⟨K · sl,I(t)K · s∗l′′,J⟩)r/(r!) and one-phonon inelastic scattering
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corresponds to case r = 1, which involves either the absorption or creation of a phonon:

S1(K,ω) =
1
N ∑

ll′′IJ
e
−(WI+WJ )

2

∫
∞

−∞

dt
2π

ei[K·(Rl,I−Rl′′,J)−ωt]⟨K · sl,I(t)K · s∗l′′,J⟩

=
1
N ∑

ll′′IJ
e
−(WI+WJ )

2

∫
∞

−∞

dt
2π

ei[K·(Rl,I−Rl′′,I+Rl′′,I−Rl′′,J)−ωt]⟨K · sl,I(t)K · s∗l′′,J⟩

=
1

Np
∑
IJ

e
−(WI+WJ )

2

∫
∞

−∞

dt
2π

e−iωt
∫

d3q∑
m

ℏ(K · em
I (K)K · em

J (K))

2ωm(q)
√

MIMJ
eiK·(RI−RJ)·

δ (K+q−G)
[
e−iωm(q)t⟨am(K)a†

m(K)⟩+ eiωm(q)t⟨a†
m(−K)am(−K)⟩

]
(2.130)

where I have used the fact that

∑
l

eiK·Rl =

0,K = G;

Nc,K ̸= G.
(2.131)

for G being a multiply of the reciprocal vectors. The total number of particles within the unit
cell is Np. It can be verified that e⃗m(G−k) = e⃗m(−k) = [⃗em(k)]∗,ωm(G−k) = ωm(k) and
the occupancy of each mode nm(q) = a†

m(q)am(q) satisfies the Bose-Einstein distribution
⟨nm(q)⟩= 1/e(ℏωm(q)/kBT )−1) (see Ashcroft and Mermin (1976) for details), finally I have

S1(K,ω) =
1

Np
∑
IJm

e
−(WI+WJ )

2
ℏ(K · em

I (K)K · em
J (K))

2ωm(K)
√

MIMJ
eiK·(RI−RJ)·

[nm(K)δ (ω−ωm(K))+(1+nm(K))δ (ω +ωm(K))] (2.132)

Term δ (ω −ωm(K)) means we only get a contribution when ω = ωm(K), i.e. ωi−ω f =

ωm(K), namely the final energy of the neutron is smaller than the initial energy. The energy
is lost in emitting a phonon, which can happen at any temperature since nm(K) ̸= 0 at any T .
In the classical limit, ℏ→ 0, then Eq. (2.132) reduces to

S1(K,ω) =
1

Np
∑
IJm

kBT (K · em
I (K)K · em

J (K))

2ω2
m(K)

√
MIMJ

eiK·(RI−RJ) (δ (ω−ωm(K))+δ (ω +ωm(K)))

=
kBT
2Np

∑
m

∣∣∣∣∣∑I

K · em
I (K)

ωm(K)
√

MI
eiK·rI

∣∣∣∣∣
2

(δ (ω−ωm(K))+δ (ω +ωm(K))) (2.133)

To take a consistent convention, I will write S(q,ω).
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Disordered systems

There is no boundary periodicity in disordered materials. Imposing harmonic approximation,
the displacement of particle I from its equilibrium position writes as

sI(t) = ∑
m

√
ℏ

2MIωm
em

I (a
†
meiωmt +ame−iωmt), (2.134)

in terms of creation and annihilation operators. I can use the Bloch theorem valid for
harmonic approximation, ⟨eQ⟩= e⟨Q

2⟩/2, (Q is any linear combination of harmonic-oscillator
coordinates and angular brackets denote thermal average over an ensemble of harmonic-
oscillator eigenstates) to simplify S(q,ω):

S(q,ω) =
1
N ∑

I,J
exp [−iq · (RI−RJ)]e

−(WI+WJ )
2

∫
∞

−∞

e

(
ℏ

2
√

MIMJ
∑m(q·em

I )(q·em
J )g(ωm,t)

)
e−iωt dt

2π
,

(2.135)

where WI = ⟨(q · sI)
2⟩ is Debye-Waller factor reflecting the influence of the atomic thermal

motions; g(ωm, t) = [(nm + 1)e−iωmt + nmeiωmt ]/ωm; nm = (eβℏωm − 1)−1,β = 1/(kBT ) is
the average number of phonons of energy ℏωm for the mth normal mode at temperature T
(Kim and Nelkin, 1973). In the classical limit, WI and g(ωm, t) reduce to:

WI =
1

MIβ
∑
m

|q · em
I |2

ω2
m

, g(ωm, t) =
2cos(ωmt)

βℏω2
m

(2.136)

For the third term in Eq. (2.135), I expand the exponential again:

e

(
ℏ

2
√

MIMJ
∑m(q·em

I )(q·eν
J )g(ωm,t)

)
=

∞

∑
r=0

1
r!

[
ℏ

2
√

MIMJ
∑
m
(q · em

I )(q · em
J )g(ωm, t)

]r

(2.137)

Term of r = 0 corresponds to the Bragg diffraction, while r = 1 means the scattering process
involves one phonon only. For r > 1, those terms only contribute to the background scattering
in a neutron scattering measurement (Ashcroft and Mermin, 1976). Taking one phonon
excitation approximation, I have:

ℏ
2
√

MIMJ
∑
m
(q · em

I )(q · em
J )g(ωm, t) =

kBT√
MIMJ

∑
m
(q · em

I )(q · em
J )

cos(ωmt)
ω2

m
(2.138)
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In the low temperature limit, β → ∞, so WI → 0. The DSF reduces to

S(q,ω) = N−1
∑
I,J

exp [−iq · (RI−RJ)]
∫

∞

−∞

kBT√
MIMJ

∑
m
(q · em

I )(q · em
J )

cos(ωmt)
ω2

m
e−iωt dt

2π

= ∑
I,J

kBT
2N
√

MIMJ
exp [−iq · (RI−RJ)]∑

m

(q · em
I )(q · em

J )

ω2
m

(δ (ω−ωm)+δ (ω +ωm))

=
kBT q2

2N ∑
m

∣∣∣∣∣∑I

1√
MIωm

[q̂ · em
I ]exp(−iq ·RI)

∣∣∣∣∣
2

(δ (ω−ωm)+δ (ω +ωm)) (2.139)

This form is the same as Eq. (2.133) except that the eigenvectors/eigenvalues are independent
of wavevector because there is only one "cell" and the reciprocal space is not defined in
amorphous systems.



Chapter 3

Dielectric relaxation in glasses

Materials exhibit a temporary delay in their dielectric constants, which is known as dielectric
relaxation. The dielectric relaxation is usually caused by the delay in polarisation of charges
in a dielectric medium exposed in a varying external electric field. In general, relaxation is a
linear delay response or lag, and therefore dielectric relaxation is measured relative to the
expected linear steady state (equilibrium) dielectric values. In physics, dielectric relaxation
refers to the relaxation response of a dielectric medium to an external, oscillating electric field.
This relaxation is often described in terms of permittivity in frequency domain. Debye derived
an formula of the complex permittivity for an ideal, noninteracting population of dipoles
to an alternating external electric field (Debye, 1929): ε(ω) = ε∞ +(ε0− ε∞)/(1+ iωτ)

where ε0 and ε∞ are the permittivity at initial and high (infinity) frequency ; τ is known as
characteristic relaxation time categorising (each) relaxation process (see the discussion in
Section 2.3).

Glycerol [C3H5(OH)3] is a hydrogen-bonded material that can be easily supercooled and
has been theoretically investigated in numerous attempts to test models of glass transition,
yet no microscopic theory has been used to describe the dielectric response of this material
apart from empirical models (e.g. Havriliak-Negami), which has no physics behind. It
has melting temperature Tm ≈ 291K with glass transition temperature around 100K lower,
Tg ≈ 185K (Lunkenheimer et al., 1996). Starting from the first principle assumption that
the microscopic Hamiltonian can be modeled using a classical particle-bath coupling of
the Caldeira-Leggett type, a simple and explicit relation between the dielectric relaxation
function and the VDOS of glassy system presents to be a potential theoretical interpretation
of the α-peak and Kohlrausch stretched-exponential relaxation (Cui et al., 2017a).

For Freon 112 and Freon 113, previous study on thermal conductivities reveals the
existence of quasilocalised low-energy vibrational modes at energy lower than the values of
the maximum of the boson peak (see Section 3.1 for clear definition) compared with other
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OGs, which results in an increase of VDOS (Vdovichenko et al., 2015). It was thought that the
high value of kinetic fragility of F113 is produced by strong orientational correlations, which
is evidenced by low values of the stretching exponent in Kohlrausch stretched-exponential
function close to Tg, where only α-relaxation is observed with no sign of the β -relaxation.
In contrast, in dielectric spectra of F112 from Tg to above, β -relaxation becomes evident as
temperature drops to Tg. These experimental facts are the origin of my interest in applying a
microscopic theoretical model to orientationally disordered crystals. In particular, Freons
F112 and F113 are chemically and molecularly similar compounds displaying glassy states
(they both belong to the series C2X(6−n)Yn, with X, Y=Cl, F, Br, and n = 0, ...,6), but with
completely different dynamics and relaxation. This provides a unique opportunity to explain,
from a microscopic point of view, the physical origin of secondary β -relaxation (Zaccone,
2020).

3.1 Methods to obtain the vibrational density of states

VDOS from random network: a simple model

The vibrational density of states (VDOS) obtained from numerical diagonalisation of the
simulation is expressed in terms of dimensionless eigenfrequencies ωm. To configure the
simulation system, the total interaction is modeled by the sum of the truncated Lenard-Jones
(LJ) potential U (R) = (1/R12− 2/R6 + 0.031)H(2−R) depending only on the distance
between two particles. 4000 particles are initially placed randomly in an orthogonal box
imposed with periodic boundary conditions, and the whole system is brought to a metastable
low energy state by a Monte Carlo energy-relaxation algorithm (Binder and Heermann,
2001). Bonds are formed only between nearest neighbours and the bond length is distributed
around the mean value R0 = 0.94. The density is kept constant (ρ = N/V = 1.467). In
random networks model, the VDOS also depends on the coordination number Z, i.e. the
number of nearest neighbours for each particle, whose value can be reduced by randomly
cutting bonds from the initial configuration with average value being Z = 9, while keeping
a narrow distribution. In the final step, the LJ interactions between nearest neighbours are
all replaced by harmonic springs with pair potential U (R) = (k/2)(R−R0)

2, where k is the
spring constant. The numerical procedure was performed by my colleagues (Milkus and
Zaccone, 2016). Generally, the eigenfrequency ωm obtained from the numerical calculation
and the eigenfrequency ω ′m of the real experimental systems are related via ω ′m ≈

√
k/Mωm

where M is the effective mass (of the charged particle), under the normalisation condition
on VDOS D(ωp) that

∫ ω ′D
0 D′(ω ′p)dω ′p =

∫
ωD
0 D(ωp)dωp, with D(ωp)∼ ∑m δ (ωp−ωm). I
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use the constant C =
√

k/M as a fitting parameter. k and M are both equal to unity in the
numerical simulation, whereas their values are of course different for different experimental
systems.

Due to the disorder in the lattice, and in particular, due to the absence of local inversion
symmetry (Milkus and Zaccone, 2016), the low-frequency part of the VDOS is dominated
by an excess of soft modes (vibrational normal modes with the largest displacement in the
lowest frequency) over the Debye ω2

p law valid for crystals. This excess of soft modes in
the VDOS is universally known in the literature on glassy physics and disordered systems
as the "boson peak" (Schirmacher et al., 2007). In the following, I use this terminology
and refer to the broad ensemble of all these excess soft modes over the Debye ω2

p law as
the boson peak. The boson peak frequency drifts towards lower values of ωp according
to the scaling ωBP

p ∼ (Z− 6) (see Fig. 3.1). It is important to note that, in the sub-field
of dielectric spectroscopy of glasses, the terminology "boson peak" is sometimes used to
designate an isolated peak in the THz frequency regime of the dielectric loss modulus ε ′′,
which is different from the peak, for example, in the onset of the normalised VDOS in Fig.
3.1. In this thesis, I will never refer to or consider this THz-frequency peak in the loss
modulus, so there is no ambiguity in my terminology and the term "boson peak" is used
exclusively to designate the ensemble of excess non-Debye modes in the low-ωp part of the
VDOS.

In all experimental systems measuring the T -dependent material response, the tempera-
ture is varied at constant pressure, which implies that thermal expansion is important. That
is, Z is the crucial control parameter of the relaxation process in a real molecular glass
changing with T . Therefore, in order to use numerical VDOS data in the evaluation of the
dielectric function, we need to find a physically meaningful relation between Z and T at
the glass transition. Within this picture, Z represents the effective number of intermolecular
contacts, which increases the number of positive charges to which a negative charge is
bounded in the material. Following previous work, I thus employ thermal expansion ideas in
Zaccone and Terentjev (2013) to relate Z and T . Upon introducing the thermal expansion
coefficient αT = (∂V/∂T )/V and replacing the total volume V of the sample via the volume
fraction φ = vN/V occupied by the particles (v is the volume of one molecule), I obtain
ln(1/φ) = αT T + const upon integration. Approximating Z ∼ φ locally, I get Z = Z0e−αT T .
Although this approximation is not true in strictly speaking jamming systems, in general
disordered systems such as liquids (recall that my model contains a harmonic attractive
part of interaction), Z and φ are related as Z = 24φ

∫ r
1 r2g(r)dr where g(r) is the radial

distribution function (Hansen and McDonald, 2008; Zaccone and Del Gado, 2010). Imposing
that Z0 = 12, as for FCC crystals at T = 0 in accordance with Nernst principle determines
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Fig. 3.1 The VDOS normalised by Debye’s ω2
p law, for (from bottom to top): Z = 9,Z =

8,Z = 7,Z = 6, which gives evidence of the boson peak at low ωp. The eigenfrequency of
the boson peak scales as ωBP

p ∼ (Z−6) as known from work for disordered systems with
central-force interactions (Cui et al., 2017a).

the relation between Z and T . For glycerol, Z ≈ 6.02 when T = 184K close to the reported
Tg (Lunkenheimer et al., 1996).

It is seen in Fig. 3.1 and in Fig. 3.2 that for the case Z = 6.1, i.e. very close to the
solid-liquid (glass) transition that occurs at Z = 6, a strong and broad boson peak is present
in the VDOS. Upon increasing Z towards higher values, the boson peak is still present but its
amplitude decreases markedly. At Z = 6.1, the continuum Debye regime ∼ ω2

p is not visible
or absent, whereas a very small gap between ωp = 0 and the lowest vibrational frequency
exists. Hence, under conditions close to the glass transition where the system loses its (shear)
rigidity, the vibrational spectrum is dominated by a large and broad excess of soft modes
with respect to Debye ∼ ω2

p law at low frequency (Cui et al., 2019a; Milkus and Zaccone,
2016).

VDOS obatined from inelastic neutron scattering

The essential experimental VDOS D(ω) is usually measured by means of inelastic neutron
scattering (INS) using the direct spectrometer MARI of the ISIS facility. In Fig. 3.3, the
VDOS of F113 clearly exhibits a much more significant excess of low-frequency (boson-
peak) modes, with respect to F112, in the range 2−5 meV. In a multi-component system with
predominantly coherent scatters, a generalised, neutron-weighted VDOS can be obtained
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Fig. 3.2 VDOS with respect to eigenfrequency ωp at Z = 6.1 (solid line), i.e. close to the
marginal stability limit Z = 6 that I identify here as the solid-liquid (glass) transition; plots
of the VDOS at Z = 7,Z = 8,Z = 9 are also shown, and are marked as dashed, dot dashed
and dotted lines, respectively (Cui et al., 2017a).

under the incoherent one-phonon approximation, where the measured dynamical structure
factor S(q,ω), integrated over the accessible q-range (q is the wavenumber), is proportional
to D(ω)/ω2 (Meyer et al., 1996). The INS experiments were performed by my collaborators
(Cui et al., 2018b).

3.2 Deriving the generalised Langevin equation in AC field

The limitation that previous work ignored the dielectric effect on bath oscillators is obviously
artificial and not realistic. Further, as is shown in Appendix B, bath oscillators actually carry
charges and hence are subjected to the external AC field. Thus, such limitation clearly leaves
out a number of important physical problems, where not only the tagged particle is subjected
to the AC field, but also the particles that constitute the heat bath are subjected to it. This
situation is clearly encountered in dielectric matter under a uniform AC electric field E(t). In
this case, every building block (atom, molecule, ion) is polarisable or charged such that it is
subjected to a force from the electric field. Hence, if the bath is constituted by polarisable or
charged particles, these will also respond to the AC field and it is nonphysical to neglect the
effect of the AC field on the dynamics of the bath oscillators. This situation is schematically
depicted in Fig. 3.4.
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Fig. 3.3 Experimental VDOS for Freon 112 (blue) and Freon 113 (yellow). The data for
Freon 112 were published in Sharapova et al. (2010), while the data for Freon 113 were taken
from Vispa et al. (2017).

In this contribution, I provide a solution to this problem by formulating a Caldeira-Leggett
particle-bath Hamiltonian, where both the particle and the bath oscillators are subjected to
the external AC field, which is explicitly accounted for in both the Hamiltonian of the particle
and the Hamiltonian of the bath (Caldeira, 2014). The two Hamiltonians are then connected
via a bi-linear coupling as is standard in this type of models. I analytically solve the coupled
Hamiltonian for the tagged particle to find a new generalised Langevin equation, which, for
the first time, accounts for the effect of the polarisation of the bath under the AC field on the
dynamics of the tagged particle. This is a more general GLE than any of those proposed
so far, and only in certain limits can it reduce to the known forms of the GLE with external
time-dependent field.

Harmonic oscillation heat bath

In condensed matter physics, the Zwanzig-Caldeira-Leggett (ZCL) system-bath model is
widely applied to low-temperature quantum physics problems, especially in quantum tun-
nelling in superconductors and in chemical reaction rate theory. I study the classical version
of the Caldeira-Leggett coupling between the tagged particle and a bath of harmonic oscil-
lators, which was already proposed by Zwanzig (1973), and add a new term, HE , which
contains the force due to the applied AC electric field acting on both the tagged particle and
the harmonic oscillators:

H = HS +HB +HE , (3.1)
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Fig. 3.4 Schematic example of system of charged (solid circles) or polarisable (dashed lines)
molecules. In the former case the particles could be ions in a plasma or ions and electrons in
a liquid metal. In the latter case, the negatively and positively charged particles represent
the electron cloud and the molecular ion of a polarised neutral molecule as in e.g. dielectric
relaxation of molecular liquids. A particle-bath Hamiltonian like Eq. (3.1) can be applied to
these systems where a tagged particle (positively or negatively charged) interacts with the
local environment via an interaction potential U (Q), which may represent the interaction
with neighbours, and also with all other degrees of freedom in the system which can be
effectively represented as a bath of harmonic oscillators to which the tagged particle is
coupled via a set of coupling constants cm, where m runs over all other bath oscillators in
the system. In traditional models of bath-oscillator dynamics, only the tagged particle is
subjected to the external AC field, whereas the other particles are not. In the proposed model,
both the tagged particle and also all the other particles (forming the bath) are responding
to the AC electric field, which provides an opportunity to better represent the properties of
physical systems in the model and this allows for better insight into the physics in these
systems.
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where HS = P2/2M +U (Q) is the Hamiltonian of the tagged particle (P is momentum
and Q is position) without external field. The second term on the RHS is the standard
Hamiltonian of the bath of harmonic oscillators that are coupled to the tagged particle,
HB = ∑

N
m=1

[
P2

m/Mm +Mmω2
m
(
Xm−Fm(Q)/ω2

m
)2
]
/2, consisting of the standard harmonic

oscillator expression for each bath oscillator m, and of the coupling term between the tagged
particle and the m-th bath oscillator, which contains the coupling function Fm(Q). The new
term

HE =−zΦ(Q, t)−∑
m

zmΦ(Xm, t) =−E0 sin(ωt)
(

zQ+∑
m

zmXm

)
(3.2)

represents the influence of electric field on both the tagged particle (first term in the bracket)
and the bath oscillators (second term in the bracket). Here, z is the total charge of tagged
particle, where e.g. z =±1e for monovalent ions/electrons in a plasma or z =−1e for the
case of molecular dielectrics where a molecule polarises into a negatively charged electron
cloud which oscillates about a positively charged molecular ion; zm is the net charge of bath
particle subjected to the same polarisation. Here, I only consider the movement along the
direction of the AC field, E(t) = E0 sin(ωt), and Φ is the electric potential.

In the Caldeira-Leggett model, the classical friction force can be modeled by a linear
coupling to a proper distribution of harmonic oscillators, the coupling function is hence
taken to be Fm(Q) = cmQ, where cm is known as the strength of coupling between the tagged
particle and the oscillator m. The original coupling is expected to be large for nearby particles
and small for particles far away in the materials and hence cm is different for all the different
oscillators (at their own frequencies) the tagged particle is interacting with. See Appendix B
for more discussion about the linear coupling.

This Hamiltonian leads in a straightforward manner to the following system of differential
equations:

dQ
dt

=
P
M

;
dP
dt

=−U ′(Q)+∑
m

Mmcm

(
Xm−

cmQ
ω2

m

)
+ zE0 sin(ωt)

dXm

dt
=

Pm

Mm
;

dPm

dt
=−Mmω

2
mXm +MmcmQ+ zmE0 sin(ωt) (3.3)
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From the second line, upon solving the second-order inhomogeneous ODE with the
Green’s function method, I get

Xm(t) = Xm(0)cos(ωmt)+
Pm(0)sin(ωmt)

Mmωm
+
∫ t

0

[
cmQ(t ′)+

zm

Mm
E0 sin(ωt ′)

]
sin(ωm(t− t ′))

ωm
dt ′

(3.4)

The integral
∫ t

0 cmQ(t ′)sin(ωm(t− t ′))/ωmdt ′ can be evaluated via integration by parts.
Upon further denoting Em(t) =

∫ t
0 zmE0 sin(ωt ′)sin(ωm(t− t ′))/ωmdt ′, I obtain

Xm(t)−
cmQ(t)

ω2
m

=

(
Xm(0)−

cmQ(0)
ω2

m

)
cos(ωmt)

+Pm(0)
sin(ωmt)
Mmωm

−
∫ t

0

cmP(t ′)cos(ωm(t− t ′))
Mω2

m
dt ′+

Em(t)
Mm

(3.5)

Substituting Eq. (3.5) into the equation for P(t) in Eq. (3.3), I derive the following GLE
with AC electric field acting on the tagged particle:

dP
dt

=−U ′(Q(t))−∑
m

∫ t

0

Mm cos(ωm(t− t ′))
Mω2

m
c2

mP(t ′)dt ′+ zE0 sin(ωt)

+∑
m

{
Mmcm

[
Xm(0)−

cmQ(0)
ω2

m

]
cos(ωmt)+ cmPm(0)

sin(ωmt)
ωm

+ cmEm(t)
}

=−U ′(Q(t))−
∫ t

0
ν(t ′)

MmP(t− t ′)
M

dt ′+ zE0 sin(ωt)+FP(t). (3.6)

I have introduced the noise or stochastic force FP(t) which is equal to the second line in Eq.
(3.6):

Fp(t) = ∑
m

{
Mmcm

[
Xm(0)−

cmQ(0)
ω2

m

]
cos(ωmt)+ cmPm(0)

sin(ωmt)
ωm

+ cmEm(t)
}
. (3.7)

Note that this expression for the stochastic force is identical with the one derived in Zwanzig
(2002) for a particle-bath system without external field, except for the important term cmEm(t),
which is new and contains the effect of the external AC field on the bath oscillators dynamics.
This is a crucial point because the dynamical response of the bath oscillators to the external
AC field in turn produces a modification of spectral properties of the bath fluctuations, and
thus leads to a new form of the stochastic force which is different from those studied in
previous works.



3.2 Deriving the generalised Langevin equation in AC field 54

The memory function for the friction ν(t) = ∑m Mmc2
m cos(ωmt)/(Mω2

m) is identical to
the memory function of systems without external time-dependent forces such as the one
derived by Zwanzig (1973, 2002).

The fluctuation-dissipation theorem

The integral in the function Em(t)=
∫ t

0 zmE0 sin(ωt ′)sin(ωm(t− t ′))/ωmdt ′, can be evaluated
using trigonometric identities, which leads to

Em(t) =
zmE0(ω sin(ωmt)−ωm sin(ωt))

ωm(ω2−ω2
m)

. (3.8)

For the case without external time-dependent fields, FP(t) is defined in terms of initial
positions and momenta of bath oscillators, but here it now also depends on the sinusoidal
electric field at time t. Note that, by shifting the time origin, it can be easily verified that the
statistical average is stationary. Following Zwanzig (2002), I assume the initial conditions
for the bath oscillators can be taken to be Boltzmann-distributed ∼ exp(−HB/kBT ), where
the bath is in thermal equilibrium with respect to a frozen or constrained system coordinate
X(0).

Then for the averaged X and P, I obtain:〈
Xm(0)−

cmQ(0)
ω2

m

〉
= 0, ⟨Pm(0)⟩= 0. (3.9)

The second moments are〈(
Xm(0)−

cmQ(0)
ω2

m

)2
〉

=
kBT

Mmω2
m
, ⟨Pm(0)2⟩= MmkBT. (3.10)

Both these results are consistent with what one finds for systems without external time-
dependent fields, since obviously they descend directly from the assumption of Boltzmann-
distributed degrees of freedom at the initial time.

As for ∑m cmEm(t), I first notice there is no divergence when ωm→ ω and ωm→ 0:

lim
ωm→ω

ω sin(ωmt)−ωm sin(ωt)
ωm(ω2−ω2

m)
=−ωt cos(ωt)− sin(ωt)

2ω2 ;

lim
ωm→0

ω sin(ωαt)−ωm sin(ωt)
ωm(ω2−ω2

m)
=

ωt− sin(ωt)
ω2 . (3.11)
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Focusing on ions, atoms or molecules, ωm is at least in the THz regime or higher, which
is many orders of magnitude larger than the frequency of the applied field ω (this assumption
of course may not hold for THz spectroscopy, which deserves a separate treatment in future
work). Hence, the first term in the numerator on the RHS of Eq. (3.8) can be neglected, and
the electric effect on bath oscillators to the tagged particle can be approximated as follows:

∑
m

cmEm(t)≈∑
m

cmzm

ω2
m

E0 sin(ωt)∝ E(t). (3.12)

I now take the Boltzmann average of the stochastic force, Eq. (3.7), and find:

⟨FP(t)⟩= ζ E(t), (3.13)

for some constant ζ in unit of charge.
Now, by direct calculation, using Eqs. (3.9) and (3.10) and standard trigonometric identi-

ties, I can get the fluctuation-dissipation theorem (FDT) for the particle-bath Hamiltonian
under a uniform AC field:

⟨FP(t)FP(t ′)⟩=
1

ZN

∫
FP(t)FP(t ′)exp

(
−HB

kBT

)
dX⃗(0)dP⃗(0)

= ∑
m

(
Mmc2

m
kBT
ω2

m
cos(ωmt)cos(ωmt ′)+Mmc2

m
kBT
ω2

m
sin(ωmt)sin(ωmt ′)

)
+(ζ )2E(t)E(t ′)

= kBT ∑
m

Mmc2
m

ω2
m

cos(ωm(t− t ′))+(ζ )2E(t)E(t ′)

= MkBT ν(t− t ′)+(ζ )2E(t)E(t ′), (3.14)

where ZN is the canonical partition function

ZN =
∫

exp
(
−HB

kBT

)
dX⃗(0)dP⃗(0), (3.15)

and X⃗(0) = {X1(0),X2(0), ...}, P⃗(0) = {P1(0),P2(0), ...}.
Compared with FDT without the presence of external field, namely Eq. (2.31), the 2nd

term on the RHS of Eq. (3.14) is the additional effect from the field on the fluctuating force.
I remark that this term has a deterministic component (via the correlation of the electric
field), in the sense that couplings between the tagged particle and bath oscillators are also
related to the distribution of bath oscillators, so ζ is not random. The noise intensity, defined
as the covariance of the noise, is still proportional to T . In contrast, from the perspective of
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the tagged particle, the influence from the electric field on bath oscillators is a part of noise
on its motion, and the effect of the additional coupling is merely to renormalise the constant
z in the equation of motion of the tagged particle, as can be seen in Eq. (3.6) and Eq. (3.13).
Equation (3.14) is one of the key results I have found and is the FDT associated with the
GLE given by Eq. (3.6). This is a remarkable result which shows that in the presence of an
external AC field which affects the microscopic dynamics of both the tagged particle and the
bath oscillators, the strength of the noise is no longer proportional to thermal energy only,
but also has an important deterministic contribution proportional to the AC field amplitude
squared.

The memory kernel

Let the spectrum be continuous and cm be a function of eigenfrequency ωp, which leads to
the following expression for the friction kernel:

ν(t) =
∫

∞

0

Mpγ2(ωp)

Mω2
p

cos(ωpt)D(ωp)dωp. (3.16)

For any given (well behaved) VDOS function D(ωp), the existence of a well-behaved function
γ(ωp) that satisfies Eq. (3.16) is guaranteed by the fact that one can always decompose
ν(t) into a basis of {cos(ωpt)} functions, by taking a cosine transform. The inverse cosine
transform in turn gives the spectrum of coupling constants γ(ωp) as a function of the memory
kernel:

γ
2(ωp) =

2ω2
p

πD(ωp)

∫
∞

0
ν(t)cos(ωpt)dt. (3.17)

This coupling function contains information on how strongly the particle’s motion is coupled
to the motion of other particles in a mode with vibrational frequency ωp. This is an important
information, because it tells us about the degree of long-range anharmonic couplings in the
motion of the molecules.

Looking at Eq. (3.16) again, it is evident that the ZCL Hamiltonian does not provide any
prescription to the form of the memory function ν(t), which can take any form depending
on the values of the coefficients cm, as is shown in Zwanzig (1973). Hence, a shortcoming
of CL-type models, including ZCL, is that the functional form of ν(t) cannot be derived a
priori for a given system, because, while the VDOS is certainly an easily accessible quantity
from simulations of a physical system, the spectrum of coupling constants {cm} is basically
a phenomenological parameter.
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In general, the determination of the memory kernel is an open problem for which several
approaches have been proposed very recently, most of which have been tested only on model
systems so far, some examples can be found in Izvekov (2017); Jung et al. (2017); Li et al.
(2016, 2017); Meyer et al. (2017). However, for a supercooled liquid, the time-dependent
friction, which is dominated by slow collective dynamics, has been famously derived within
kinetic theory (Boltzmann equation) using a mode-coupling type approximation by Sjogren
and Sjolander (1979), and is given by the following elegant expressions:

ν(t) =
ρkBT
6π2M

∫
∞

0
dqq4Fs(q, t)[c(q)]2F(q, t) (3.18)

where c(q) is the direct correlation function of liquid-state theory, Fs(q, t) is the self-part of
the intermediate scattering function (ISF), F(q, t), and ρ is the density. All of these quantities
are functions of the wavenumber q. Clearly, the integral over q leaves a time-dependence of
ν(t) which is controlled by the product Fs(q, t)F(q, t). For a chemically homogeneous system,
Fs(q, t)F(q, t)∼ F(q, t)2, especially in the long-time regime. From theory and simulations in
supercooled liquids, Hansen and McDonald (2008) found F(q, t)∼ exp [−(t/τ)ξ ] . Hence,
when I fit experimental data, I will take

ν(t) = ν0 ∑
i

vie−(t/τi)
bi
, (3.19)

where τi is the characteristic time and ν0 is a constant pre-factor. Here, bi > 0 is positive,
and 0 < νi ≤ 1 indicate weights for each stretched exponential. A number of stretched
exponentials are summed, which will be justified in detail when I apply this approach to
specific examples. It will be shown that conceptually this approach is a great improvement
on direct phenomenological fitting. It is possible to use other phenomenological fits for the
memory function. However, improving the memory kernel goes beyond the scope of this
thesis and I leave it for future work.

3.3 Deriving the dielectric permittivity from ZCL model

As is standard for normal mode analysis, I introduce the mass-scaled tagged-particle dis-
placement s = Q

√
M in the Hamiltonian, such that the resulting equation of motion, which is

Eq. (3.6), under the mass-scaled coordinates, becomes

s̈ =−U ′(s)−
∫ t

0
ν(t− t ′)

ds
dt ′

dt ′+Fp(t)+ zE(t). (3.20)
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Compared to Eq. (2.34), the last term on the RHS is an additional term relating to the
system’s response to external electric field, where the charge z has been redefined to be the
mass-scaled charge. In order to determine the dependence of the polarisation and of the
dielectric function on the frequency of the field in d-dimensional space, I have to describe the
displacement s of each molecule from its own equilibrium position under the applied field E.
Upon treating the dynamics classically, the equation of motion for a charge I under forces
coming from interactions with other charges and from the applied electric field is given by

s̈µ

I =−∑
Jν

Hµν

IJ sν
J −

∫ t

0
ν(t− t ′)

dsµ

I
dt ′

dt ′+Fµ

I (t)+ zIEµ(t). (3.21)

where the pairwise interaction is assumed.
To solve this equation, the first step is to take the Fourier transform, sµ

I (t)→ s̃µ

I (ω),
leading to the equation

−ω
2⃗s̃+ iων̃(ω) ˜⃗s+H⃗̃sJ =

˜⃗FI + zI
˜⃗E (3.22)

where the tilde is used to denote Fourier-transformed variables. Hence, ν̃(ω) is the Fourier
transform of ν(t). Since the Hessian matrix is real and symmetric, I can implement normal-
mode decomposition: ˆ̃sm(ω) = ∑n s̃n(ω)enm, where the hat is used to denote the coefficient
of the projected quantity, emn consists of orthonormal eigenvectors of the Hessian matrix and
m,n run from 1 to Nd. Then, I obtain

−ω
2 ˆ̃sm + iων̃(ω) ˆ̃sm +ω

2
m ˆ̃sm = ˆ̃Fm +(z ˆ̃E)m. (3.23)

The equation is solved by

ˆ̃sm(ω) =−
ˆ̃Fm +(z ˆ̃E)m

ω2− iων̃(ω)−ω2
m

(3.24)

Transforming back to a vector equation for the Fourier-transformed displacement of charge I,
I have:

s̃µ

I (ω) = ∑
m
−

emn

[
ˆ̃Fm +(z ˆ̃E)m

]
ω2− iων̃(ω)−ω2

m
(3.25)

Here, indices n and (I,µ) are mutually related in an implicit way. Each particle contributes
to the polarisation a moment pI = zIsI . In order to evaluate the macroscopic polarisation, I
need to add together the averaged contributions from all microscopic degrees of freedom
in the system, P = ∑I pI . In order to do this analytically, I use Eqs. (3.13) and (3.25) to
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obtain the averaged polarisation before performing the standard procedure of replacing the
discrete sum over the total degrees of freedom of the solid with the continuous integral over
the eigenfrequencies ωm,∑m ...→

∫
D(ωp)...dωp, which gives the following sum rule in

integral form for the polarisation in glasses:

P̃(ω) =−

[∫
ωD

0

D(ωp)Γ
′(ωp)

ω2− iων̃(ω)−ω2
p

dωp

]
Ẽ(ω) (3.26)

Here, ωD is the cutoff Debye frequency arising from the normalisation of the VDOS (i.e. the
highest eigenfrequency in the VDOS spectrum). The smooth correlator function Γ′(ω)≡
⟨ẑ2

m + ζ ẑm⟩ωm∈{ω,ω+δω}, ẑm = z⃗ · e⃗m with z⃗ generalised to be an Nd-vector, is defined in a
similar way in mechanical case (see Section 2.4 for details). Note that, I have also taken
the ensemble average over the system. The complex dielectric permittivity ε is defined as
ε = 1+4πχe, where χe is the dielectric susceptibility which connects the polarisation and
electric field as P = χeE (Born and Wolf, 1999). Within the extended Lorentz model, the
dielectric function is finally expressed as a frequency integral as

ε(ω) = 1−
∫

ωD

0

AD(ωp)

ω2− iων̃(ω)−ω2
p

dωp,

with A≡ 4πΓ
′(ωp). (3.27)

In general, A will depend on the material chemistry since it depends on intermolecular forces
through Γ′. However, in real experiments, the dielectric permittivity usually takes arbitrary
units. Thus, A will be the free fitting parameter when I use Eq. (3.27) in practice. Clearly,
if D(ωp) were given by a Dirac delta, one would recover the standard simple-exponential
(Debye) relaxation for small ω . Note that, this approach can be extended to deal with
molecules that have stronger inner polarisability by replacing the external field field E with
the local electric field Eloc, which has been studied in Froehlich (1958). In condensed matter
systems, the electric field that effectively acts on a molecule locally is equal to the external
field only in the limit of vanishing polarisability of the molecule. This is a well-known
effect whereby the field in the medium is affected (diminished) by the local alignment of the
polarised molecules. The simple Lorentz cavity model works well in materials where the
building blocks are not pathologically shaped or anisotropic, and is applicable to random
isotropic distribution of the building blocks. Without loss of generality, I present an analysis
for the case of Markovian friction ν = const. The derivation of the local field or Lorentz
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field can be found in many textbooks,

Eloc = E+
4π

3
P. (3.28)

As a consequence, replacing E with Eloc, I write the equation of motion as (noise excluded)

s̃′I(ω) =− zI

ω2− iων−ω2
m

(
Ẽ(ω)+

4π

3
P̃(ω)

)
. (3.29)

Combining the above relations together and summing over all contributions from all the
building blocks, I obtain

P =

(
∑
I

zIs′I + cEloc

)
; ε(ω) = 1− χ(ω)−4πc

1+ 1
3 χ(ω)+4πc

;

χ(ω) =
∫

ωD

0

AD(ωp)

ω2−ω2
p + iων

dωp, (3.30)

where the total polarisation comes from the additional effect from the local electric field and
c is the microscopic electronic polarisability and I used D = εE = E+4πP. I have checked
that accounting for the Lorentz field and using Eq. (3.30) for the fitting produces very similar
results and will not alter the fitting of the dielectric relaxation data qualitatively.

If I use a VDOS obtained numerically from a system with a finite number of particles
in simulations, for example, the random networks in Section 3.1, then it is important to
correctly take care of finite size effects in Eq. (3.27). Recall if a finite number of particles
is used in such simulations, the VDOS D(ωp) is not a continuous function, but discrete,
which is D(ωp)∼ ∑m δ (ωp−ωm). Thus, I rewrite Eq. (3.27) as a sum rule over a discrete
distribution of ωm:

ε(ω) = 1−∑
m

A
ω2− iων̃(ω)−ω2

m
(3.31)

where A has absorbed the scaling constant. Since the dielectric function is a complex quantity,
I split it into its real and imaginary parts, i.e. ε(ω) = ε ′(ω)− iε ′′(ω):

ε
′(ω) = ε

′
∞ +∑

m

A1(C2ω2
m−ω2 + ν̃2(ω)ω)

(C2ω2
m−ω2 +ων̃2(ω))2 +(ων̃1(ω))2 , (3.32)

ε
′′(ω) = ∑

m

A2(ων̃1(ω))

(C2ω2
m−ω2 +ων̃2(ω))2 +(ων̃1(ω))2 . (3.33)

Recall that parameter C relates vibrational frequencies between realistic systems and simu-
lations; ν̃1 and ν̃2 are real and (minus) imaginary parts of ν̃(ω) in Fourier space, ν̃(ω) =
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ν̃1(ω)− iν̃2(ω). The Markovian friction case is retrieved by simply setting ν̃ = ν̃1 = const
in the above expressions. A1,A2,ε

′
∞ are re-scaling constants that need to be calibrated in

the comparison with experimental data. It is important to note that the experimental data of
dielectric permittivity and dielectric loss are not necessarily given in the same units and there
is, in general, no coherence between the offsets in the plots of the ε ′ and ε ′′ curves. For this
reason, values of A1 and A2 do not necessarily coincide.

The linear behaviour of ε
′′ when ω → 0

Observed in all numerical calculations of the VDOS in the vicinity of the mechanical stability
point of disordered solids, there exists a lowest non-zero eigenfrequency ωmin≪ 1, and a
vanishingly small gap between ω0 = 0 and ωmin. Recent studies, e.g. Lerner et al. (2016);
Schwartzman-Nowik et al. (2019), have pointed out that a scaling D(ωp)∼ ω4

p, is possibly
related to soft anharmonic modes. I perform an asymptotic analysis of the limiting behaviour
of D(ωp) at ωp→ 0 in the context of the dielectric response, which clearly shows that only
asymptotic scalings D(ωp)∼ ωn

p, with n > 3 can lead to meaningful behaviour of ε ′′(ω).
I specialise on the Markovian case ν = const and take the limit ω → 0 in Eq. (3.27):

lim
ω→0

ε(ω) = lim
ω→0

(
1−

∫
ωD

0

AD(ωp)

ω2− iων−ω2
p

dωp

)
= 1−A lim

ω→0

∫
ωD

0

D(ωp)

ω2− iων−ω2
p

dωp.

(3.34)

I can expand D(ωp) around ωp = 0:

D(ωp) = D(0)+D′(0)ωp +
D′′(0)

2
ω

2
p +

D(3)(0)
6

ω
3
p + ... (3.35)
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Thus, after substituting Eq. (3.35) into Eq. (3.34), I have

lim
ω→0

ε(ω) = 1−A lim
ω→0

∫
ωD

0

D(0)+D′(0)ωp +
D′′(0)

2 ω2
p +

D(3)(0)
6 ω3

p + ...

ω2− iνω−ω2
p

dωp

= 1−A lim
ω→0

∫
ωD

0

[
D(0)+D′(0)ωp +

D′′(0)
2 ω2

p +
D(3)(0)

6 ω3
p + ...

]
(ω2 + iνω−ω2

p)

ω4−2ω2ω2
p +ω4

p +ω2ν2 dωp

= 1−A lim
ω→0

∫
ωD

0

W0(ω)+W1(ω)ωp +W2(ω)ω2
p +W3(ω)ω3

p + ...

ω4−2ω2ω2
p +ω4

p +ω2ν2 dωp

where I denote:

W0(ω) = D(0)(ω2 + iνω), W1(ω) = D(0)′(ω2 + iνω),

W2(ω) =−D(0)+
D(0)′′

2
(ω2 + iω),W3(ω) =

(ω2 + iνω)D(3)(0)
6

−D′(0). (3.36)

In order to let the integrand be continuous for both real and imaginary parts, I require
(ω,ωp) ∈R+∪{0}×R+∪{0}, such that it makes sense to change the order of integra-
tion/limit at (0,0), so D(ωp)→ 0,D′(ωp)→ 0,D′′(ωp)→ 0,D(3)(ωp)→ 0 as ωp→ 0. There
is no restriction for D(4)(ωp) or higher order. Hence, we must have D(ωp)∼ ωn

p for n > 3.
As for the scaling of ε ′′ for small ω , which will be shown shortly, I set D(ωp)∼ ω4

p to study
the behavior of

lim
ω→0

∫
ωD

0

ω4
p

ω2− iνω−ω2
p

dωp. (3.37)

To give a trivial example for the asymptotic analysis, I take ωD = v = 1, and the integral
can be evaluated analytically to the following expression

ε
′′(ω) =

∫ 1

0

ωω4
p

(ω2
p−ω2)2 +ω2 dωp (3.38)

= ω +
1
2

(
(ω2 + iω)3/2 arctan

[
i√

ω2 + iω

]
− (ω2− iω)3/2 arctan

[
i√

ω2− iω

])
(3.39)

from which I obtain

ε
′′(ω)≈ ω +

π

4
((ω2 + iω)3/2− (ω2− iω)3/2) (3.40)

and hence ε ′′(ω)∼ ω in the limit of small frequency. This finding lends further support to
this form of the VDOS in the zero frequency limit, and I therefore use this scaling in the
finite-size gap between ω0 = 0 and ωmin, which results in a linear behaviour of the left flank
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Fig. 3.5 Real part of the dielectric function as a function of the frequency of the applied
field. Symbols are experimental data of the real part of the dielectric function of glycerol at
T = 184K from Lunkenheimer et al. (2000). The solid line is the theoretical calculation for
the Markovian friction case, i.e. ν = const in Eq. (3.32). The dot-dashed line is the real part
of the Fourier transform when I consider the best-fitting (empirical) stretched-exponential
function with β = 0.65 and τ = 6555. I have taken C = 10,ν = 1620 and A1 = 0.039.
Rescaling constants are used to adjust the height of the curves.

of the α-peak in ε ′′(ω) in perfect agreement with experimental data, which will be shown in
the next section.

It is important to emphasise that in Eq. (3.27), low-frequency soft modes which present
in D(ωp) necessarily play an important role also at low field frequencies ω , because of the
ω2 term in the denominator. As we will see, this fact in the theory implies a direct role of the
boson peak on the low-frequency part of the dielectric relaxation, and in particular on the
α-relaxation process.

3.4 α-relaxation in dielectric response of glassy glycerol

I firstly present theoretical fittings of experimental data (Lunkenheimer et al., 1996, 2000) on
glycerol at T ≈ Tg using Eqs. (3.32,3.33), also in comparison with the empirical best-fitting
using Kohlrausch stretched-exponential relaxation, namely ε(t)∼ exp[−(t/τ)β ].

In Fig. 3.5, I plot the comparisons for ε ′(ω) at T = 184 K, i.e. slightly below Tg, obtained
by implementing the numerical VDOS of Fig. 3.2 for Z = 6.1 in Eq. (3.32). In this case, it is
clear that the theoretical model performs significantly better than the Kohlrausch best-fitting
(that is optimised for the joint fitting of dielectric loss below). This suggests that excess soft
modes are important for the fitting of the dielectric response at the glass transition.
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Fig. 3.6 Dielectric loss modulus as a function of the frequency of the applied field. Symbols
are experimental data of the imaginary part of dielectric function of glycerol at T = 184K
from Lunkenheimer et al. (2000). The solid line is the theoretical calculation for the Marko-
vian friction case, i.e. ν = const in Eq. (3.33). The dot-dashed line is the imaginary part
of the Fourier transform when I consider the best-fitting (empirical) stretched exponen-
tial (Kohlrausch) function with β = 0.65 and τ = 6555. In the calculation, I have taken
C = 10,ν = 1620 and A2 = 0.0437. Rescaling constants are used to adjust the height of the
curves.

In Fig. 3.6, I present fittings of the dielectric loss, ε ′′(ω) for the Markovian case
ν̃ = ν̃1 = const in Eq. (3.33). In this case, it is seen that the framework, even in its
Markovian-friction version, provides a reasonably good fitting of the α-peak on both the left-
hand and the right-hand side of the peak, and the overall quality of the fitting is comparable
to one of the Kohlrausch best empirical fittings. The theoretical model provides the crucial
connection between the salient features of the VDOS near Tg and the corresponding features
of the response. Of course, at the higher-frequency end of the α-wing, other effects may
as well be important which are not described by the model: in particular, the existence of
Johari-Goldstein β -relaxation-type contributions to the loss modulus in this regime has been
shown for a variety of systems (Blochowicz and Rössler, 2004; Döß et al., 2002; Mattsson
et al., 2003; Paluch et al., 2001; Schneider et al., 2000).

On the left-hand ascending side of the peak, the scaling D(ωp)∼ ω4
p leads to the linear

behaviour ∼ ω1, as being analysed in the last section, for the ascending part of the peak. On
the high-ω side of the peak, where the dynamics is dominated by the soft boson-peak modes
and the VDOS is approximately flat as a function of ωp in Fig. 3.2, the model, reproduces,
remarkably, the asymmetric α-wing behaviour, still in good agreement with the experimental
data.
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Fig. 3.7 Dielectric loss modulus as a function of the frequency of the applied field. Symbols
are experimental data of the imaginary part of dielectric function of glycerol at T = 184K
from Lunkenheimer et al. (2000). The solid line is the theoretical description presented in this
work for the non-Markovian friction case, i.e. ν̃(ω) in Eq. (3.33) is the Fourier transform of
ν(t) = ν0 exp(−4tb). The dot-dashed line is the imaginary part of the Fourier transform when
I consider the best-fitting (empirical) Kohlrausch relaxation function ε(t)∼ exp[−(t/τ)β ]
with β = 0.65 and τ = 6555. In the calculation, I have taken C = 10, A2 = 0.0437 and
b = 0.3. Rescaling constants are used to adjust the height of the curves.

In Fig. 3.7, I present the same fitting, but now with a non-Markovian friction given by
ν(t) = ν0 exp(−4tb) used in Eq. (3.33), with b = 0.3 suggested by previous studies on glassy
dynamics (Hansen and McDonald, 2008). Overall, the non-Markovian friction provides a
better fitting, especially on the large frequency regime, which suggests that memory effects in
the atomic dynamics are non-negligible. However, the memory kernel due to non-Markovian
friction does not appear to be essential to generate and reproduce the α-wing asymmetry,
which emerges in Fig. 3.6.

This comparative analysis therefore demonstrates quite clearly that while memory effects
are important, the main cause for the α-wing asymmetry is the excess of soft vibrational
modes in the VDOS, which is a very important outcome of my study.

3.5 Dielectric relaxation in the time domain

It is also interesting to have the dielectric response in the time domain. In order to keep
the derivation amenable to analytical treatment, I focus on the case of Markovian friction,
ν = const. The time dependent dielectric function ε(t) and complex dielectric function ε(ω)
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are related as:

dε(t)
dt

=
1

2π

∫
∞

−∞

(ε(ω)− ε∞)eiωtdω; ε(ω) = ε∞−
∫

∞

0

dε(t)
dt

e−iωtdt. (3.41)

Recall that the Fourier transform of a function f (t), in this thesis, is defined as:

f̃ (ω) =
∫

∞

−∞

f (t)e−iωtdt (3.42)

while the inverse Fourier transform is

f (t) =
1

2π

∫
∞

−∞

f̃ (ω)eiωtdω. (3.43)

I firstly need to find the time derivative of ε(t):

dε(t)
dt

=− 1
2π

∫
∞

0

∫
ωD

0

AD(ωp)eiωt

ω2− (Cωp)2− iων
dωpdω

=
∫

ωD

0
AD(ωp)

∫
∞

0
− 1

2π

eiωt

ω2− (Cωp)2− iων
dωdωp. (3.44)

Note that, for the inner integration,
∫

∞

0 −eiωt/(ω2− (Cωp)
2− iων)dω , one could make an

analytic continuation of ω to the complex plane and use contour integration to evaluate the
Bromwich integral. However, I can achieve the same result via a simpler route just using
the Fourier inversion theorem (Folland, 1992), where the uniqueness of the inverse Fourier
transform is ensured. If we can find a function of time, whose Fourier transformation gives
back the complex dielectric function ε(ω), then this function would be the time derivative of
the dielectric relaxation ε(t). I use the following ansatz

e−ξ t sin(ιt)
ι

H(t) (3.45)

where ξ = ν/(2M) and ι = [ν2/(4m2)− (Cωp)
2]1/2, whose Fourier transformation is ex-

pressed as 1/(ω2− iνω− (Cωp)
2).

However, we need to put care in taking ν ≫ 2mCωD, which amounts to restricting our
analysis to the high-friction overdamped dynamical regime. In this way, I finally obtain,
upon integrating over t,

ε(t) = B+
∫

ωD

0

AD(ωp)

2ι

(
e(ι−ν/2m)t

ι−ν/2m
+

e−(ι+ν/2m)t

ι +ν/2m

)
dωp, (3.46)
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Fig. 3.8 Time-dependent dielectric response. The solid line is calculated using Eq. (3.46)
with physical parameters calibrated in the fitting of Fig. 3.5. The dashed line represents the
stretched-exponential Kohlrausch function that more closely approximates our prediction,
calculated using the parameters β = 0.56 and τ = 5655. Rescaling constants are used to
adjust the height of the curves.

where B is a re-scaling constant. This equation is a key result: it provides a direct and
quantitative relation between the macroscopic relaxation function of the material and the
VDOS. The presence of a boson peak in D(ωp) directly causes stretched-exponential decay
in ε(t) via Eq. (3.46).

In Fig. 3.8, I plot predictions of Eq. (3.46) with the parameters calibrated in the
glycerol data fitting for the case ν = const, along with the Kohlrausch function (Montroll
and Bendler, 1984), for the relaxation in the time domain. It is seen that the description based
on soft modes is able to perfectly recover stretched-exponential relaxation, with stretching-
exponent β = 0.56, over many decades in frequency. Without the boson-peak modes in
the VDOS, I have checked that stretched-exponential relaxation cannot be recovered, and
the decay is simple-exponential. Hence, Eq. (3.46) provides the long-sought cause-effect
relationship between soft modes and stretched-exponential relaxation, even for the simple
case of Markovian friction where the response is clearly dominated by the VDOS.

3.6 Secondary dielectric relaxation in glassy Freons

Compared with glycerol whose experimental data of VDOS is absent, for two Freons, I
instead utilise the VDOS measured in experiments at T = 10K. For F113, I use only one
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Temperature 91K 115K 131K
b1 0.45 0.625 0.7
τ1 (seconds) 0.558 3.12 ·10−7 6.99 ·10−9

b2 0.2 0.56
τ2 (seconds) 1.55 ·10−2 5.48 ·10−8

ν0 4 ·106 3.9 ·106 6.3 ·106

Table 3.1 Parameters of the memory function for Freon 112.

Temperature 72K 74K 76K
b 0.26 0.3 0.35
τ (seconds) 7.133 0.326 2.38 ·10−2

ν0 8.28 ·106 7.28 ·106 6.28 ·106

Table 3.2 Parameters of the memory function for Freon 113.

stretched exponential term in the memory ν(t). For F112, if a secondary (β ) relaxation
is investigated, then ν(t) is the sum of two terms, both of which are in forms of stretched
exponential. The first term represents mainly the α-process although it also affects the
β -relaxation (while the second term describes only β -relaxation). Thus, the time-scale of
β -relaxation is not directly related to the time-scale of the second stretched exponential
parameter, τ2. This amounts to the fact that β -relaxation is a process which is cooperative
and at the same time quasilocalised. That is, on one hand β -relaxation is known to be related
to jumps across local wells within the same metabasin. On the other hand, my analysis
will show that there is a memory function related to β -relaxation, which is a stretched
exponential. This stretched exponential may arise from the distribution of these jumping
rates (possibly related to the coupling spectrum) but this would be ascertained in future
work. The link between α-relaxation time and stretched exponential relaxation is well
known empirically from modeling of experimental data, and this has been shown many
times on many different glass forming systems (Ngai, 2011). My model puts this fact within
a first-principle theoretical framework of GLE, which has not been done before. For the
β -relaxation, the memory function with two stretched exponentials comes directly from the
fitting of the experimental data with the GLE. To my knowledge, it has not been possible
to fit the experimental data with different forms, so this provides the underpinning for the
form of memory function, which is the first attempt to model dielectric relaxation with GLE
semi-analytical approach. Fitting parameters for F112 and F113 at different temperatures are
listed in Table 3.1 & 3.2 and resulting fittings of dielectric loss are displayed in Fig. 3.9.

For the fitting procedure, I have assumed that D(ωp) and the overall scaling for the
height of curve, A, are temperature-independent. To physically understand the difference
between F112 and F113, their dynamical coupling parameters, which is Eq. (3.17), have
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Fig. 3.9 Fitting of experimental data using the proposed theoretical model for Freon 112 (top)
at 91 K (red circles), 115 K (brown squares) and 131 K (blue diamonds) and for Freon 113
(bottom) at 72 K (red circles), 74 K (brown squares) and 76 K (blue diamonds). Solid lines
are the theoretical model presented here. A rescaling constant was used to adjust the height
of the curves since the data are in arbitrary units. Experimental data for Freon 112 were
taken from Pardo et al. (2006), while data for Freon 113 were taken from Vispa et al. (2017).
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Fig. 3.10 Spectrum of coupling constants of Freon 112 (top) and Freon 113 (bottom) as
a function of the vibrational eigenfrequency computed according to Eq. (3.17) using the
phenomenological memory functions ν(t) used in the fitting of dielectric response in Fig.
3.9, with same colour settings for the different temperatures.



3.6 Secondary dielectric relaxation in glassy Freons 71

been analysed, as is shown in Fig. 3.10. In general, the coupling spectrum decays from the
highest Debye cut-off frequency of short-range high-frequency in-cage motions, down to the
low eigenfrequency part where the coupling goes up with decreasing ωp towards zero, due
to phonons or phonon-like excitations, which are collective and long-wavelength and hence
result in a larger value of γ .

There is a substantial difference between F112 and F113, especially in the middle part
of the coupling spectrum where F112 shows much stronger coupling, which corresponds
to medium-range correlated motions. This means that motions are strongly coupled also in
the intermediate eigenfrequency domain, where modes are typically quasilocalised, which
corresponds to mesoscopic string-like motions typically associated with β -relaxation. In
addition, the F113 spectrum is overall comparatively much lower in that energy regime, which
clearly indicates that, for F113, the intermediate part of the coupling spectrum, i.e. the one of
mesoscopic and string-like motions, is scarcely populated and one has a steep decay from the
short-range high-frequency in-cage motions to the long-wavelength phonon-like excitations,
with not much in between in the mesoscopic range. Hence in F113, the anharmonicity
is much less prominent and intermediate excitations are not important. This origin of the
secondary relaxation aligns with the simulation results of Cohen et al. (2012); Widmer-
Cooper et al. (2008), which point at the cooperative, though localised or quasilocalised,
nature of secondary relaxation. This also gives insights into the difference in the form of the
memory function used for the fittings of the two Freons. Upon focusing on the integration
in Eq. (3.17): the integral of ν(t) from 0 to ∞ increases from high ωp (short-range and fast
vibration) to low ωp (long-range and slow vibration), because for slow collective vibration
there is clearly much more extended friction due to contact between many particles all
moving at the same time. Thus, the integral factor definitely contributes to the coupling
being overall stronger for F112 than for F113. However, also the boson peak contributes to
the coupling of F112 being larger than that of F113 (via the VDOS in the denominator of
Eq. (3.17)) in the specific frequency range that corresponds to the boson peak). The boson
peak maximum (in D(ωp)/ω2

p, not shown) for both materials is of the order of 2−3 meV,
i.e., ≈ 0.5−0.7 THz, which corresponds virtually to the lowest minimum in the coupling
function (see Fig. 3.10) where, in addition, the minimum value is much lower for F113 (with
larger boson peak) than for F112. That means that in such region not only there are larger
dynamical couplings for F112 due to stronger medium-range correlations/anahrmonicity, in
general, but also for the additional effect of boson peak (soft weakly-coupled modes, see Fig.
3.3) being smaller for F112 in that regime of vibrations.

As far as temperature effects on the coupling strength are concerned, I need to point out
first that, due to the fragility difference between the two Freons, the temperature range in
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which fittings were performed are noticeably different. For F113 (Tg = 71 K) experimental
dielectric functions are available at the highest reduced temperature of Tr = 76/71 = 1.07,
whereas for F112 (Tg = 90 K) the highest value is around Tr = 131/90 = 1.46. Bearing this
in mind, it can be noticed that upon increasing temperature, the "going up" tail at decreasing
ωp towards zero becomes smaller, which means less phonon-like modes. In general, absolute
coupling values shift down (lower coupling) with the increase of temperature, as expected,
and the decay of correlated motions from high ωp to low ωp becomes also somewhat steeper
with increasing T (Cui et al., 2018b).

The stronger coupling between collective and individual motions for F112 could be
a physical explanation of why in the dielectric study of F112 in Pardo et al. (2006), the
authors described so many problems to discern α- from β -relaxation. For F112 collective
vibrations, medium-ranged and slow motions are much more important than for F113, in
such a way that individual molecular motions (β -relaxation) should correlate, i.e. are much
more coupled, with motions of surrounding molecules (collective motions associated with the
α-relaxation) for F112 than for F113. And, even more, if slow vibrations are more important
and more heterogeneous in F112, this should mean stronger couplings between collective and
individual motions, so then, much more phonon scattering for F112 and, as a consequence,
lower thermal conductivity for F112 than for F113, as it has been experimentally shown. For
example, see Fig. 5 in Vdovichenko et al. (2015). In addition, it should be emphasised that
the higher thermal conductivity for F113, analysed in terms of the soft-potential model, was
also attributed to the low coupling strength between sound waves and the soft quasilocalised
modes. Moreover, the dynamical coupling function γ extends over a frequency range much
broader than that of the boson peak, and thus the role of the boson peak is confined to a
specific frequency range which is around the minimum in the coupling spectrum. The fact
that boson peak is stronger for F113 leads to a lower coupling in that region and contributes
to the already lower coupling of F113 compared to F112 in that region. Because the boson
peak is associated with soft modes, which "break" the coherence of phonons (hence more
phonon scattering), it leads to even lower coupling in the boson peak frequency range for
F113 compared to F112.

Summary

Starting from the same presumption of Goetze (2008) that dielectric relaxation emerges from
many-body dynamics in a statistical way, transcending the details of charge transport, I have
built up a model for the dielectric response of simple glass-formers. The model effectively



3.6 Summary 73

accounts for the medium and long-range anharmonic coupling among molecular degrees
of freedom and allows one to disentangle α- and β -relaxation on the basis of the extent of
dynamical coupling in different eigenfrequency sectors of the vibrational spectrum.



Chapter 4

Nonaffinity in non-centrosymmetric
medium

In both glasses and athermal granular solids, and unlike ordinary solids (e.g. crystals), the
elasticity, mechanical stability and deformation behaviour are strongly affected by internal
stresses, and by the local stress transmission, in the form of force-chains or central-force
random networks (Geng et al., 2003; Kondic et al., 2012; Majmudar and Behringer, 2005).
Indeed, glasses can be described as emerging from the liquid through a mechanism of
vitrification that can rationalise history-dependence and frozen stresses (Ballauff et al., 2013;
Fuchs and Cates, 2002). In order to elucidate the elasticity of amorphous solids in a unifying
framework, the two most studied paradigms of amorphous solids are given by random
networks, which is a model for biological filaments such as the cytoskeleton, and other
polymer-based materials and random sphere packings, a model for granular materials and
jammed matter (Levine and Lubensky, 2000; O’Hern et al., 2003) .

While numerical simulations have substantially confirmed the picture emerging from
experimental characterisation of force transmission in granular and disordered materials,
theory has somehow been left behind, with few exceptions (Blumenfeld, 2004). The central
problem is that it is very difficult to incorporate stress-transmission in theoretical models,
such as lattice theories. As remarked in Cates et al. (1998), the reason is that “In such a
medium the displacement field is not single valued, and the solution of the elastic problem,
though possible in principle, requires the whole construction history to be taken into account”.
The latter task is clearly challenging for theory. As a consequence, all analytical theories of
the elasticity and rigidity of amorphous solids proposed so far have specialised to the case of
packings near the jamming point, where all forces vanish (Mizuno et al., 2016).

In this contribution, I attempt a step forward in the direction of incorporating internal
stresses into the lattice dynamical theory of amorphous solids. The starting point, which
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allows us to proceed in this direction, is the formulation of an appropriate ansatz for the
eigenvectors of amorphous solids which contains the effect of disorder as a random per-
turbation to wave-like components (Mazzacurati, V. et al., 1996). Using this form for the
eigenvectors, we are able to evaluate the lattice dynamics for nonaffine deformations and we
can consider the effect of internal stress in a mean-field way, in the two opposite limits of
stretched bonds and compressed bonds.

Although the effects of nonaffinity have been intensively investigated in glassy materials,
the same is not true for crystals. Here I will also show that nonaffine effects are very strong
in a prototypical non-centrosymmetric crystal: α-quartz, for which the non-centrosymmetry
is also the root cause of piezoelectricity (Kholkin et al., 2008). Interatomic interactions are
modeled using a classical BKS potential proposed by van Beest et al. (1990), which includes
both a short-ranged potential and long-ranged Coulomb interactions between partial charges
on silicon and oxygen atoms. In disordered glasses, these interactions can be treated with a
truncation and can therefore be handled using the original LM approach (Carré et al., 2007;
Damart et al., 2017; Fennell and Gezelter, 2006; Wolf et al., 1999). By way of contrast, in an
ordered crystal like α-quartz, Coulomb interactions are conditionally convergent and must
be treated accordingly using the Ewald method (Ewald, 1921; Lee and Cai, 2009). I will
show later in this chapter that the corresponding long-ranged many-body contribution can
be also treated analytically and incorporated in the nonaffine response theory to predict the
elastic constants of α-quartz.

4.1 A new way to obtain nonaffine elasticity

In Chapter 2, I have shown equivalent roles of the LM formalism and the BH method to
obtain static elastic constants. In general, it is cumbersome to apply the BH method directly
because one has to express potential energy in terms of Helmholtz displacements that consist
of affine and nonaffine parts. The affine displacements are related to the external strain,
whereas the nonaffine displacements must be solved via Eq. (2.65), given that one is able to
express the total potential in terms of Helmholtz displacement. However, I note that, in the
BH method, objects like

{µνξ ι};

{
I J
µ ν

}
;

{
I νξ

µ

}
,

are mathematically equivalent to affine elastic constant CA
µνξ ι

, the Hessian matrix Hµν

IJ and
affine force field Ξ

µ

I,νξ
, respectively. Therefore, when I take a derivative of Eq. (2.65) with

respect to the strain η , I do recover Eq. (2.36). Since the Hessian matrix always has d
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(a) (b)
a

a
x y

Fig. 4.1 Sketch for the lattice examples studied here: (a) 1D linear chain with one mass in
each unit cell; (b) 1D linear chain with two masses in a unit cell of size a.

zero eigenvalues and is non-invertible, rather than taking normal mode decomposing and
simply ignore zero eigenmodes, one could instead introduce a reduced tensor H̃µν

IJ and the
corresponding local force Ξ̃

µ

I,ξ ι
, by deleting the first d rows and columns in Hµν

IJ and first d
elements in Ξ

µ

I,ξ ι
, respectively. This is because the system has translation invariance, sµ

1 can
be set to zero without loss of generality. Then the first d rows and columns in Hµν

IJ actually
contribute nothing in the first term of RHS in Eq. (2.64). The reduced H̃µν

IJ is symmetric
and now invertible because for H̃µν

IJ , since the interaction between pairs are uncorrelated in
pairwise potential, for each I, columns (rows) in H̃µν

IJ are linearly independent for J,µ,ν . As
a result, H̃µν

IJ does not have zero eigenvalues. Thus, the energy density becomes

U =
1
2 ∑

IJµν

H̃µν

IJ sµ

I sν
J + ∑

Iµνξ

Ξ̃
µ

I,νξ
sµ

I ηνξ +
1
2

CA
µνξ ι

ηµνηξ ι . (4.1)

Likewise, the minimisation condition requires sµ

I = ∑Jνξ ι(H̃
µν

IJ )−1Ξ̃
µ

J,ξ ι
ηξ ι . Solving the

minimisation condition for nonaffine displacements sν
J , and substituting back to Eq. (4.1)

gives the nonaffine BH correction to affine elastic constant:

Cµνξ ι =CA
µνξ ι
−CNA

µνξ ι
≡ 1

V̊
∂ 2U

∂ηµν∂ηξ ι

− 1
V̊ ∑

IJκχ

Ξ̃
κ
I,µν(H̃

κχ

IJ )−1
Ξ̃

χ

J,ξ ι
(4.2)

Comparing CNA with the nonaffine correction in the LM method, Eq. (2.46), I remark that
these two objects will produce the same results, as long as one takes normal mode decompo-
sition of full Hessian matrix properly. Perhaps this is not surprising in retrospect. I name the
way to get elastic constants via the reduced Hessian matrix and the reduced affine force field
leading to Eq. (4.2) as "the method of reduced fields".

I will now test all these methods to obtain static elastic constants discussed in previous
sections for several specific mechanical models. First of all, consider the simplest elastic
system, the 1D linear chains of equal masses M connected by springs k, as is shown in
Fig. 4.1(a). In this case, the potential energy of a deformed string is U = ∑n(R(n+1)−
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R(n))2(1+η)2k/2, with the Hessian being simply a number: H = 2k. If we want to preserve
the lattice periodicity in the disordered state, then there cannot be any nonaffine displacements.
The elastic modulus, in all three methods, is C = ak.

1D linear chain with two masses in a cell

I take a 1D linear chain with two masses connected via springs, with the same spring constant
k but different original lengths (see Fig. 4.1(b)). The size of each cell is a, within which
the original length of spring between masses M1, while M2 is x and y = a− x is the original
length of the spring across cells. I firstly refer to the BH method in Section 2.5. After
the deformation with a homogeneous strain η , positions of masses move from RI(n) to
RI(n)+ηRI(n)+ sI, I = 1,2 where sI are the additional nonaffine displacements each mass
has, in response to elastic deformation. The potential energy then takes the form of a sum
over cells: U = ∑n Un with

Un =
k
2
((1+η)(R2(n)−R1(n))+ s2− s1− x)2

+
k
2
((1+η)(R1(n+1)−R2(n))+ s1− s2− y)2 (4.3)

Note that the spring potentials in Un reflect the external strain η applied. The internal
displacements s1,2 are such that the change of potential energy becomes minimal. Taking
s1 = 0, this minimisation gives

s2 =
1
2
[(1+η)(R1(n)+R1(n+1)−2R2(n))+ x− y] . (4.4)

Substituting s1,2 back to Un and extracting the quadratic term in η , I obtain

k
8
[
(R1(n+1)−R1(n))2 +(R1(n+1)−R1(n))2]

η
2. (4.5)

Since a is the size of repeated cell and R1(n+1)−R1(n) = a, the elastic constant from this
method is equal to C = ak/2.

To check the approach via collective modes, I write the total potential energy as U =

k ∑n[(s1(n)− s2(n))2 +(s2(n)− s1(n+1))2]/2, where initial mechanical equilibrium condi-
tion has been assumed and the external strain is not imposed. The equation of motion for
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each mass takes the form

M1s̈1(n) =−2k
[

s1(n)−
s2(n)+ s2(n−1)

2

]
;

M2s̈2(n) =−2k
[

s2(n)−
s1(n)+ s1(n−1)

2

]
. (4.6)

There are two different ansatz for the solution and I check the results separately:
(1). I assume

s1(n) =
1√
M1

e1(q)ei(qna−ωt); s2(n) =
1√
M2

e2(q)ei(qna−ωt), (4.7)

and put them into the coupled equations of motion to get

√
M1ω

2e1 = 2k
[

e1√
M1
− 1+ e−iqa

2
√

M2
e2

]
;

√
M2ω

2e2 = 2k
[

e2√
M2
− 1+ eiqa

2
√

M1
e1

]
, (4.8)

which is equivalent to

(D(q)−ω
2I)(e1 e2)

T = 0,

D(q) =

(
2k
M1

− k√
M1M2

(1+ e−iqa)

− k√
M1M2

(1+ eiqa) 2k
M2

)
(4.9)

For convenience, I let M ≡M1 = M2 and from Eq. (2.85), the coefficient of generic solution
u(m) is (

∑I=1,2 M
a

)
[ω(1)(0,m)]2 =

ak
2

q2 (4.10)

and the elastic constant is C = ak/2.

(2). If I instead assume the form of solution to be

s1(n) =
1√
M1

e1(q)ei(qna−ωt); s2(n) =
1√
M2

e2(q)ei(qna+qx−ωt). (4.11)
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The dynamical matrix becomes

D(q) =

(
2k
M1

− k√
M1M2

(1+ e−iqa)eiqx

− k√
M1M2

(1+ eiqa)e−iqx 2k
M2

)
(4.12)

Defining ẽ2 = e2eiqx, we can readily identify same solutions in (1), so is the dispersion
relation:

ω
2(q) = k

(
1

M1
+

1
M2

)
± k

√(
1

M1
+

1
M2

)2

− 4
M1M2

sin2
(qa

2

)
, (4.13)

which is independent of x.
Again let M ≡M1 = M2 and use Eq. (2.85) by expanding vibrational frequency to the

2nd order of wavenumber, the elastic constant is computed to be C = ak/2.
To test the LM formalism in Section 2.4, I write potential energy as U = ∑n Un =

k ∑n[(R2(n)−R1(n)−x)2+(R1(n+1)−R2(n)−y)2]/2. The energy after putting the (affine)
strain η ,

Un(η) =
k
2
[(1+η)(R2(n)−R1(n))− x]2 +

k
2
[(1+η)(R1(n+1)−R2(n))− y]2 (4.14)

and

CA =
1
a

∂ 2Un(η)

∂η2 =
k
a
(x2 + y2)

FR1(n)(η) =−∂Un(η)

∂R1(n)
= k[(1+η)(R2(n)−R1(n))− x]

− k[(1+η)(R1(n)−R2(n−1))− y]

ΞR1(n) =
∂

∂η
FR1(n)(η) = k(x− y) (4.15)

where ΞR1(n) reflects the affine force acting on each particle. And similarly,

FR2(n) = k[(1+η)(R2(n)−R1(n)− x)]

+ k[(1+η)(R1(n+1)−R2(n)− y)]

ΞR2(n) = k(y− x) (4.16)
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Initial equilibrium condition requires FRn,1(0) and FRn,2(0) to be zero, so R2(n)−R1(n) =
x,R1(n)−R2(n−1) = y. The Hessian matrix is

H = k

(
2 −2
−2 2

)
, (4.17)

whose eigenvalues are λ1 = 0,λ2 = 4k, with the eigenvectors corresponding to e⃗1 = 1/
√

2(1,1),
e⃗2 = 1/

√
2(1,−1). I have

C =CA− 1
a
(⃗Ξ · e⃗2)

2

λ2
=

ak
2
, (4.18)

where the nonaffine correction is reflected via the Ξ⃗. This is consistent with the BH result.

Last, I check the newly proposed way to find CNA, namely if the reduced Hessian and
affine force field, as discussed in Eq. (4.2), can reproduce the correct elastic constant.
Deleting the first row and column in H of Eq. (4.17) and the first element in Ξ⃗, I obtain
H̃ = 2k, Ξ̃ = k(y− x). The nonaffine correction of Eq. (4.2) now reads

1
a

Ξ̃H̃−1
Ξ̃ =

k(y− x)2

2a
. (4.19)

With CA = (k/a)(x2 + y2), this again gives the correct the elastic constant: C = ak/2, but in
a faster and more convenient way compared to the original BH method.

4.2 Sinusoidal wave approximation of eigenmodes

I have already defined the Hessian matrix, affine force field, affine and nonaffine elastic
constants. In an approximation (supported by simulations) suggested in Mazzacurati, V. et al.
(1996), one can model the (normalised) eigenvectors as sinusoidal waves with wavenumber
qm = ωm/v plus a random component, εI(m), with zero average, and with variance σ2 =

⟨ε2
I (m)⟩ independent of normal mode m ∈ {1,2, ...,Nd}, i.e.

eµ

I (m) = n̂µ 1√
Nd

[√
2(1−σ2)sin(qm ·RI)+ εI(m)

]
(4.20)

where n̂µ is the polarisation unit vector such that n̂µ n̂ν = δµν .
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I define the angular average as:

N

∑
I=1

sini(qm ·RI)ε
j

I (m) = N⟨sini(qm ·RI)⟩⟨ε j
I (m)⟩ (4.21)

where i, j are non-negative integers.
For the case i = 2, which is of interest for the normalisation of the eigenvectors, the

average can be evaluated as follows. Assuming translation invariance (which is justified for a
uniform amorphous system at least in the low-q limit), there is complete freedom in choosing
or shifting the origin of the reference frame, i.e. R→ R+R′, where R′ is an arbitrary shift.
Hence, ⟨sin2(q ·R)⟩= ⟨sin2(q · (R+R′))⟩= ⟨sin2(q ·R+q ·R′)⟩. Next I define ϑ ≡ q ·R′,
from which I get ⟨sin2(q ·R)⟩= ⟨sin2(q ·R+ϑ)⟩. Since ϑ is an arbitrary scalar, I can choose
ϑ = π/2, without loss of generality, the identity must hold for any values of ϑ . Then, clearly
⟨sin2(q ·R)⟩= ⟨cos2(q ·R)⟩, which implies

⟨sin2(q ·R)⟩= 1
2
. (4.22)

Using this result, it is easy to check that eµ

I is normalised,

∑
Iµ

[eµ

I (m)]2 = ∑
I

d
Nd

[
2(1−σ

2)sin2 (qm ·RI)+2
√

2(1−σ2)sin(qm ·RI)εI(m)+ ε
2
I (m)

]
=

1
N

[
2(1−σ

2) · N
2
+Nσ

2
]
= 1.

I want to find the form of the eigenvalue λ of an eigenvector e⃗, i.e. He⃗ = λ e⃗, that is

[He⃗]µI = ∑
Jν

Hµν

IJ eν
J = ∑

J ̸=I
∑
ν

Hµν

IJ eν
J +∑

ν

Hµν

II eν
I

= ∑
J ̸=I

∑
ν

[
(sIJ−

tIJ

RIJ
)nµ

IJnν
IJ +

tIJ

RIJ
δµν

]
(eν

I − eν
J )

(4.23)

where I used Eq. (2.45) for the expression of Hessian matrix. According to Zaccone and
Scossa-Romano (2011), the orientational-dependent factors nµ

IJnν
IJ for a large system with

uncorrelated isotropic disorder can be replaced with its isotropic (angular) average, i.e.
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nµ

IJnν
IJ → δµν/d, this gives

[He⃗]µI = ∑
J ̸=I

∑
µ

(
sIJ−

tIJ

RIJ

)
nµ

IJnν
IJ(e

ν
I − eν

J )+ ∑
J ̸=I

tIJ

RIJ
(eµ

I − eµ

J )

= ∑
J ̸=I

1
d

(
sIJ−

tIJ

RIJ
+d

tIJ

RIJ

)
(eµ

I − eµ

J ) =
1
d ∑

J ̸=I

[
sIJ +(d−1)

tIJ

RIJ

]
eµ

I

≡ λeµ

I (4.24)

Terms proportional to eµ

J vanish because the definition of eigenvector requires the final result
must be independent of eµ

J .
With these approximations, I am able to write (⃗Ξκχ · e⃗(m))(⃗Ξιξ · e⃗(m)) in analytical form:

(⃗Ξκχ · e⃗(m))(⃗Ξιξ · e⃗(m)) =
N

∑
II′

d

∑
µν

Ξ
µ

I,κχ
eµ

I Ξ
ν

I′,ιξ
eν

I′

=
1

Nd

N

∑
II′JJ′

d

∑
µν

(RIJsIJ− tIJ)(RI′J′sI′J′− tI′J′)n
µ

IJnκ
IJnχ

IJnν

I′J′n
ι

I′J′n
ξ

I′J′ n̂
µ n̂ν ·[√

2(1−σ2)sin(qm ·RI)+ εI

][√
2(1−σ2)sin(qm ·RI′)+ εI′

]
. (4.25)

Here, upon taking an isotropic average, the term nµ

IJnκ
IJnχ

IJnµ

I′J′n
ι

I′J′n
ξ

I′J′ may be replaced
with (δII′δJJ′−δIJ′δI′J)Bµ,κχιξ , where Bµ,κχιξ are geometric coefficients resulting from the
angular average and are tabulated in Zaccone and Scossa-Romano (2011), I simplify

(⃗Ξκχ · e⃗(m))(⃗Ξιξ · e⃗(m)) =
1

Nd

d

∑
µ

Bµ,κχιξ ∑
II′JJ′

(δII′δJJ′−δIJ′δI′J)(RIJsIJ− tIJ)(RI′J′sI′J′− tI′J′)·[
2(1−σ

2)sin(qm ·RI)sin(qm ·RI′)+ εI

√
2(1−σ2)sin(qm ·RI′)+ εI′

√
2(1−σ2)sin(qm ·RI)+ εIεI′

]
=

1
Nd

d

∑
µ

Bµ,κχιξ

N

∑
IJ
(RIJsIJ− tIJ)

2
[

2(1−σ
2)sin2(qm ·RI)+2εI

√
2(1−σ2)sin(qm ·RI′)+ ε

2
I

−2(1−σ
2)sin(qm ·RI)sin(qm ·RJ)− εI

√
2(1−σ2)sin(qm ·RJ)− εJ

√
2(1−σ2)sin(qm ·RI)− εIεJ

]
=

Z
d

d

∑
µ

Bµ,κχιξ ⟨(RIJsIJ− tIJ)
2⟩. (4.26)
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Recall, in the last line, Z is the coordinate number labeling the number of nearest neigh-
borhoods of a tagged particle. Assuming disorder is spatially uncorrelated, the angular and
radial average have been taken separately.

4.3 Elastic modulus in random network

Unstressed random network

I first take the case of a random network of central-force springs, with no internal stress. The
interaction potential is a harmonic potential U (RIJ) = (RIJ −R2

0)/2. Also, k ≡ sIJ is the
spring constant and R0 is the distance between two particles in contact in the reference frame.
The reference state is unstressed, i.e, all springs are relaxed in the minimum of the harmonic
well. Hence, tIJ ≡ 0 and RIJ ≡ R0.

For the nonaffine part of the elastic stiffness tensor, recalling Eq. (2.46), I have

CNA
κχιξ

=
1
V
·dN ·

ZR2
0k2

∑µ Bµ,κχιξ

d · 1
d Zk

=
dNR2

0k
V ∑

µ

Bµ,κχιξ . (4.27)

The eigenvalue λ is actually independent of normal modes. Likewise, the affine term can be
expressed as

CA
κχιξ

=
NZR2

0k
2V

⟨nκ
IJnχ

IJnι
IJnξ

IJ⟩. (4.28)

Here ⟨nκ
IJnχ

IJnι
IJnξ

IJ⟩= ∑
d
µ Bµ,κχιξ , and I write the elastic constant tensor as

Cκχιξ =CA
κχιξ
−CNA

κχιξ
=

NR2
0k

2V

d

∑
µ=1

Bµ,κχιξ (Z−2d) (4.29)

For the shear modulus, ∑
d
µ Bµ,xyxy = 1/15 and Eq. (4.29) recovers the same analytical

results in Zaccone and Scossa-Romano (2011), without any fitting parameters. The pref-
actor has been compared with the simulations in d = 3 of random frictionless packings
near jamming interacting via harmonic potential in O’Hern et al. (2003), and an excellent
quantitative agreement was found, even for the prefactor NR2

0k/(30V ). For example, see Fig.
1 in Zaccone and Scossa-Romano (2011).

One should note that the prediction for the bulk modulus does not describe what is found
in jammed packings, where K ∼ Z, instead of K ∼ (Z−2d). The reason was explained in
Ellenbroek et al. (2009) and has to do with the short-range particle correlations in the packing,
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which alters the affine force balance on the particle and reduce the nonaffinity. Upon duly
accounting for these correlations, the correct scaling can be recovered within the present
framework, as shown in Schlegel et al. (2016); Zaccone and Terentjev (2014).

Random network with internal stresses

Now I relax the condition that the interparticle distance R0 coincides with the minimum of
the harmonic potential, by introducing a distribution of interparticle distances peaked at an
average value Re ̸= R0. On average, I let RIJ ≡ Re. The fact that the actual distance between
two particles in contact deviates from the minimum of the interaction automatically implies
the existence of a bond-tension or stress. In other words, the spring is either compressed,
Re < R0, or stretched, Re > R0.

It was pointed out by S. Alexander with the famous metaphor of the violin strings, that
internal stresses, which cause bonds to stretch, can make underconstrained lattices (i.e. with
Z < 2d) fully rigid, which otherwise would be floppy (Alexander, 1998). From numerical
simulations it is also known that, in disordered elastic networks, internal stresses have a
profound effect on mechanical response, and can indeed make underconstrained lattices rigid
(Huisman and Lubensky, 2011).

With these model assumptions, I get

CA
κχιξ

=
NZR0Rek

2V
⟨nκ

IJnχ

IJnι
IJnξ

IJ⟩=
NZR0Rek

2V

d

∑
µ

Bµ,κχιξ (4.30)

To evaluate the nonaffine contribution to elastic constants CNA
κχιξ

, I have

(⃗Ξκχ · e⃗(m))(⃗Ξιξ · e⃗(m)) =
1

Nd

d

∑
µ

Bµ,κχιξ ·NZ · (kR0)
2 =

Zk2R2
0

d

d

∑
µ

Bµ,κχιξ (4.31)

λ =
1
d ∑

J ̸=I

[
sIJ +(d−1)

tIJ

RIJ

]
=

Z
d

[
k+ k(d−1)

(
1− R0

Re

)]
(4.32)

CNA
κχιξ

=
1
V
·Nd ·

dZk2R2
0

dZ
[
k+ k(d−1)

(
1− R0

Re

)] d

∑
µ

Bµ,κχιξ

=
NdkR2

0

V
[
1+(d−1)

(
1− R0

Re

)] d

∑
µ

Bµ,κχιξ , (4.33)
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where I used tIJ = k(Re−R0). Finally, the elastic constants for the network with internal
stress may be expressed as

Cκχιξ =CA
κχιξ
−CNA

κχιξ
=

NkR0Re

2V

Z−
2d R0

Re

1+(d−1)
(

1− R0
Re

)
 d

∑
µ

Bµ,κχιξ (4.34)

Obviously, if Re = R0, then I recover Eq. (4.29).
Thus, I have found that with internal stresses, the elastic constants (including the shear

modulus Cxyxy) are given by:

Cκχιξ ∼ (Z−2d f ), f =
R0/Re

1+(d−1)
(

1− R0
Re

) . (4.35)

If Re < R0, then f > 1; if Re > R0, then f < 1. Fig. 4.2 shows, when d = 2, how the ratio
Re/R0 affects the dependence of Cκχιξ on Z.

Fig. 4.2 Sketch of the dependence of the elastic constant Cκχιξ as a function of coordination Z
for different values of the internal stress parameter Re/R0 which indicates the initial particle
displacement from the interaction minimum. Results are obtained in the 2-dimensional
system.

From a physical point of view, the behavior seen in Fig. 4.2, means that when the internal
strain is raised due to initially stretched network bonds, then larger elastic constants are
required to "pull back" particles to equilibrium positions. On the other hand, if the bonds are
initially compressed, the elastic constants become smaller. The fact that pre-stretched bonds
lead to a larger elastic modulus confirms an earlier intuition of Alexander (1998).
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(a) (b) (c)

Fig. 4.3 Unit cell of α-quartz from different perspectives: (a) top view (b) left view (c) front
view. Si atoms are in cyan, O atoms in red.

4.4 Generating the relaxed structure of α-quartz

Lattice structure

X-ray and neutron crystallography have been applied to many materials to determine the
crystal structure and atomic positions, including α-quartz. It has been shown that crystals of
α-quartz have a trigonal Bravais lattice composed of SiO4 tetrahedra that are linked together
at their corners to form a 3-dimensional network (Sutter and Yavas, 2017). The conventional
unit cell, shown in Fig. 4.3, is hexagonal and contains three molecules of SiO2. Its c-axis
is a threefold screw axis; that is, the lattice remains unchanged after a rotation of 120◦

about this axis followed by a translation of +c/3 along the same axis. Along the negative c
direction, the screw axis is left-handed if the 120◦ rotation appears clockwise while if the
rotation appears counterclockwise, the screw axis is right-handed. α-quartz may exist in
either of these forms, which are enantiomorphs (mirror images). α-quartz crystals rotate
the polarization of light propagating parallel to the c-axis, which is therefore also called the
optical axis, in the same sense as the screw. Perpendicular to the c-axis, are three twofold
axes that are separated from one another by angles of 120◦ and intercept the c-axis at intervals
of c/3. The absence of an inversion center allows α-quartz to exhibit piezoelectricity when
pressed along one of the twofold axes that are therefore often named electrical axes (Sutter
and Yavas, 2017).

Two space groups, P3121 or P3221, can be used to label the α-quartz, depending on
whether the c-axis is left- or right-handed. Here, I initially used the consistent results of
lattice constants from Bragg and Gibbs (1925), Wyckoff (1963) and Kihara (1990), with
lattices parameters a and c at 298K equal to 4.9137Å and 5.4047Å respectively. The atomic
positions of left-handed α-quartz are given in the right-handed hexagonal coordinate systems
in Table 4.1.
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Atom x y z
Si 0.4697 0 0
Si 0 0.4697 2/3
Si 0.5303 0.5303 1/3
O 0.4133 0.2672 0.1188
O 0.2672 0.4133 0.5479
O 0.7328 0.1461 0.7855
O 0.5867 0.8539 0.2145
O 0.8539 0.5867 0.4521
O 0.1461 0.7328 0.8812

Table 4.1 Fractional coordinates of atoms of left-handed α-quartz given in the scaled unit at
298K at ambient pressure (Kihara, 1990).

Empirical potential

In the present work, the cohesion of α-quartz is modeled with the classical BKS potential,
which is based on a short-range Buckingham potential and long-range Coulombic interactions
between partial charges on Si and O atoms. Different parametrisations of this potential exist
in Mantisi et al. (2012); van Beest et al. (1990). I have used the original parameters from van
Beest et al. (1990), which do not include any direct Si-Si longer-range interaction, because
they provide the best agreement with experimental measurements of elastic constants of
α-quartz (Carré et al., 2008). The short-range potential between atoms I and J is expressed
as:

Φ
sh(RIJ) =

{
AIJe−

RIJ
ρIJ −CIJ

R6
IJ
−

[
AIJe−

Rc,sh
ρIJ − CIJ

R6
c,sh

]}
H(Rc,sh−RIJ). (4.36)

The parameters of the potential are given in Table 4.2. The best agreement with experimental
data is obtained for Rc,sh = 10Å (Carré et al., 2008).

In order to treat the Coulombic interactions analytically, I used the classical Ewald
method (Born and Huang, 1954; Ewald, 1921; Lee and Cai, 2009; Toukmaji and Board,
1996). In this approach, the point charge distribution, which is described by delta functions,
is transformed by adding and subtracting Gaussian distributions. The total electrostatic
energy is then re-written as the sum of a short-range term (difference between point and
Gaussian charge distributions) in real space, a long-range term (Gaussian charge distribution)
in Fourier space plus a self-interaction constant:
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AIJ(eV) ρIJ(Å) CIJ(eVÅ6)
O-O 1388.773 0.3623 175.0
Si-O 18003.7572 0.2052 133.5381

Table 4.2 Parameters of the empirical potential used to model α-quartz.

E ≡ ESR +ELR +ESI

=
1

4πε0

1
2 ∑

I ̸=J

zIzJ

RIJ
erfc

(
rIJ√
2σ

)
+

1
2V ε0

∑
G ̸=0

exp(−σ2G2/2)
G2 |S(G)|2− 1

4πε0

1√
2πσ

∑
I

q2
I ,

(4.37)

where zI is the charge on atom I, erfc(r) = 1− 2/
√

π
∫ r

0 exp(t2)dt is the complementary
error function, G = 2π[nx/Lx,ny/Ly,nz/Lz] refers to reciprocal lattice vectors and S(G) =

∑J zJ exp(iG ·RJ) is the structure factor. Here, Lx,Ly,Lz are the dimensions of the simulation
cell, which is assumed periodic and orthogonal. The parameter σ is the standard deviation
of the Gaussian distribution. It sets the cross-over between the real and reciprocal terms,
which both converge absolutely and rapidly. In the literature, one may also find the use of
a parameter α = 1/(

√
2σ). It is recommended for accurate calculations to use a cut-off

radius for the real space potential Rcut = 3.12/α and a summation in reciprocal space up to
nκ,max = αLκ . I used Rcut = 10Å, which is a trade-off between the computing times of the
short-ranged term, ESR, and of the long-range summation in Fourier space, ELR.

In the following, the short-range and self-interaction terms will be included in the short-
range BKS term of Eq. (4.36). This term can be treated with the original LM approach in
Section 2.4. Hence, only ELR requires a special treatment because of its many-body nature.

Simulation procedure

Since I consider the properties of a perfect crystal, the system can in principle be limited to
a single unit cell. In practice, I used a small but finite system, containing 1350 atoms in a
periodic orthogonal cell. I started from the lattice positions in Table 4.1 and the experimental
lattice constants, under ambient condition, where random velocity was assigned to consume
the thermal energy (Bragg and Gibbs, 1925; Kihara, 1990; Wyckoff, 1963). The full empirical
potential energy was chosen to be the sum of Eq. (4.36) and Eq. (4.37), where parameters
of BKS part are shown in Table 4.2. The structure was cooled down to ∼ 0K within 100ns,
with NPT ensemble being carried out. The timestep was set to be 1ps. I then relaxed the
simulation cell via energy minimisation reached by the steepest-descent method, adapting
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the cell dimensions with a barostat to impose zero internal stresses. The simulation was
performed with LAMMPS package (Plimpton, 1995). The equilibrium lattice constants thus
obtained are a = 4.94 and c = 5.44 Å, corresponding to a density of 2.60 g/cm3, close to the
experimental value of 2.65 g/cm3 (Heyliger et al., 2003; Wang et al., 2015a).

To validate the analytical expressions of the elastic constants, I computed numerically
their values by straining the crystal in small increments (1e-5) and computing the slope of
the resulting stress-strain curves. To obtain the affine constants, no relaxation was allowed
between affine deformation steps, i.e. the atoms remained at their affine positions, while
the nonaffine constants were computed by relaxing the atomic positions at fixed cell shape
between each strain increment.

4.5 Nonaffine lattice dynamics with the Ewald method

Ewald sum contribution

I now consider the contribution of the long-ranged term ELR in Eq. (4.37) to the affine and
nonaffine elastic constants. The expressions in elastic constants remain valid, but I need to
express the contribution of ELR to the dynamical matrix, the affine elastic constants and the
nonaffine forces.

Forces and dynamical matrix

The long-range energy ELR produces atomic forces due to the dependence of the structure
factor, S(G), on atomic positions. The expression of the resulting force is (Lee and Cai,
2009; Toukmaji and Board, 1996):

fI =−
∂ELR

∂RI

=− 1
2V ε0

∑
G ̸=0

exp(−σ2G2/2)
G2 [S(G)(−iG)zI exp [−iG ·RI]+S(−G)zI(iG)exp [iG ·RI])]

=− 1
V ε0

∑
G ̸=0

exp(−σ2G2/2)
G2 GzIIm[S(G)exp [−iG ·RI]]

=
zI

V ε0
∑

G ̸=0

exp(−σ2G2/2)
G2 G∑

J
zJ sin(G ·RIJ). (4.38)
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In the following, I simplify the notations by noting T (u) = exp(−σ2u/2)/u, such that
the contribution of the Ewald long-range term to the atomic force is written as:

fI =
zI

V ε0
∑

G ̸=0
T (G2)G∑

J
zJ sin(G ·RIJ) (4.39)

The long-range contribution to the Hessian matrix elements can be computed similarly:

1. I ̸= J:

Hµν

IJ =
∂ 2ELR

∂Rµ

I ∂Rν
J
=

zIzJ

V ε0
∑

G ̸=0
T (G2)GµGν cos(G ·RIJ)

(4.40)

2. I = J:

Hµν

IJ =− zI

V ε0
∑

G ̸=0
T (G2)GµGν

∑
J ̸=I

zJ cos(G ·RIJ) =−∑
J ̸=I

Hµν

IJ

Tensile deformation

To find the long-range effect on the nonaffine forces, I need to express the variation of
the atomic force in Eq. (4.39) when an incremental affine strain is applied to the system.
I consider first a uniaxial strain η along direction x. The dependence on η is due to the
dependence of three terms:

• the volume, V →V (1+η)

• the reciprocal vectors, which in an orthogonal box become G → 2π[nX/LX(1 +

η),nY/LY ,nZ/LZ]

• the atom-to-atom vectors, RIJ → [Rx
IJ(1+η),Ry

IJ,R
z
IJ]

I note that with these transformations, G ·RIJ is unchanged and so that the structure factor
S(G) is constant. Taking the derivative of fI in Eq. (4.39) with respect to η and I obtain:

ΞΞΞI,xx =−
zI

V ε0
∑

G ̸=0
T (G2)

(
σ

2 +
2

G2

)
G2

xG∑
J

zJ sin(G ·RIJ). (4.41)
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Taking the first and second derivatives of ELR with respect to η , I obtain the tensile stress
and affine elastic constants for the tensile strain:

σxx =
1
V

∂ELR

∂η
=

1
2V 2ε0

∑
G ̸=0

T (G2)|S(G)|2
([

σ
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2
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]
G2

x−1
)

(4.42)

and

CA
xxxx =
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(4.43)

Similar expressions are obtained for tensile deformations along y and z. Finally, the cross-
terms are expressed as:

CA
µµνν =

1
V 2ε0

∑
G ̸=0

T (G2)|S(G)|2
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1
2
−
[

σ
2 +

2
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4
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µG2
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)
.

(4.44)

Shear deformation

I now consider the case of an affine shear strain parallel to the y planes with displacements
along the x direction. The applied strain is noted γxy ≡ γ . Under this strain, axes of the
box become: a′1 = (Lx,0,0) = a1,a′2 = (Lxγ,Ly,0),a′3 = (0,0,Lz) = a3 while the reciprocal
vectors become: G′ = 2π(nx/Lx,ny/Ly−nxγ/Lx,nz/Lz) and the atom-to-atom vectors be-
come: R′i j = (Rx

IJ +Ry
IJγ,Ry

IJ,R
z
IJ). One can check that again G ·RIJ is unchanged during the

transformation. After taking the derivative of the long-range force in Eq. (4.39) with respect
to γ , I obtain:

ΞΞΞI,xy =−
zI

V ε0
∑

G ̸=0
T (G2)

(
σ

2 +
2

G2

)
GxGyG∑

J
zJ sin(G ·RIJ). (4.45)

Similarly, the shear stress is expressed as:
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σxy =
1
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and the affine elastic constant:
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Some other affine elastic constants from ELR

Recall the formula of affine approximation hold for a generic strain tensor, Eq. (2.41):

CA
µνκχ =

1
V

∂ 2ELR

∂ηµν∂ηκχ

(4.48)

For C16 =Cxxxy, C14 =Cxxyz and C56 =Cxyxz, I have respectively,
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4.6 Comparison with experimental data for α-quartz

I first use Eq. (4.40) to compute the dynamical matrix of the present atomic-scale model of
α-quartz and, after diagonalisation, obtain the VDOS. The result is shown in Fig. (4.4)(a),
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Fig. 4.4 Comparison of the VDOS (a) and reduced VDOS (normalised by the frequency
squared) (b) obtained numerically with the BKS model and experimentally with inelastic
X-ray scattering (Chumakov et al., 2014).

with a comparison to the experimental data obtained by Chumakov et al. (2014). The present
implementation of the BKS model predicts accurately the first peak of the VDOS, which
occurs at about 10 meV. The second peak is reproduced only qualitatively, being located
at a slightly higher frequency (18 instead of 16 meV) and with a slightly lower amplitude.
Normalising the VDOS by Debye law∼ω2 in Fig. (4.4)(b), we see that the numerical model
reproduces well the boson peak reported experimentally. Note that the piecewise nature of
the BKS model arises from setting the large bin for the discrete vibrational frequency of a
system with finite size. I can conclude that the present model reproduces satisfactorily the
VDOS and boson peak of α-quartz.

Second, I use Eq. (2.41) with the short- and long-ranged terms presented above to
compute both the affine and total elastic constants of α-quartz. The result is given in Table
4.3 with a comparison to experimental data. I checked by direct numerical calculations that
the analytical expressions described in the last section predict faithfully the elastic constants.
I chose the same parametrisation of the BKS potential and Ewald summation as Carré et al.
(2008), because they yield a very good agreement with experimental data, as seen in Table
4.3, when both the affine and nonaffine contributions are included. On the other hand, when
only the affine deformation is allowed, the elastic constants are largely overestimated, by a
factor 3 to 4 for C11, C33, C44, C66, and up to a factor of 15 for C12 and C13. Said in other
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words, the nonaffine correction decreases the affine elastic constants by about 70 % for C11,
C33,C44, C66 and up to 90 % for C12 and C13. I also list several elastic moduli calculated
from the method of reduced fields in section 4.1, namely Eq. (4.2). It is clear that, results are
exactly same between the LM formalism and the method of reduced fields.

Elast. Const. (GPa) C11 C33 C44 C66 C12 C13
Affine+Nonaffine 90.5 107.0 50.2 41.1 8.1 15.2
Affine only 375.6 329.6 189.2 125.4 125.2 189.1
Exp. Will et al. (1988) 86.8 105.8 58.2 39.9 7.0 19.1
Exp. Heyliger et al. (2003) 87.3 105.8 57.2 40.4 6.57 12.0
Exp. Wang et al. (2015a) 86.6 106.4 58 6.74 12.4
Affine+Nonaffine(reduced fields) 90.5 107.0 41.1

Table 4.3 Comparison between experimental measurements of the elastic constants of α-
quartz and the present numerical calculations, including both affine and nonaffine contri-
butions or only the affine part. The last row is presented, where results are calculated via
method of reduced fields(in section 4.1).

The nonaffine relaxations originate from the lack of symmetry of the α-quartz crystal
(Damart et al., 2017; Milkus and Zaccone, 2016). This is evident for the short-ranged pair
potential part of the interatomic potential since the nonaffine force vector, ΞΞΞI , which drives
the nonaffine relaxations, is written as a sum over neighbors of terms of the type Dµν

IJ Rκ
IJ

that add up to zero in a centrosymmetric environment. The same is true for the long-range
terms in Eqs. (4.41) and (4.45), which depend on ∑J zJ sin(G ·RIJ), which is also zero if
atom I is a center of centrosymmetry. In α-quartz, neither Si nor O atoms are centers of
symmetry, which may explain why nonaffine relaxations are so important in this crystal.
However, Si atoms are surrounded by close-to-perfect tetrahedra of O atoms as explained
before, while O atoms are in clearly asymmetrical environments since the Si-O-Si bonds are
not straight, but make an angle close to 148o. The higher symmetry of the environment of
the Si atoms implies more limited nonaffine relaxations for these atoms. The latter depend
on the imposed deformation, but I have checked that the nonaffine displacements of the Si
atoms is systematically at least a factor of 2 smaller than that of the O atoms.

It was suggested in a recent work Milkus and Zaccone (2016) that the lack of centrosym-
metry is responsible not only for the nonaffinity of the elastic constants, but also for the boson
peak that shows up in the VDOS of glasses and non-centrosymmetric crystals. In Milkus
and Zaccone (2016), model systems were studied numerically, which included random
spring networks derived from glasses, and crystals with random bond-depletion. A universal
correlation was found between the boson peak amplitude and a new order parameter for
centrosymmetry (but importantly, not with the standard bond-orientational order parameter),
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which allowed for the collapse of data from systems with very different lattice topologies (i.e.
random networks and defective crystals).

Summary

I proposed a new simplified way to obtain static elastic constants, based on the BH method.
A fully analytical derivation of the elastic constants of athermal disordered solids within
the framework of nonaffine lattice dynamics was presented. When the particles are initially
away from the minimum, initial stresses are present. Two opposite limits of bonds being on
average stretched and bonds being on average compressed have been considered.

Nonaffine contributions are not small corrections to the elastic constants: they are
substantial (negative) contributions, which can make the resulting elastic constants up to
many times smaller than the affine estimates. This important fact has been overlooked in
previous studies on α-quartz lattice dynamics (Bosak et al., 2012).



Chapter 5

Viscoelastic response in metallic glasses

Compared with traditional disordered materials, metallic glasses (MGs) exhibit extraordinary
physical properties, in terms of their ability to sustain large loads prior to yielding and their
ductility (Spaepen and Turnbull, 1984). They are solid metallic materials, usually an alloy,
with disordered structure in atomic level. Although previous atomic-scale theories based
on defect physics and lattice dynamics, like Nabarro and de Villiers (1995), have provided
a good understanding of mechanical relaxation and internal friction in crystalline metals,
revealing from the same microscopic scale the relation between viscoelasticity and dynamical
heterogeneity for MGs has been a long-term challenge.

With the advent of MGs as the next-generation metallic materials for technological
applications, extensive experimental investigations like stress relaxation technique have
brought a wealth of observations about the viscoelasticty and anelasticity of these materials.
A lot of research, like Qiao et al. (2015); Wang et al. (2014), has been taken on the stress
relaxation of various MGs, which claims that localised plastic flow could be activated during
viscoelastic and plastic deformation. Like the situation in dielectric relaxation, the whole
relaxation spectrum of viscoelastic materials is usually fitted by the empirical Kohlrausch
(stretched exponential) function which does not arise from any physical mechanism.

Here I provide an answer to all these issues in a unifying way, by using a nonaffine
atomic-scale theory of viscoelastic response and relaxation of metallic glasses, in a bottom-
up way starting from a microscopic Hamiltonian. Similar as dielectric case, I use the ZCL
system-bath Hamiltonian to derive an average equation of motion for a tagged atom (or ion),
which turns out to be a GLE, with a non-Markovian atomic-scale friction (memory kernel).
Zwanzig (2002) and Weiss (2012) show that the latter memory kernel arises from integrating
out the fast degrees of freedom of the atomic motion. Although it is currently not possible
to specify the functional form of the time-dependence of the friction within ZCL models,
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approximated stretched-exponential forms for the microscopic friction in supercooled liquids
derived by Sjogren and Sjolander (1979) based on many-body kinetic theory are utilised.

5.1 Set-up for Cu50Zr50

In order to test the theory I firstly use stress-relaxation experiments on Cu50Zr50 glassy
system. The VDOS is needed as an input to calculate the viscoelastic response. To this aim,
I used numerical simulations of the same MGs, which takes also electronic structure effects
into account at the level of the embedded atom method (EAM).

Experiments

Thanks to the thermal stability of CuZr- based metallic glass. MG ribbons made up of
Cu50Zr50 with length over 7 mm were processed by the melt-spinning technique in an inert
argon atmosphere. Differential scanning calorimetry (DSC) was used to determine the
thermal properties of the samples that has a glass transition temperature Tg at 670 K at
a heating rate of 20 K/min. The tensile stress relaxation experiments were performed by
my colleagues with dynamical mechanical analysis (DMA) experiments using a TA Q800
dynamic mechanical analyzer. To eliminate any influences from initial states, the MG ribbons
were heated above Tg before the measurements. The tensile stress relaxation, carried out
at a constant strain of 0.4% was loaded on the model alloy for 24 hours after an initial 3
minutes equilibrium (Cui et al., 2017b). The resultant stress relaxation in a form of time
dependency that is fitted by the Kohlrausch function σ(t) = σ0 exp[−(t/τ)β ] with σ0 being
stress relaxation at t = 0, which is shown in Fig. 5.1, under three different temperatures
Tg(670 K), 0.9 Tg(603 K) and 0.8 Tg (536 K). Note that, the stress at large sufficient time, σ∞,
which is σ(t) at t = ∞, has been estimated to be zero for the three temperatures.

In Fig. 5.1 the fitting is excellent apart from deviations which are due to processes other
than the α-relaxation (e.g. other long-time or low-frequency relaxation processes). For
Cu50Zr50, I only focus on a theory of α-relaxation and its associated viscoelastic response,
without considering other processes. In the following, I will use the fitted Kohlrausch
function to obtain the dynamic moduli E ′ and E ′′ in the frequency domain. In this way, I will
be targeting the α-relaxation only, and consistently focus our attention on the comparison
between the theory and data extracted from experiments where effects other than α-relaxation
have been removed.



5.1 Set-up for Cu50Zr50 98

MD simulations with EAM potentials

In molecular dynamics (MD) simulations, my collaborators utilised the Finnis-Sinclair type
EAM potentials optimised for realistic amorphous Cu-Zr structures, whose expression is
shown in Eq. (A.1) in Appendix A (Mendelev et al., 2009). Seven independent Cu50Zr50 MG
models were obtained by quenching the system at cooling rate 1010 K/s from a liquid state
equilibrated at 2000 K with different initial positions and velocity distributions, to targeted
temperatures. The energy of system was then minimised using the conjugate gradient (CG)
algorithm, before the snapshot was taken to extract information of coordinates of atoms.
Each model was composed of 8192 atoms and external pressure was held at zero during
the quenching process using Parrinello and Rahman (1981) barostat. Periodic boundary
conditions were imposed automatically. The resulting VDOSs averaged from seven inde-
pendent glassy models are shown in Fig. 5.2. It can be easily seen that the eigenfrequency
spectrum is not sensitive to T because in the VDOS calculated for the CuZr- system, the
system finds itself in the inherent structure of the glassy state, which is only weakly sensitive
to temperatures below Tg. This holds at harmonic level where particles locate in a basin
of the deep minimum in the energy landscape. In simulations, although there are different
temperatures, the internal coordinates of atoms are quite similar except for the thermal
expansion in the simulation box, thus giving rise to very similar VDOSs. However, looking
at the inset panel that shows the simulated VDOS at the three different temperatures scaled
by Debye law, without adjusting the scale of the curves, one can find differences near the
boson peak between the three temperatures (Cui et al., 2017b).

Since under each temperature, we have seven simulated samples with different configura-
tions for position and velocity to calculate the VDOS, I take the same fitting parameters for
each sample and found that they all generate the same results. Hence, in Fig. 5.3 and 5.4, I
simply show results from one out of these seven simulated systems. The VDOS is calculated
by diagonalising the Hessian matrix for the interaction energy of an atom in CuZr alloys in
mass-rescaled coordinates, which is also used to calculate the ΞΞΞI vectors and hence Γ(ωp).
Analytical expressions for the Hessian and for ΞΞΞI as a function of the EAM interaction have
been derived in the Appendix A.

Again, I have chosen the ansatz of ν(t) = ν0 exp(−rtb) motivated by Sjogren and Sjolan-
der (1979), where b = 0.3 was found to work well for glycerol in Chapter 3. Here, a larger
value of b appears appropriate for MG (Baldi et al., 2010).
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Fig. 5.1 Kohlrausch empirical fits (solid lines) of experimental data (symbols). Top to bottom
corresponds to temperatures in the following order: 536 K, 603 K, 670 K(Tg). Solid curves
are Kohlrausch σ(t)∼ exp [−(t/τ)β ] empirical fittings used to calibrate results, where the
two parameters β and τ were chosen to be 0.69, 0.87 (mins); 0.55, 4.03 (mins); 0.55, 14.87
(mins) for Tg, 0.9 Tg and 0.8 Tg respectively.

5.2 α-relaxation in Young’s modulus of Cu50Zr50

Before presenting a comparison between the theory and the empirical best-fitting Kohlrausch
stretched-exponential relaxation fitting of experimental data on Cu50Zr50, I firstly convert
the linear response of the material to applied stress from time-dependent compliance to the
frequency-dependent dynamic moduli, for a uniaxial strain of amplitude η0:

E ′(ω) =
σ∞

η0
+

σ0ω

η0

∫
∞

0
e−(t/τ)β

sin(ωt)dt, (5.1)

E ′′(ω) =
σ0ω

η0

∫
∞

0
e−(t/τ)β

cos(ωt)dt. (5.2)

A detailed derivation of this result is reported in Appendix C.
In Fig. 5.3, I plot the comparisons for E ′(ω) at Tg = 670 K, i.e. exactly at Tg, from

Eq. (2.54) and Eq. (5.1). In this case, it is clear that the theoretical model is in excellent
agreement with the transformed experimental data, and is also very close to the Kohlrausch
function. This shows how crucial soft modes are, as well as the memory effects embodied
in the non-Markovian friction, for the understanding of the viscoelastic response and of
α-relaxation below the glass transition. In Fig. 5.4, I present fittings of the loss modulus,
E ′′(ω). Also in this case, it is seen that the theory, given by Eq. (2.55), provides an excellent
description of the experimental data. Note that, for clarity of presentation, I have changed
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Fig. 5.2 VDOS from simulated Cu50Zr50 system. Solid, dashed and dotted lines correspond
to VDOS at 670 K, 603 K and 536 K, respectively. The curves have been lifted upward in
order to be distinguishable for the reader. The inset shows the VDOS normalised by the
Debye law ∼ ω2

p which shows clear evidence of a strong boson peak.
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Fig. 5.3 Real part of the complex viscoelastic modulus. From right to left solid lines represent
E ′ for Tg, 0.9 Tg and 0.8 Tg respectively, from the Kohlrausch best fitting of the experimental
data. Symbols are calculated based on the theory. For Tg, 0.9 Tg and 0.8 Tg, b was chosen
to be 0.72, 0.58 and 0.58; r was taken to be 1.2×10−6, 7×10−6 and 3.4×10−6. ν0=0.137
was same for all temperatures. Rescaling constants have been taken to adjust the height.
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Fig. 5.4 Imaginary part of the complex viscoelastic modulus. From right to left solid lines
represent E ′′ for Tg, 0.9 Tg and 0.8 Tg respectively, from empirical Kohlrausch fittings of the
experimental data. Symbols are calculated from the theory. For Tg, 0.9 Tg and 0.8 Tg, b in
the memory-kernel of our theory was chosen to be 0.72, 0.58 and 0.58; r was taken to be
1.2× 10−6,7× 10−6 and 3.4× 10−6. ν0=0.137 was same for all temperatures. Rescaling
constants have been taken to adjust the height.

the unit of time to shift curves horizontally. This means we have arbitrary units on abscissa
and ordinate.

Remarkably, the theoretical model provides the long-sought crucial and direct connection
between the excess of low-energy (boson-peak) modes of the VDOS at Tg, the memory
effects in the dynamics, and the corresponding features of the response such as the α-wing
asymmetry in E ′′(ω). It is in fact impossible to achieve a fitting of the data using a Debye
model for the VDOS which has no excess of soft modes.

Even more crucially, in contrast with previous approaches, the theory shows that memory
effects are as important as the boson peak modes in order to describe the experimental
data. I have indeed checked that using a constant (Markovian) friction ν = const, or even a
simple-exponential time-dependence for ν(t), is not possible to describe the experimental
data. Only a stretched-exponential form of ν(t) with a value of the stretching exponent in
the range 0.58−0.72, which decreases upon decreasing T further down from Tg, allows us
to describe the data. Since ν in the theory physically represents the spectrum of dynamic
coupling between an atom and all other atoms in the material, this result implies that every
atom is long-ranged coupled to many other atoms beyond the nearest-neighbour shell, which
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is the result of the anharmonicity of the interaction and of the non-locality of the electronic
contributions to the interatomic interaction.

Also, this theoretical analysis shows that the time-scale over which atoms retain memory
of their previous collision history, τ ≡ r−1/b in the model, also increases upon decreasing
the temperature, by more than a factor two overall, even though this increase appears to be
somewhat non-monotonic, from τ ≈ 1.14 at T = Tg, to τ ≈ 3.1 at T = 0.9Tg, to τ ≈ 2.0 at
T = 0.8Tg. The variation of τ on T could be elaborated in future, when more experimental
data is available.

5.3 Set-up for another type of metallic glasses, La60Ni15Al25

Here, I combine experimental and simulation investigations with the microscopic theoretical
framework of viscoelastic response and relaxation of MGs. With this novel approach, I will
be able to unveil the atomic-scale dynamics in MGs on time-scales as many as 12 orders of
magnitude, thus providing necessary, complementary information for advanced simulation
and experimental studies.

Considering the success of the work linking the low-energy boson peak with α-relaxation
and dynamical heterogeneity in Cu50Zr50, results presented in the remaining sections in this
chapter give a new insight into the atomic-scale dynamical facets of the JG β -relaxation in
MGs. In particular, I will show the strong evidence that the JG β -relaxation is controlled by
the smallest (lightest) atomic scale species present in the MG, and that the existence of two
relaxation modes (α and JG β ) can be traced down to the large differences in atomic mass
of the metallic elements that comprise the MG.

Dynamical mechanical analysis and inelastic neutron scattering

My collaborators carried out DMA experiments according to the procedure outlined in Zhu
et al. (2014), using a TAQ800 dynamical mechanical analyzer. Fully amorphous cylindrical
samples of La60Ni15Al25 with a diameter of 2 mm were tested using the single-cantilever
bending method in an isothermal mode with a strain amplitude of 5 µm, temperature step
of 3 K and discrete testing frequencies of 1, 2, 4, 8, and 16 Hz. The complex viscoelastic
shear modulus is obtained as G(ω,T ) = G′(ω,T )+ iG′′(ω,T ) as a function of test frequency
ω and temperature T , with mechanical relaxations appearing peaks in the loss modulus
G′′(ω,T ) (Cui et al., 2018a).
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Glassy ribbons of La60Ni15Al25 were produced by melt spinning at the Institute for
Physics, Chinese Academy of Sciences in Beijing. About 12 m of ribbons with a cross-
section of 2.5 × 0.06 mm2 were placed in a thin-walled aluminum hollow cylinder (height
51 mm, diameter 20 mm, thickness 0.55 mm) for the INS experiments at the time-of-flight
spectrometer TOFTOF in Garching. An incident wavelength of λ = 2.8 Å resulted in an
accessible momentum transfer range of 0.8 ≤ q ≤ 4.2 Å−1 at zero-energy transfer. The
raw data were normalised to a vanadium standard, corrected for empty container scattering
and sample shelf-absorption, and interpolated to constant q in order to obtain the dynamic
structure factor. The background was corrected by separate measurements of the cryostat
with an empty sample holder. As the scattering probability of the ribbons was calculated to
be around 8 %, multiple scattering effects were neglected.

In order to access the largest energy transfer range available, only the data located on the
neutron energy gain side of the spectrometer were analysed. In a multi-component system
with predominantly coherent scatterers, a generalised, neutron-weighted VDOS, D(ωp), can
be obtained under the incoherent one-phonon approximation. The neutron-weighted VDOS
was obtained in an iterative procedure using the FRIDA-1 software (Wuttke, 2013; Wuttke
et al., 1993).

Molecular Dynamics simulations

My colleagues specialised in numerical simulations performed classical MD simulations
for the La60Ni15Al25 metallic alloy system using the LAMMPS package (Plimpton, 1995).
The interatomic interactions were described by the EAM potential (Sheng et al., 2008). To
obtain the VDOS of the system at various temperatures, the direct diagonalisation method
was adopted, in which the steepest-descent method is carried out for the final configuration.

The structure model contains 10,000 atoms in a cubic box with periodic boundary
conditions applied in three dimensions. It was first fully equilibrated at T = 2000K for 1 ns
in the NPT (isobaric and isothermal) ensemble, then cooled down to 300 K with a cooling
rate of 1012 K/s. In the cooling process, the box size was adjusted to give zero pressure. At
300 K, the structure was then relaxed for 2 ns in the NPT ensemble. To obtain the atomic
structures at 330, 360, 390, and 410 K, the structure at 300 K was then heated with a heating
rate of 1010 K/s, and then relaxed for 2 ns in NPT ensemble at each temperature of interest.
The MD timestep was set to be 2 fs (Cui et al., 2018a).

The VDOS can be calculated by directly diagonalising the dynamical matrix as

D(ωp) =
1

3N−3 ∑
m

δ (ωp−ωm), (5.3)
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where ωm is the eigenfrequency of the dynamical matrix and modes with zero vibrational
frequency due to free translation are excluded.

5.4 Secondary relaxation in shear modulus of La60Ni15Al25

Qualitative arguments for the form of friction kernel in La60Ni15Al25

As has been shown before in the context of Eq. (2.51), assuming PT ν̃P to be a diagonal
matrix, i.e. the damping is not correlated across different eigenvalues, the friction that the
m-th mode feels is approximated by iω ∑n(Pnm)

2ν̃n (Cui et al., 2018a). In terms of the
different atomic species forming the alloy, I write:

∑
n
(Pnm)

2
ν̃n =
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[δ (ω−ωα)]. (5.4)

The role of Pnm is to give a weight to each ν̃n contribution in the sum. All these sums could
be written also as integrals upon replacing the discrete variable ωα with the continuous
eigenfrequency ωp and introducing the VDOS as a factor in the integral over ωp. Here,
one can find that each term is inversely proportional to the mass of the atomic species in
question. I note that the atomic mass of La (138.9 u) is more than twice as large as the mass
of Ni (58.7 u) and five times larger than the mass of Al (26.98 u), which gives a much larger
weight in the sum to the Al and Ni terms. Hence, taking also stoichiometry into account,
the two terms relative to Ni and Al considered together are about three times larger than the
contribution of the La term.

In order to strengthen this claim, I also consider the role of the unknown dynamical
coupling coefficients cα appearing in Eq. (5.4). While the values of these coefficients cannot
be determined from first principles, I can still obtain valuable indications about the probable
magnitude by considering quantities like the partial correlation g(R) functions in the system.
Since these coefficients are associated with medium-range (or generically, beyond-short-
range) dynamics, features in the g(R) may give an indication about relative magnitude of
dynamical coupling between different species in the alloy.
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Also, while g(R) is a static structural quantity, it is also true that it is directly related to
dynamics via the Boltzmann inversion relation which yields the potential of mean force (Vm f p)
as Vm f p/kBT = − lng(R). In turn, the potential of mean force represents the interaction
energy between two atoms mediated by the presence of all other atoms in the system, hence it
also contains many-body effects. Therefore, g(R) is directly related to the potential of mean
force which in turn influences the correlated motions (hence the dynamics) of the atoms and
establishes (e.g. through long-range attractions) the dynamic coupling.

Consideration of the pair correlation function obtained from simulations as shown in Fig.
5.5 indicates that there is a clear broad peak for Al-Al in the regime of the medium-range
order. This supports the claim that the JG β -relaxation is due to medium-range correlations
and coupling between Al atoms. This broad peak of Al-Al with respect to the short-range
order peak stands out in comparison with the other contributions in the medium-range regime.

Finally, not only the pre-factor of the memory function of La will be smaller compared
to the other two atomic species, for the reason above, but also the characteristic time-scale
of memory decay associated with La (which would be τ3, since La would contribute a third
term to memory function) is comparatively larger, as the relaxation time is typically inversely
proportional to the mass (or at least inversely proportional to square root of the mass). Hence,
the contribution of La to memory and, hence, to the ISF would be at a somewhat longer
time-scale compared to Ni. Additionally, this contribution would be probably hybridised
or obscured by Ni, which has a larger prefactor and would explain why I result in only two
decays in the model for the ISF and memory function.

These arguments, which indicate that the La-term in the form of the memory function
given by Eq. (5.4) may be negligible, can be summarised as follows: (i) the mass-factor
in the denominator makes the contribution of La about three times smaller than the two
contributions of Ni and Al taken together; (ii) the main medium-range contributions to
the features of the g(R) emanate from Al, which corroborates the hypothesis that the cα

coefficients are larger for Al and justify dominance of Al dynamics in the JG β -relaxation;
(iii) if modeled as a third stretched exponential function, the contribution of La would have a
larger characteristic time-scale of decay and would show up at longer times, probably masked
or hybridised with the Ni contribution. Based on this approximation, the form of memory
function for the interatomic friction in Eq. (5.4) reduces to

∑
n
(Pnm)

2
νn(t) = ∑

α
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∑
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25
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ω2
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cos(ωαt)

= ν1(t)+ν2(t). (5.5)
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where ν1(t) and ν2(t) are two generic functions of time.

Radial distribution function and partials thereof

From the MD simulations, the partial pair correlation functions g(R) can be obtained for
all atomic pairs, which are shown in Fig. 5.5. The partial functions shown in Fig. 5.5(b)
clearly indicate that, in the regime of the medium-range order (between r = 4 Å and r = 7 Å),
there are broad peaks for Ni-Ni and Al-Al, which are either much larger or comparable in
magnitude to the primary peak associated with the short-range order (up to r ∼ 3 Å). In
contrast to the La-pairs, in which the short-range order peak appears to be the most dominant
(Fig. 5.5a), the more active Ni-Ni and Al-Al pair-interactions at the length-scale of the
medium-range order would also indicate a stronger dynamical coupling in this spatial regime.

The vibrational density of states for La60Ni15Al25

The filled gray circles in Fig. 5.6 represent the total D(ωp) as obtained from MD simulations
introduction in Section 5.3. A more detailed look at the VDOS can be seen through the
respective contributions of the La, Ni and Al atoms. It is clear that the initial maximum of
the total D(ωp) at around 8 meV is attributed to low-energy vibrations involving the heavy
La atoms, while vibrations of the Ni atoms occur around 15 meV and are responsible for
an apparent shoulder on the high-energy side of the main vibrational band. The vibrational
dynamics of the light Al atoms are, in contrast, well separated from that of the other elements
and exhibit a double-band structure at around 25 and 35 meV. The D(ωp) as obtained in
INS experiments is shown alongside the simulation data. It is important to note here that
the experimental D(ωp) is additionally weighted by the isotope-specific neutron scattering
cross-sections of the constituent elements, of which Ni-Ni and Ni-La atomic pairs will
dominate. Hence, the experimental D(ωp) should be taken only to represent a generalised,
neutron-weighted VDOS. In any case, it is apparent that the predominant contribution to the
high-frequency side of both VDOS of this MG stems from the vibrations of the Al atoms.

Dynamic mechanical analysis and comparison with theory

In Fig. 5.7, I show a master curve of the experimentally measured G′′(ω) obtained from
Zhu et al. (2014) for La60Ni15Al25 at a reference temperature of 453 K, together with a
theoretical fitting provided by Eq. (2.55). The α-relaxation appears as the main loss peak
situated around 1 Hz. A distinct feature of this system is the prominent and well separated
loss peak on the high-frequency side around 106Hz and is attributed to the JG β -relaxation.
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Fig. 5.5 Partial contributions to the radial distribution function g(R), as calculated from MD
simulations for La60Ni15Al25 at T = 300 K. The large maximum of the Ni-Al partial in (b)
occurs at g(Rmax) = 12, which falls out of the range of the vertical axis of the plot.
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Fig. 5.6 VDOS of La60Ni15Al25 at T = 300 K as determined in INS experiments (solid line)
and MD simulations (symbols).

The nonaffine lattice dynamics theory of viscoelasticity of glasses outlined above allows
us to quantitatively link the macroscopic features of the JG β -relaxation with the atomic-scale
vibrational properties of this MG. Within this framework, it is possible to rationalise the
average friction in the atomic motion of a tagged atom in the glass in terms of the respective
contributions of the atomic components, for which the friction coefficient of the I-th atom,
νI , is proportional to the reciprocal of the atomic mass of atom I (Cui et al., 2017b; Zwanzig,
2002). Thus, when summing over all tagged atoms in iω ∑n(Pnm)

2ν̃n, the contributions to
the friction coefficient coming from the heaviest atoms, i.e. La, turn out to be smaller by at
least a factor of 1/3 in comparison with the contributions of Al and Ni (taken together). For
the case of La60Ni15Al25, I thus find that the contribution of La can be neglected, given the
comparatively very large mass of La, which leaves the average friction as the sum of two
contributions, those of Ni and Al, respectively, which carry widely different relaxation time
scales, by virtue of the different atomic masses.

As derived before, in the sum over n only terms corresponding to Ni and Al atoms survive,
which are well separated in magnitude given the difference in mass between Ni and Al. I
then divide the sum into two groups, for Ni and Al, respectively, and then average each
group separately. The final result is that the average friction memory function consists of two
distinct contributions, according to Eq. (5.5), both of which will decay in time but with two
different and well-separated relaxation times, τ1 and τ2, respectively. The shorter relaxation
time τ2 (associated with the JG β -relaxation) is related to the atomic dynamics of the lighter
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Fig. 5.7 Master curve of the imaginary part of the complex viscoelastic modulus, G′′(ω),
at a reference temperature T = 453 K. The red and blue curves are fitting results to the
theoretical model using the experimental and simulated VDOS, respectively, as input.

element, Al, whereas the other term has a longer relaxation time τ1, dominated by the atomic
dynamics of the heavier element, Ni, which contributes to the α-relaxation time.

With an appropriate ansatz for ν(t), I obtain the ISF via ν(t)∼ F(q, t)2 (Bagchi, 2012;
Sjogren and Sjolander, 1979). It is known that in supercooled liquids F(q, t)∼ exp[(−t/τ)b]

for the α-relaxation, where the stretching exponent b has value between b= 0.5−0.7 (Hansen
and McDonald, 2008). When both α- and β -relaxations are present, F(q, t) has a two-step
decay, with a first decay at shorter times due to the β -relaxation, and a second decay at
much longer times due to the α-relaxation. On the basis of this evidence, I take the time
dependence of each of the two terms in the memory function to be stretched-exponential
with different values of τ and b,

ν(t)∼ exp[−(t/τ1)
b1]+ν2 exp[−(t/τ2)

b2], (5.6)

where ν2 is a constant.
The curves in Fig. 5.7 are fits to experimental data using the VDOS obtained in both

INS experiments (red) and MD simulations (blue). It is apparent that the theoretical model
excellently captures both peaks in the loss spectrum over a frequency range of some 10
orders of magnitude with the resulting parameters: τ1 = 0.67s, b1 = 0.45, τ2 = 4.04 ·10−7s,
b2 = 0.47 and ν2 = 0.07. I note here that the two-component ansatz is the simplest model
with the smallest number of free parameters that completely describes the experimental G′′
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Fig. 5.8 Time decay of the square-root of total memory function for the friction ν(t),
exhibiting two decays corresponding to α- and β - decay in the intermediate scattering
function F(q, t), respectively, according to the relation F(q, t)∼

√
ν(t) that follows from

Eq. (3.18)

data, which is congruent with the theoretical result derived in previous sections, where ν(t)
reduces to a sum of two terms. Surprisingly, I obtain the same fitting parameters for both
the experimental and the simulation VDOS, although the two data sets exhibit noticeably
different features. In a way, this result reassures us that the differences in the two VDOS did
not simply “disappear" into the fitting parameters and genuinely implies that these differences
do not play a substantial role in the mechanical response. Moreover, it suggests that the
qualitative shape of the VDOS, i.e. the location of the peaks, especially on the low-frequency
side, is of primary importance. In a broader perspective, this result implies that the origin of
the JG β -relaxation in various types of glasses can be traced back to the generic shape of
the VDOS and encourages the development of a universal theory based on the microscopic
framework employed here.

Qualitative behaviour of intermediate scattering function from theoreti-
cal fitting

The square-root of ν(t) is shown in Fig. 5.8 following the relation F(q, t)∼
√

ν(t). It can be
seen the characteristic two-step decay of F(q, t) presents in systems with well separated α-
and β -relaxations, with the first decay occurring on the typical time scale of the β -relaxation,
τβ ∼ 10−7s, followed by a much slower decay given by the time scale set by τ1. While the
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time scale τβ closely matches the time scale τ2 set by atomic dynamics dominated by Al,
the typical α-relaxation time of glasses, τα ∼ 10−2s, is significantly different from the time
scale τ1 associated with Ni, as the α-process is more complex and the square-root mixing of
the different time scales of the above relaxation reflects this fact. Moreover, the α-peak in
G′′, and the corresponding decay in F(q, t), cannot be reduced to just τ1, as the time scale
range of the α-relaxation contains a strong contribution from soft modes (the boson peak) in
the VDOS (Milkus and Zaccone, 2016). This is clear from Eq. (2.53) where the term ω2

p in
the denominator gives a large weight to the low-ωp part of the VDOS, which contains the
boson peak proliferation of soft modes, as was shown in previous sections for the case of
CuZr alloys which present α-relaxation only and also for dielectric relaxation of glycerol in
Chapter 3.

Summary

I applied the theory of dissipative nonaffine lattice dynamics to MGs, to obtain dynamic
viscoelastic moduli which are functions of the vibrational VDOS and of the emergent non-
Markovian atomic-scale friction coefficient (memory kernel) that embodies the long-range
coupling between atoms. Strong memory effects were found at the atomic level, possibly
due to the non-local electronic component of interaction. The results of nonaffine lattice
dynamics theory shed light onto the microscopic glassy-state dynamics over a temporal range
of 12 orders of magnitude and reproduce the distinctive two-step decay of the intermediate
scattering function that is a characteristic feature of systems exhibiting both α- and β -
relaxations.



Chapter 6

Damping is related to disorder in elastic
solids

The dynamical structure factor (DSF) conveys the information of phonon transport in crys-
talline solids, as well as in disordered systems. In particular, the width of the structural peaks
in DSF is representative of the mechanical damping in the material. While anharmonic effects
are believed to cause quadratic damping in low frequency regime for both longitudinal and
transverse waves (Herring, 1954), the damping coefficient is instead found proportional to
the frequency of the acoustic mode, and therefore is linear in low wavevectors, in a harmonic
theory of quenched-averaging of the DSF.

To explain the origin of logarithmatic enhancement in Rayleigh scattering with the
replica theory, I will mainly consider systems with similar elastic property as in (Gelin et al.,
2016), in an athermal regime where scattering is purely harmonic (no viscous/anharmonic
dissipation involved). However, such systems usually have coupled internal longitudinal and
transverse propagators: the explicit form of damping is thus not as clearly defined (Lifshitz
et al., 1986). Hence, the present work demonstrates that, contrary to claims in Caroli and
Lemaître (2019), heterogeneous elasticity (HE) in the fully tensorial formulation developed
here for the first time is indeed able to recover the anomalous Rayleigh scattering observed
in simulations. I will work essentially within the linear acoustic dispersion relation regime

6.1 Damping in elastic waves

In the classical limit, the DSF derived in Section 2.8 and the Green’s (wave) function are
related by the fluctuation-dissipation theorem (FDT) (Kubo, 1957; Maurer and Schirmacher,
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2004; Schirmacher, 2015; Schirmacher et al., 2015b):

S(q,ω) =
kBT q2

πω
Im[G(q,ω)] with G(q,ω) =

1
−ω2 +q2c2(ω)

, (6.1)

where c(ω) is the (generalised, complex) sound velocity relating to the frequency-dependent
linear elastic modulus C(ω) = ρc2(ω) =C′(ω)− iC′′(ω). The form of the Green’s function
in Eq. (6.1) essentially represents elastic waves propagating in the system where elasticity
presents spatial correlations. Defining the sound attenuation (damping) coefficient Γ(ω) =

ωC′′(ω)/C′(ω), and the resonance frequency Ω(q) = q
√

C′(ω)/ρ , it can be directly shown
that the DSF becomes (Schirmacher et al., 2015b):

S(q,ω) =
kBT q2

Mπω

Ω2(q)Γ(ω)/ω

(Ω(q)2−ω2)2 +(Ω2(q)Γ(ω)/ω)2 . (6.2)

Near the resonance frequency ω ∼Ω(q), the form of DSF can be approximated in the form
of DHO:

S(q,ω) =
kBT q2

Mωπ

ωΓ(q)
(Ω2(q)−ω2)2 +ω2Γ(q)2 . (6.3)

Equation (6.3), for a fixed q, reaches a maximum value (peak) when ω2
max = Ω2−Γ2/2.

Assuming positive parameters Γ and Ω, the half width at half maximum (HWHF) takes the
form (

ω
2−ω

2
max
)
= Γ

√
Ω2−Γ2/4. (6.4)

Thus, near the resonance frequency Ω and at low damping, Γ is roughly HWHM of the
dynamic structure factor. I also note that, at Γ→ 0, S(q,ω) reduces to the sum of δ -functions:

lim
Γ→0

S(q,ω) =
kBT q2

2Mω2 [δ (ω−Ω)+δ (ω +Ω)], (6.5)

where the identity 2aδ (x2− a2) = δ (x+ a)+ δ (x− a) was used. Expression (6.5) in the
Γ→ 0 limit reflects the perfect crystal. Figure 6.1(a) shows the result of a 1D chain with the
same springs (k0) connecting nearest neighbours of equal mass M separated by equal distance
a. The q dependent eigenvectors/eigenvalues are calculated numerically from the symmetric
tridiagonal dynamical matrix of this simple system, before they are substituted into Eq.
(2.133). To depict this, in Fig. 6.1, I provide plots of DSF for 1D linear chains connected
with springs having some variations in spring constants (representing a realisation of disorder),
which already shows broadening of δ -function peaks, indicating that the emergence of sound
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Fig. 6.1 The dynamical structure factor of 1D linear chains with and without damping, plotted
against the non-dimensional frequency scaled by a factor

√
k0/M. There are 3000 masses

separated in equal distance in a unit cell. (a) DSF for several values of wavevector q, cf. Eq.
(6.5). (b) DSF with added disorder in some springs. A hundred springs have their spring
constants doubled, then further two hundred are replaced with three (100 out of 200) and four
times (remaining 100) spring constants compared with the original one; the wavenumber
qa = 0.2.

attenuation (damping) is linked to disorder in perfect harmonic crystals. It is clear in Fig.
6.1(a), no damping takes place at any q. The divergence of S(q,ω) as ω → 0 is due to the
elastic q = 0 scattering.

When the interaction is harmonic, the occurrence of sound attenuation is due to defects,
or generally structural disorder, which I will examine in the next section. In Fig. 6.1(b), I
show a preliminary indication of main results, showing the computed DSF with a certain
model disorder in springs: 3%−10% (randomly chosen) springs were replaced with those
of larger (twice or higher) spring constant. The more springs are replaced and the larger
spring constants they have, the wider the curve becomes. I also find that, adding disorder
does not change the position of the structural peak of DSF at the resonant frequency, which
is expected given the form of Ω(q) used in Eqs. (6.2-6.3).
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6.2 Quenched random disorder

When the local elastic modulus, or the spring constant k of a harmonic bond in a discrete
lattice model, takes random values in the system, all quantities like DSF should be averaged
over the distruibution of such random disorder. In general, quenched disorder could occur
in three ways: by randomising masses, spring constants, or equilibrium positions. It is
commonly accepted in scattering theories that the first two types of disorder are essentially
equivalent (Gelin et al., 2016), so I let all particles have the same mass M. I note the disorder
in the initial equilibrium positions might also cause the break of inversion symmetry, thus
changing affine force fields (Cui and Terentjev, 2020; Lemaitre and Maloney, 2006; Milkus
and Zaccone, 2016), which I am not considering here.

I consider the random distribution of values of the spring constant, assuming the spring
constants satisfy a normal distribution, ki ∼P(ki)≡ N(k0,σ), where i is the index of the
i-th spring, the mean value k0 is the measure of material stiffness, and the variance σ serves
as the measure of quenched disorder. In principle, the spring constant should always be
non-negative. One can introduce the truncated Gaussian distribution to set a lower bound
for spring constant (Schirmacher et al., 1998), namely P ′(k) = P(k)H(k− kmin) for some
kmin > 0. However, I found that the truncation does not change any (analytical and numerical)
results. Using Eq. (2.133), the quenched averaging of DSF is easy due to δ -functions (which
is why the truncation of the Gaussian range has no effect in this case).

⟨S(q,ω)⟩=
∫

∏
i

D [ki]P(ki)S(q,ω) ∝
f (q)
ω

∫
∏

i
D [ki]e

∑i−
(ki−k0)

2

2σ2 δ (ω2−ω
2
A,L(q,ki)),

where f (q) represents the q-dependent part: the prefactor of δ -functions in Eq.(2.133). In
the second equality I focus on the longitudinal acoustic mode, since only the acoustic branch
Ω(q) = ωA,L(q) contributes to elastic waves (Born and Huang, 1954; Cui and Terentjev,
2020). That means, only one out of Nd modes survives, and is then subjected to quenched
averaging. Although this still leaves us one set of δ -functions, which looks similar to Eq.
(6.5), the physics is completely different. Here, the system with quenched random disorder
is averaged over local realisations of the random variable (the spring constant), and I will
shortly discover a non-zero damping coefficient, while in Eq. (6.5) I had a perfect crystal
without damping in sound waves.

I also note that, unlike Eq. (6.1), this DSF relates to the lattice waves (or collective
phonon modes). In general, the lattice wave and the elastic wave are different (Born and
Huang, 1954; Trinkle, 2008), however, their difference is negligible when q is small. In
principle, the acoustic branch ωA,L(q) receives contributions from all springs satisfying
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Gaussian distributions. For analytical clarity, I simplify this by using a single continuous
variable k for the spring constant which is treated as a random variable. The quenched
average becomes

⟨S(q,ω)⟩ ∝
f (q)
ω

∫
e−

(k−k0)
2

2σ2 δ (ω2−ω
2
A,L(q,k))dk. (6.6)

Performing the integral over k gives

⟨S(q,ω)⟩ ∝
f (q)
ω

e
−

(ω2−ω2
A,L(q,k0))

2

2(σ/k0)
2ω4

A,L(q,k0) . (6.7)

The acoustic phonon frequency normally would take a form ω2
A,L = 4(k/M)sin2(qa), where

a is the lattice spacing along q. I find that, in the averaged disordered system, the expression
is changed very little. The maximum in Eq. (6.7) (the position of the acoustic resonance
peak), is found at:

ω
2
max =

1
2

ω
2
A,L(1−

√
1−2σ2/k2

0). (6.8)

If I assume a relatively low disorder, σ2/k2
0 ≪ 1, then ωmax ≈ ωA,L(q,k0) at the original

resonant frequency. Also in this case, the disorder-averaged DSF roughly takes its half
maximum when the exponent in Eq. (6.7) is of order 1. This gives the estimate of the
half-width

ω−ωA,L ≈
√

2
2

σ

k0
ωA,L(q,k0) (6.9)

This means that at low disorder the damping coefficient, the width of the broadened DSF
resonance peak as elucidated by Eq. (6.9), takes the explicit form: Γ=

√
2σωA,L/k0. Notably,

this scales linearly at low wavevectors. To verify this observation, I numerically compute the
DSF of 1D linear chains, calculating the quenched-averaged DSF for 30 realisations of the
random distribution of spring constants between the bonds, and average every point for a
given ω , thus having an independent approximate numerical evaluation of ⟨S(q,ω)⟩. This is
plotted in Fig. 6.2(a), for an example case of σ = 0.25k0, and several values of q on the same
plot, with the numerical data fitted by Eq. (6.3) to determine Γ(q) for each scattering peak.

Figure 6.2(a) shows the effect of quenched disorder is more pronounced with increasing
q. This is because the bigger the space we average, the lower q is, and so the less average
disorder is left in it. After fitting each peak of the averaged DSF, I obtain the relation
between the wavenumber and the effective damping coefficient Γ(q) defined in Eq. (6.3);
this relationship is shown in Fig. 6.2(b), for several values of σ . The values of damping
coefficient differ strongly for the cases of different disorder, but the logarithmic scale of the
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Fig. 6.2 (a) The numerical calculation showing the effect of Gaussian disorder in spring
constants on damping, for σ = 0.25k0. There are 20000 masses separated in equal distance
in a unit cell. The averaged DSF ⟨S(q,ω)⟩ for several values of q, numerically calculated
using the Gaussian distribution in spring constants of 1D linear chain, plotted against the
non-dimensional frequency scaled by a factor

√
k0/M. The data for each q is fitted by DHO

in Eq. (6.3) (solid line). (b) The log-log plot of the fitted damping constant Γ, obtained
as the peak width (also scaled in units of frequency

√
k0/M), plotted against the reduced

wavenumber qa, shows the distinct linear scaling Γ∼ q discussed in the text.
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Fig. 6.3 The resonant frequency ω̄max(q), scaled by
√

k0/M, obtained from numerical
calculation with Gaussian disorder in spring constants, for several values of σ , see Fig. 6.2(a).
The dashed line is the parameter-free curve ω̄ = 2sin(qa/2), which fits the data well, and
we can see that deviations from linearity are small, and the dependence on disorder strength
σ is weak, see Eq. (6.8).

plot allows us to see the Γ(q) dependence for all considered cases. Importantly, I rigorously
confirm the linear dependence Γ(q)∼ q, which is an unexpected result never reported in the
literature before.

The other fitting parameter for the numerically averaged DSF, illustrated in Fig. 6.2(a),
is the resonance frequency Ω(q) in Eq. (6.3), which corresponds to the ωmax(q) in Eq.
(6.8). The comparison of the model for the dispersion relation ωA,L =

√
4k0/M sin(qa/2)

supports its validity, especially when the wave vector q is not large. Here I find only a weak
dependence on the strength of disorder σ , see Fig. 6.3. I have to add at this point that the
estimated errors in the described procedure of averaging over several disorder realisations
are very low, and I am not showing them in the plots.

6.3 Density of states and the "boson peak"

The density of states can be calculated from the (lattice) Green’s function used in Eq. (6.1),
which has been shown by Eq. (2.101) (by letting z = ω2 + iε,ε → 0):

D(ω) =−2ω

π

∫
Im[⟨G(q,ω)⟩]ddq. (6.10)

Taking the quenched average of the Green’s function (directly associated with the DSF
considered above) does not change the result of the underlying FDT. Combining Eq. (6.1)
and Eq. (6.7), and again benefiting from the use of δ -function under the integral over
disorder, I can obtain the average (observable) VDOS of the longitudinal acoustic branch,
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Fig. 6.4 VDOS calculated using Eq. (6.11) with several values of σ listed in the plot.
Frequency is scaled in the same way as in Fig. 6.2. The cut-off qD is chosen at π/a.
In the limit of vanishing disorder, the "boson peak" transforms to a sharp resonance at a
characteristic frequency of 2

√
k0/M (in that similar to what one obtains from the analysis of

an isolated effect (Kosevich, 2005)), obtained from the integration Eq. (6.11) shown by the
dashed line.

which presents a characteristic feature of a peak at low frequency, in excess of the classical
Debye law in the zero-disorder case:

D(ω) ∝ ω

∫
exp

[
−(ω2−ω2

A,L(q,k0))
2

2(σ/k0)2ω4
A,L(q,k0)

]
ddq, (6.11)

where I continue to use the approximation frequency ω2
A,L = (4k0/M)sin2(qa/2).

The origin of this peak in this case is the Gaussian distribution of random constant k,
which remains in the D(ω) even after the integration over wavevectors in Eq. (6.11). The
position of this peak is in general not easy to find analytically. Figure 6.4 shows the VDOS
predicted by Eq. (6.11)on 3d systems of varying strength of (Gaussian) random disorder in
bond coefficients. Clearly, the characteristic peak position shifts with the increasing disorder
strength. The weaker the disorder (smaller σ ), the more narrow is the peak, ultimately blows
up at a resonant frequency when σ → 0. In other words, the characteristic peak disappears
when it returns to the perfect crystalline solid. It might be tempting to associate this feature
with the celebrated “boson peak”, which is a universal feature in amorphous and glassy solids
(Schirmacher et al., 1998; Shintani and Tanaka, 2008), and in some non-centrosymmetric
crystals (Cui et al., 2019b; Milkus and Zaccone, 2016), since the peak lies in the region where
the boson peak is usually expected. Although the traditional "boson peak" is interpreted in
a different way, it might be that some of the observed peaks at this range are of this origin.
Same as the model of quenched random average of DSF, Eq. (6.11) applies to a general
springs system with Gaussian distribution on spring constants. A similar instability in lattices
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with disorder in spring constants has been recently observed in Shimada et al. (2020) as a
result of proliferation of negative spring constants.

6.4 Toy model with spatially correlated elastic modulus

From now on, I focus on 2D systems. All results can be generalised to 3D case, upon letting
α,β ,κ,χ = x,y,z go through full Cartesian components and specifying bond orientation
through the pair of angles φ ,θ : ni j = (cosφi j sinθi j,sinφi j sinθi j,cosθi j). Recall Eq. (2.111)
the equation of elastic waves. With the pair interaction VIJ , Cµνκχ

IJ = hIJnµ

IJnν
IJnκ

IJnχ

IJ where rIJ

is the interatomic distance, nIJ is the unit vector pointing from I to J and hIJ =V ′′IJ(rIJ)r2
IJ−

V ′IJ(rIJ)rIJ (Lemaitre and Maloney, 2006). Prime denotes the derivative with respect to
distance. Here, I ignore the contribution of spatial correlations in stress tensors. The
influence of long-range fluctuations in stress tensor on elastic waves will be discussed in
Appendix D for the case where, instead, no fluctuations in the elastic moduli exist.

Writing nIJ = (cosθIJ,sinθIJ), the elastic constants appear to be of form Cµνκχ

IJ =

hIJ cosi θIJ sin4−i
θIJ, i = 0, ...,4. There are, hence, five local constants for each pair, they

are (Gelin et al., 2016)

C1
IJ = hIJ; C2

IJ = hIJ cos(2θIJ);C3
IJ = hIJ sin(2θIJ);

C4
IJ = hIJ cos(4θIJ); C5

IJ = hIJ sin(4θIJ). (6.12)

Contributions of each pair to the Lamé constants are µIJ = (1/8)(C1
IJ −C4

IJ) and λIJ =

(1/8)(C1
IJ +C4

IJ). I am able to express effective elastic constants Sµνκχ ≈Cµνκχ in terms of
these five local constants:

Cxxxx
IJ =

C4
IJ
8

+
C2

IJ
2

+
3C1

IJ
8

;

Cxxxy
IJ =Cxxyx

IJ =Cxyxx
IJ =Cyxxx

IJ =
C5

IJ
8

+
C3

IJ
4

;

Cxxyy
IJ =Cxyxy

IJ =Cyxxy
IJ =Cxyyx

IJ =Cyxyx
IJ =Cyyxx

IJ =
C1

IJ
8
−

C4
IJ
8

;

Cyyyx
IJ =Cyyxy

IJ =Cyxyy
IJ =Cxyyy

IJ =−
C5

IJ
8

+
C3

IJ
4

;

Cyyyy
IJ =

C4
IJ
8
−

C2
IJ
2

+
3C1

IJ
8

. (6.13)
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Then, the elastic wave function becomes

ρ
∂ 2ux(r̊)

∂ t2 =
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∂ r̊x
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(6.14)

To probe the simplest possible scenario of long-range correlations in the elastic constants,
I assume C1(r),C2(r),C4(r),C5(r) = 0 while C3(r)≡C(r) = ρC0+ρ∆C(r) is expressed in
terms of its mean value plus a random part, i.e. ∆C(r) = 0 and ∆C(r′)∆C(r′+ r) = B(r) =
γ cos(4θ)/(r2 +a2) ≡ cos(4θ)B(r) for some constants γ and a, where the final form is in
polar coordinates. In principle, a might also depend on r as long as it decays faster than ∼ r2

when r→ ∞. Here, I just let it be a constant. In other words, only the effect of non-vanishing
C3 is considered, whose spatial autocorrelation scales as 1/r2. The power-law decay in the
self-correlation of elasticity, B(r), has been numerically investigated in simulations (Gelin
et al., 2016). Similar behaviour in the spatial correlation of mass was analysed in detail
within a scalar model of wave propagation (John and Stephen, 1983).

Equation (6.14) then reduces to
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In frequency space, the equation of motion of the frequency-dependent displacement
vector u(r,z) is (I have dropped the ring)

A(z)u(r,z) = 0,

with Axx = Ayy =−ρz− 1
4 ∑

µ ̸=ν

[
∇µ(C∇ν)

]
,

Axy = Ayx =
1
4 ∑

µ

[
∇µ(C∇µ)

]
. (6.16)

The spatial correlation of C(r), which serves as the source of disorder, may be imple-
mented by the probability distribution for its fluctuating part,

P[∆C(r)] = P0 exp
[
−1

2

∫
d2rd2r′∆C(r)B−1(r− r′)∆C(r′)

]
, (6.17)

where B−1 is the inverse of B(r− r′) such that∫
d2 pB(r−p)B−1(p−q) = δ (r−q), (6.18)

while P0 is a normalisation factor. The Lagrangian is expressed as (scaled by ρ),

L =
1
2

∫
d2ruT Au = ux(Axxux +Axyuy)+uy(Ayxux +Ayyuy)

=
1
2

∫
d2r{−zu ·u− 1

4 ∑
µ ̸=ν

ux [
∇µ(C∇νux)

]
− 1

4 ∑
µ

ux [
∇µ(C∇µuy)

]
− 1

4 ∑
µ ̸=ν

uy [
∇µ(C∇νuy)

]
− 1

4 ∑
µ

uy [
∇µ(C∇µux)

]
}

=
1
2

∫
d2r{−zu ·u− 1

4 ∑
µ ̸=ν

[
∇µ [uxC∇νux]− (∇µux)C(∇νux)

]
− 1

4 ∑
µ

[
∇µ [uxC∇µuy]−C(∇µux)(∇µuy)

]
− x←→ y}

=
1
2

∫
d2r{−zu ·u− 1

4
∇x[uxC∇yux +uyC∇yuy +uxC∇xuy +uyC∇xux]− 1

4
∇y[x←→ y]

+
1
2

C[(∇xux)(∇yux)+(∇xuy)(∇yuy)+(∇xux)(∇xuy)+(∇yux)(∇yuy)]}

=
1
2

∫
d2r{−zu ·u− 1

4
∇x[...]−

1
4

∇y[...]+
1
2

C(∇ ·u)(∇xuy +∇yux)}

=
1
2

∫
d2r{−zu ·u+

1
2

C(∇ ·u)(∇xuy +∇yux)} (6.19)
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where the object [...] vanishes on the boundary.

The formulation of the replica trick

I will give a short introduction about the replica method. The replica trick is a mathematical
technique widely used in the statistical physics of spin glasses and systems with quenched
disorder. It is based on the application of formula:

lnZ = lim
n→0

Zn−1
n

, (6.20)

where Z is the partition function, or a similar thermodynamic function. The replica trick
is a mean-field theory used to simplify the calculation of the configuration average ⟨lnZ⟩,
by reducing the problem to calculating the disorder average ⟨Zn⟩ for an integer n. For
a quenched random system, the (self-averaging) free energy is averaged over all random
(pairwise) interactions JIJ with a given distribution function P(J):

⟨F⟩=−kBT ⟨lnZ(J)⟩=−kBT
∫

∏
{I,J}

DJIJP(J) lnZ(J). (6.21)

Considering the partition function of the n non-interacting identical replicas of the original
system, one has Zn(J) = exp [−β ∑

n
a=1 H(J)] where replicas are labeled in a. The original

physical free energy could be taken as

⟨F⟩=−kBT ⟨lnZ(J)⟩=−kBT lim
n→0

ln⟨Zn(J)⟩
n

=−kBT lim
n→0

ln[⟨exp(n lnZ(J))⟩]
n

. (6.22)

The 2nd identity can be easily verified by writing Zn = exp(n lnZ). In general, the scheme of
replica method consists of 3 steps: calculating Zn; the analytic continuation of the obtained
function of parameter n should be made for an arbitrary non-integer n; taking the limit n→ 0
(Dotsenko, 2000). With the source term J, the averaged Green’s function might be calculated
form the partition function (Maurer and Schirmacher, 2004):

G = lim
n→0

1
n

∂ 2

∂J2 Zn(J)
∣∣∣∣
J=0

= lim
n→0

Zn−1(J = 0)
∂ 2

∂J2 Z(J)
∣∣∣∣
J=0

. (6.23)
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Return to the case of heterogeneous elasticity, using the replica-field representation, the
generating functional for calculating the averaged Green’s function takes the form

⟨Zn(0)⟩ ≡
∫

D [ua(r)]D [∆C(r)]P0·

e
[
− 1

2 ∑
n
a=1

∫
d2r{−zua(r)2+

C(r)
2 (∇·ua(r))(∇xuy

a+∇yux
a)}− 1

2
∫

d2rd2r′∆C(r)B−1(r−r′)∆C(r′)
]

=
∫

D [ua(r)]D [∆C(r)]P0 exp

[
−1

2

n

∑
a=1

∫
d2r{−zua(r)2 +

1
2

C0(∇ ·ua(r))(∇xuy
a +∇yux

a)}

+
1
2

∆C(r)(∇ ·ua(r))(∇xuy
a +∇yux

a)−
1
2

∫
d2rd2r′∆C(r)B−1(r− r′)∆C(r′)

]
≈
∫

D [ua(r)]exp

[
−1

2

n

∑
a=1

∫
d2r
{
−zua(r)2 +

1
2

C0(∇ ·ua(r))(∇xuy
a +∇yux

a)

}

+
1

32

n

∑
a,b=1

∫
d2rd2r′(∇ ·ua(r))(∇xuy

a(r)+∇yux
a(r))B(r− r′)(∇ ·ub(r′))(∇xuy

b(r
′)+∇yux

b(r
′))

]
.

(6.24)

By means of a Hubbard-Stratonovich transformation, I introduce the effective matrix fields
Λ

µνκχ

ab (r,r′,z) to replace the ∆C(r) in the harmonic part of the effective equation of motion.
Then ⟨Zn(0)⟩ becomes

⟨Zn(0)⟩ ≈
∫

D [ua(r)]D [Λ
µνκχ

ab (r,r′,z)]Λ0·

e
{
− 1

2 ∑
n
a=1

∫
d2r
[
−zua(r)2−C0

4 (∑µ ̸=ν (ux
a∇µ ∇ν ux

a+uy
a∇µ ∇ν uy

a)+∑µ (ux
a∇µ ∇µ uy

a+uy
a∇µ ∇µ ux

a))
]}
·

e
{
− 1

2 ∑
n
a,b=1 ∑µκχν=x,y

∫
d2rd2r′

[
Λ

µκχν

ab (r,r′,z)B−1(r−r′)∑κ ′χ ′ Λ
µνκ ′χ ′
ab (r,r′,z)− 1

4 uµ
a (r)∇κ Λ

µνκχ

ab (r,r′,z)∇χ uν
b (r
′)
]}

(6.25)

where Λ
µνκχ

ab = 0 if µ = ν ,κ = χ or µ ̸= ν ,κ ̸= χ . The way Λ
µνκχ

ab is introduced is to make
Eq. (6.25) consistent with Eq. (6.15). We will see in the following calculations that, the way
to index Λµνκχ will be fulfilled by εµνκχ . The normalisation constant is represented as Λ0.
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The generating function including source Jµν

ab (r,r′) is

⟨Zn(J)⟩=
∫

D [ua(r)]D [Λ
µνκχ

ab (r,r′,z)]Λ0·

exp

{
−1

2

n

∑
a=1

∫
d2r

[
−zua(r)2−C0

4

(
∑

µ ̸=ν

(ux
a∇µ∇νux

a +uy
a∇µ∇νuy

a)+∑
µ

(ux
a∇µ∇µuy

a +uy
a∇µ∇µux

a)

)]

−1
2

n

∑
a,b=1

∑
µκχν=x,y

∫
d2rd2r′ ∑

κ ′χ ′
Λ

µκχν

ab B−1(r− r′)Λµκ ′χ ′ν
ab − 1

4
uµ

a (r)∇κΛ
µνκχ

ab ∇χuν
b (r
′)+2Jµν

ab Λ
µνκχ

ab

}
=
∫

D [ua(r)]D [Λ
µνκχ

ab (r,r′,z)]Λ0·

e
{
− 1

2 ∑
n
a,b=1 ∑µκχν=x,y

∫
d2rd2r′

[
ua(r)Aab(Λ

µκχν

ab )ub(r′)+∑κ ′χ ′ Λ
µνκχ

ab B−1(r−r′)Λµνκ ′χ ′
ab +2Jµν

ab Λ
µνκχ

ab

]}
(6.26a)

where

Aab(Λ)≡ δ (r− r′)δ ab

(
−z− C0

4 ∑µ ̸=ν ∇µ∇ν −C0
4 ∑µ ∇µ∇µ

−C0
4 ∑µ ∇µ∇µ −z− C0

4 ∑µ ̸=ν ∇µ∇ν

)

− 1
4 ∑

κχ

(
∇κΛ

xxκχ

ab (r,r′,z)∇χ ∇κΛ
xyκχ

ab (r,r′,z)∇χ

∇κΛ
yxκχ

ab (r,r′,z)∇χ ∇κΛ
yyκχ

ab (r,r′,z)∇χ

)
. (6.26b)

By evaluating derivatives of ⟨Zn(J)⟩ with respect to Jµν

ab at Jµν

ab = 0, I am able to find the
averaged Green’s function of Λ

µκχν

ab . Integrating ua out in Eq. (6.25), I obtain a field theory
involving only the Λ field:

⟨Zn(0)⟩∝
∫

D [Λ]e
{
− 1

2 ∑
n
a,b=1 ∑µ,ν ,κ,χ

(
lndetA(Λµνκχ

ab )+∑κ ′χ ′
∫

d2rd2r′Λµνκχ B−1(r−r′)Λµνκ ′χ ′
)}
.

(6.27)

I seek for a saddle-point such that the exponential in Eq. (6.27) is stationary, which corre-
sponds to the mean-field theory of spatially correlated disorder of the coherent-potential
approximation (CPA) for the one-particle Green’s function. A saddle point Λ′ of the Λ field is
a point such that the exponential in Eq. (6.27) contains no terms linear in a small fluctuation
Λ̂≡ Λ−Λ′. On the other hand, if I expand the Lagrangian about Λ′, keeping only quadratic
displacement in Λ̂, then the saddle-point value of Λ determines the averaged one-particle
Green’s function:

Λ
′ = ⟨Λ⟩. (6.28)
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Expanding in Λ̂, Aab(Λ) is written as

Aab(Λ) = Aab(Λ
′)− 1

4 ∑
κχ

(
∇κ Λ̂

xxκχ

ab (r,r′,z)∇χ ∇κ Λ̂
xyκχ

ab (r,r′,z)∇χ

∇κ Λ̂
yxκχ

ab (r,r′,z)∇χ ∇κ Λ̂
yyκχ

ab (r,r′,z)∇χ

)
≡ Aab(Λ

′)+ Âab(Λ̂). (6.29)

Making use of the identity

lndet(A(Λ′)+ Â(Λ̂)) = lndet(A(Λ′))+
∞

∑
n

(−1)n+1

n
Tr(A−1Â...A−1Â︸ ︷︷ ︸

2n

) (6.30)

The corresponding saddle-point equations can be solved with a replica-diagonal field
Λ

µνκχ

ab (r,r′,z) = Σµν(r,r′,z)δ ab, which is relevant to the evaluation of the averaged one-
particle Green’s function. Non-diagonal saddle points need only be taken into account at the
stage of renormalisation (McKane and Stone, 1981). Then I have lndet(A) = Trln(A). The
self-energy ⟨Σµν⟩ measuring the average response of the µ th component of the displacement
field at r to an impulse in the ν th component at r′, can be determined by taking

δ

δΣµν

(
TrlnA(Σµν)+

∫
d2rd2r′ΣµνB−1(r− r′)Σµν

)
= 0 (6.31)

at Σ
µν

0 , which yields

⟨Σµν

0 ⟩=
1
8 ∑

κχ

∇κB(r− r′)∇χ⟨G0(rµ ,r′ν ,z)⟩εµνκχ ; (6.32a)

G0(rx,r′x,z) =
[
−z−

(C0 +Σxx
0 )

4
(∇x∇y +∇y∇x)

]−1

; (6.32b)

G0(ry,r′y,z) =
[
−z−

(C0 +Σ
yy
0 )

4
(∇x∇y +∇y∇x)

]−1

; (6.32c)

G0(rx,r′y) =
[
−
(C0 +Σ

xy
0 )

4
(∇x∇x +∇y∇y)

]−1

; (6.32d)

G0(ry,r′x) =
[
−
(C0 +Σ

yx
0 )

4
(∇x∇x +∇y∇y)

]−1

, (6.32e)

where εµνκχ = 0 if µ = ν ,κ = χ or µ ̸= ν ,κ ̸= χ . Translation invariance holds after taking
the ensemble average, hence the CPA Green’s function G0 depends only on the difference
between two points in space.
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In a nutshell, I start from full equations of elastic waves, namely Eq. (6.14), to write down
the action in terms of replica fields, which is Eq. (6.25), with the fluctuating part in elasticity
replaced with equivalent effective fields. The solution of the corresponding saddle-point
equation, Eq. (6.27), gives rise to self-consistent equations in self-energy and the (elastic)
Green’s function, which is shown in Eq. (6.29).

Theory with non-zero C1,C2,C4,C5

I weaken the condition on the other elastic constants by letting C1,C2,C4 and C5 be all
non-zero constants. The propagator A in A(z)u(r,z) = 0 takes the form (scaled with ρ)

Aµν =−zδ
µν −∑

κχ

C µνκχ
∇κ∇χ −

1
4 ∑

κχ

[∇κ(∆C∇χ)]ε
µνκχ (6.33)

where C µνκχ corresponds to the r-independent part of elastic constants Ci, i = 1,2,3,4,5.
The explicit form is not important and I do not provide it here. The Lagrangian becomes

L =
1
2

∫
d2r{−zu2 +

1
2

∆C(∇ ·u)(∇xuy +∇yux)− ∑
µνκχ

uµC µνκχ
∇κ∇χuν)} (6.34)

and ⟨Zn(J)⟩ is

⟨Zn(J)⟩=
∫

D [ua(r)]D [Λ
µνκχ

ab (r,r′,z)]Λ0·

e
{
− 1

2 ∑
n
a,b=1 ∑µνκχ=x,y

∫
d2rd2r′

[
uµ

a (r)Aab(Λ
µνκχ

ab )uν
b (r
′)+∑κ ′χ ′ Λ

µνκχ

ab B−1(r−r′)Λµνκ ′χ ′
ab +2Jµν

ab Λ
µνκχ

ab

]}
(6.35a)

with

Aµνκχ

ab (Λ)≡ δ (r− r′)δ ab

(
−zδ

µν −∑
κχ

C µνκχ
∇κ∇χ

)
− 1

4 ∑
κχ

∇κΛ
µνκχ

ab (r,r′,z)∇χ

(6.35b)
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Again, letting Λ
µνκχ

ab =Σµνδ ab and finding the saddle point of Tr lnA(Σµν)+
∫

d2rd2r′ΣµνB(r−
r′)Σµν , I obtain the self-consistent equations for the self-energy and the Green’s functions:

⟨Σµν

0 ⟩=
1
8 ∑

κχ

∇κB(r− r′)∇χ⟨G0(rµ ,r′ν ,z)⟩εµνκχ ; (6.36a)

G0(rx,r′x,z) =
[
−z−

(
C4

8
+

C2

2
+

3C1

8

)
∇x∇x−

(
C1

8
−C4

8

)
∇y∇y

−
(

C5

8
+

(C0 +Σxx
0 )

4

)
(∇x∇y +∇y∇x)

]−1

; (6.36b)

G0(ry,r′y,z) =
[
−z−

(
C4

8
−C2

2
+

3C1

8

)
∇y∇y−

(
C1

8
−C4

8

)
∇x∇x

−
(
−C5

8
+

(C0 +Σ
yy
0 )

4

)
(∇x∇y +∇y∇x)

]−1

; (6.36c)

G0(rx,r′y) =
[
−
(

C1

8
−C4

8

)
(∇x∇y +∇y∇x)−

(C0 +Σ
xy
0 )

4
(∇x∇x +∇y∇y)−

C5

8
(∇x∇x−∇y∇y)

]−1

;

(6.36d)

G0(ry,r′x) =
[
−
(

C1

8
−C4

8

)
(∇x∇y +∇y∇x)−

(C0 +Σ
yx
0 )

4
(∇x∇x +∇y∇y)−

C5

8
(∇x∇x−∇y∇y)

]−1

.

(6.36e)

Defining the Fourier transform as

Σ(q,z)≡
∫

d2(r− r′)eiq(r−r′)
Σ(r− r′,z), (6.37)
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the condition on the one-particle CPA Green’s function may be written in momentum space:

⟨Σµν

0 ⟩=−
1
4 ∑

κχ

ε
µνκχqκqχ

∫
d2kB̃(q−k)⟨G0(k)⟩; (6.38a)

B̃(q)≡
∫

d2reiq·rB(r); (6.38b)

G0(qx,qx,z) =
[
−z+

(
C4

8
+

C2

2
+

3C1

8

)
qxqx +

(
C1

8
−C4

8

)
qyqy +

(
C5

4
+

C0 +Σxx
0

2

)
qxqy

]−1

;

(6.38c)

G0(qy,qy,z) =
[
−z+

(
C4

8
−C2

2
+

3C1

8

)
qyqy +

(
C1

8
−C4

8

)
qxqx +

(
−C5

4
+

C0 +Σ
yy
0

2

)
qxqy

]−1

;

(6.38d)

G0(qx,qy) =

[(
C1

4
−C4

4

)
qxqy +

(C0 +Σ
xy
0 )

4
q2 +

C5

8
(qxqx−qyqy)

]−1

; (6.38e)

G0(qy,qx) =

[(
C1

4
−C4

4

)
qxqy +

(C0 +Σ
yx
0 )

4
q2 +

C5

8
(qxqx−qyqy)

]−1

, (6.38f)

which must be solved self-consistently since the self-energy of the Green’s function involves
the full propagator itself. In the weak scattering limit, approximate solutions are possible
because Im[Σ(q,z)] is small compared with C0 and also the imaginary part of the propagator
takes the form of a δ -function, Im[⟨G0(k)⟩] ∝ δ (ω2− k2) upon averaging over all possible
directions of dummy variable k and upon rescaling redundant constants (and z = ω2 + i0 ).
Taking imaginary part, the correlation function in Eq. (6.35a) can be evaluated. Specifically,
I want to calculate∫

d2kB̃(q−k)⟨G0(q,z)⟩ ∝

∫
ei(q−k)·r cos(4θ)

r2 +a2 ⟨G0(k,z)⟩d2kd2r

=−
∫

eiqr cos(θ)−ikr cos(φ−θ) r cos(4θ)

r2 +a2 kδ (ω2− k2)drdkdθdφ

∝−
∫

eiqr cos(θ)−iωr cos(φ−θ) r cos(4θ)

r2 +a2 drdθdφ (6.39)
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where q̂ is aligned with the x-axis, forming an angle φ and an angle θ with k̂ and with r,
respectively. On the second line, I have replaced ⟨G0(k,z)⟩ with δ -function. Thus, I have∫

π

−π

∫
π

−π

cos(4θ)eir(qcosθ−ω cos(φ−θ))dθdφ

=
∫

π

θ=−π

∫
τ=−(θ−π)

τ=−(θ+π)
cos(4θ)eir(qcosθ−ω cosτ)dθdτ

=
∫

π

θ=−π

∫
π

τ=−π

cos(4θ)eir(qcosθ−ω cosτ)dθdτ

=
∫

π

θ=−π

cos(4θ)eiqr cosθ dθ

∫
π

τ=−π

e−iωr cosτdτ

=
∫

π

θ=−π

cos(4θ)eiqr cosθ dθ

∫
π

τ=−π

eiωr cosτdτ

∝J4(qr)J0(ωr) (6.40)

where J0 and J4 are (modified) Bessel functions and I have used the periodicity of trigono-
metric functions in the last step. This gives

⟨Σµν

0 ⟩ ∝ ∑
κχ

ε
µνκχqκqχ

∫
∞

0

rJ4(qr)J0(ωr)
r2 +a2 dr. (6.41)

Making use of the linear dispersion relation, numerical computation reveals that the inte-
gral f (q,ω) =

∫
∞

0 rJ4(qr)J0(ωr)/(r2 + a2)dr ∼ − lnq across a broad range, from low to
intermediate values, of q. Figure 6.5 shows one plot for such fitting. In other words, the
logarithmic dependence is caused by the integral of r/(r2 +a2), while the Bessel functions
in the integrand are responsible for bending the overall shape of f (q,ω) away from the log
asymptote, and thus for restricting the logarithmic dependence to an intermediate range of
q. The Bessel functions are also responsible for the minus sign in front of the logarithm.
This consideration is a further demonstration that the logarithmic correction stems from the
power-law decay of correlations encoded in the integrand factor r/(r2 +a2). Thus, I have
the averaged self-energy (susceptibility), in an intermediate range of q, as:

Im⟨Σµν

0 (q)⟩ ∼ −q2 lnq. (6.42)

where the linear dispersion relation q ∝ ω is assumed. A similar result was obtained by John
and Stephen (1983) in a different context of Anderson localisation of electromagnetic waves
where a scalar model with power-law correlation in the spatially varying mass parameter was
considered. To my knowledge, the one presented here is the first derivation of this effect
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Fig. 6.5 Fitting of f (q,ω) (symbols), i.e. the numerical integral in Eq. (6.41), with log-
arithmic function −p0 ln(p1q) (solid line). Parameters are a = 10,c = 1, p0 = 0.008 and
p1 = 0.07.

in the context of phonon propagation in elastic media, thus accounting for the full tensorial
nature of the problem.

I note that there are no purely longitudinal and transverse waves with respect to the
direction of q. This is different from the cases considered in John et al. (1983); John and
Stephen (1983); Maurer and Schirmacher (2004). However, cross terms in Eqs. (6.23e)
and (6.23f) essentially contribute nothing to the density of states. One might define a more
general relation between damping and self-energy over different directions. Hence Eq. (6.42)
demonstrates that the self-energy of the phonon Green’s function, which is closely related to
the phonon damping coefficient, does indeed exhibit a logarithmic enhancement correction
to the Rayleigh law as a result of power-law spatial correlations in at least the elastic constant
C3. Hence this result holds for materials that are described within the heterogeneous elasticity
framework.

Theory with non-zero C1,C4,C5 and long-range correlations in C2 and
C3

In addition to letting C3(r)≡ ρC3+ρ∆C3(r), I further require C2(r)≡ ρC2+ρ∆C2(r) with
∆C2,3(r) = 0 and ∆C2,3(r′)∆C2,3(r′+ r) = B2,3(r) = γ2,3 cos(4θ)/(r2 +a2) for parameters
γ2,3, and parameter a. In this case, the configurational average is due to spatial fluctuations
of both C2 and C3 and is given by

P[∆C(r)]∝ exp

[
−1

2 ∑
i=2,3

∫
d2rd2r′∆Ci(r)B−1

i (r− r′)∆Ci(r′)

]
. (6.43)
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To implement the same formalism as above, I now introduce two effective fields to get
the CPA for the one-particle Green’s function. The matrix operators (with effective fields)
become

Aµν =−zδ
µν −∑

κχ

C µνκχ
∇κ∇χ −

1
4 ∑

κχ

[∇κ(∆C3∇χ)]ε
µνκχ +

1
2

∇µ∆C2∇νδ
µν

η
µν ;

(6.44)

Aµκχν

ab (Λ2,Λ3)≡ δ (r− r′)

(
−zδ

µν −∑
κχ

C µνκχ
∇κ∇χ

)
− 1

4 ∑
κχ

∇κΛ
µνκχ

ab,3 (r,r′,z)∇χε
µνκχ

+
1
2

∇µΛ
µν

ab,2∇νδ
µν

η
µν , (6.45)

where ηxx = 1, ηyy = −1. Repeating similar steps, the self-consistent equations take the
following form:

⟨Σµν

0,2⟩=
1
4

∇µB2(r− r′)∇ν⟨G0(rµ ,rν ,z)⟩ηµν ; (6.46a)

⟨Σµν

0,3⟩=
1
8 ∑

κχ

∇κB3(r− r′)∇χ⟨G0(rµ ,rν ,z)⟩εµνκχ ; (6.46b)

G0(rx,r′x,z) =
[
−z−

(
C4

8
+

C2 +Σxx
0,2

2
+

3C1

8

)
∇x∇x−

(
C1

8
−C4

8

)
∇y∇y

−

(
C5

8
+

(C3 +Σxx
0,3)

4

)
(∇x∇y +∇y∇x)

]−1

; (6.46c)

G0(ry,r′y,z) =

[
−z−

(
C4

8
−

C2−Σ
yy
0,2

2
+

3C1

8

)
∇y∇y−

(
C1

8
−C4

8

)
∇x∇x

−

(
−C5

8
+

(C3 +Σ
yy
0,3)

4

)
(∇x∇y +∇y∇x)

]−1

; (6.46d)

G0(rx,r′y) =

[
−
(

C1

8
−C4

8

)
(∇x∇y +∇y∇x)−

(C3 +Σ
xy
0,3)

4
(∇x∇x +∇y∇y)−

C5

8
(∇x∇x−∇y∇y)

]−1

;

(6.46e)

G0(ry,r′x) =

[
−
(

C1

8
−C4

8

)
(∇x∇y +∇y∇x)−

(C3 +Σ
yx
0,3)

4
(∇x∇x +∇y∇y)−

C5

8
(∇x∇x−∇y∇y)

]−1

.

(6.46f)

I note that, even if B2 +B3 has no long-range tail, the net effect of the imaginary part of
⟨Σµν

0,2⟩+ ⟨Σ
µν

0,3⟩ still exhibits log-enhancement. To see this more clearly, I write down Σxx
0,2



6.4 Summary 133

and Σxx
0,3,

⟨Σxx
0,2⟩=

1
4

∇xB2(r− r′)∇x⟨G0(rx,r′x,z)⟩;

⟨Σxx
0,3⟩=

1
8

∇xB3(r− r′)∇y⟨G0(rx,r′x,z)⟩

+
1
8

∇yB3(r− r′)∇x⟨G0(rx,r′x,z)⟩. (6.47)

Using the same arguments as in the last section, namely transforming to q space, I can easily
verify that Im⟨Σ0,2⟩ ∼ −q2 lnq and Im⟨Σ0,3⟩ ∼ −q2 lnq. Hence, I also have that Im[⟨Σxx

0,2⟩+
⟨Σxx

0,3⟩]∼−q2 lnq even if B2 =−B3. Since this works the same for all components µ,ν , I
can conclude that

Im[⟨Σµν

0,2⟩+ ⟨Σ
µν

0,3⟩]∼−q2 lnq, (6.48)

which holds for all components µ,ν of the self energy.
Hence, the logarithmic enhancement to Rayleigh scattering law remains confirmed

also in the case of power-law spatial correlations in two elastic constants, C2 and C3. I
have rigorously proved that power-law correlations lead to the logarithmic enhancement of
Rayleigh scattering in amorphous solids, under the same conditions studied in numerical
simulations in Gelin et al. (2016) where this effect was observed. I note that, in Caroli
and Lemaître (2019), it is reported that Rayleigh law without the logarithmic dependence
is retrieved in the frame of fluctuating elasticity. The authors attribute this behavior to
cancellation of the elastic correlations between spatial autocorrelations of non-diagonal part
of local elastic coefficients. I emphasise that the imaginary part of self-energy obtained here
in Eq. (6.48) does not split into purely transverse and longitudinal contributions, whereas that
from their method vanishes because those authors assume fully isotropic elasticity splitting
into uncoupled longitudinal and transverse contributions (see Eq. (34) in the ESI of Caroli
and Lemaître (2019)), which does not correspond to the physical system in Gelin et al. (2016),
nor to other simulated systems where the effect was observed.

Summary

Through explicitly calculating the quenched average of the longitudinal DSF with the repre-
sentative Gaussian distribution of random bond constants in a perfect lattice, I obtained the
expression for the effective damping coefficient, where its unexpected linear dependence on
q was revealed. I have also developed a fully tensorial replica field theory of heterogeneous
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elasticity, which predicts that long-range elastic correlations cause a logarithmic enhancement
to Rayleigh scattering of phonons in amorphous systems without internal stresses.



Chapter 7

Conclusion and Outlook

In this thesis, I have firstly introduced a general version of the classical particle-bath Hamil-
tonian, which serves as a starting point to derive GLE, for systems subject to an external
time-dependent (oscillating) field. Unlike previous models where the bath oscillators were
always taken to be unaffected by the field, here I added the time-dependent force due to the
field to both the Hamiltonian of the particle and the Hamiltonian of the bath oscillators. The
resulting Hamiltonian has been solved analytically and the resulting GLE and FDT have been
found. The formal structure of the GLE is still identical to that of standard GLE with external
field acting on the particle only (and the memory function for the friction is the same), but
the stochastic force is very different. Its ensemble average, remarkably, is non-zero and
directly proportional to the AC field. The associated FDT has an additional term given by the
time-correlation of the AC field, and is thus quadratic in the field amplitude.

An immediate application of the resulting GLE is to elucidate the dielectric spectroscopy
or mechanical response of glasses. The Debye model treats each molecule as fully indepen-
dent from all other molecules in the material and describes it with a Langevin equation for
the orientation of the molecule in the field. The GLE derived here will open the possibility of
describing both these effects at the same time, within the GLE picture that has been proposed
recently to deal with the hierarchy of relaxation times in molecular glasses. In specific,
the GLE makes it possible to directly link the VDOS measured experimentally with the
macroscopic dielectric response and the underlying heterogeneous dynamics. Implementing
the VDOS of a disordered elastic lattice near the Tg within the Lorentz sum rule, we are
able to reproduce the dielectric response of glycerol in good agreement with state-of-the-art
experimental data. The soft-mode model greatly improves over Kohlrausch (and MCT)
fittings on the low-frequency side of the α peak, where I have shown that the response is
controlled by extended modes. The high-ω side of the peak (α-wing) is instead dominated
by the boson-peak soft mode excess in the VDOS, and, remarkably, it recovers stretched-
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exponential relaxation. This result shows, for the first time, that the α-wing is caused by the
boson peak contribution to the relaxation spectrum.

If there are more than one relaxation processes, say α- and β -peaks, we then require two
stretched exponentials in the memory function, hence two relaxation times, to fit both α- and
β -relaxations. The β -relaxation process cannot be recovered with only one stretched expo-
nential (i.e. with only one term in the memory function). One of the stretched exponentials
dominates the α- peak while the co-existing effect of two stretched exponential terms in the
memory function gives rise to the secondary relaxation. In other words, the two terms of
memory function both affect the secondary relaxation, whereas only one of them controls
the α-relaxation. This implies that there is indeed a deep microscopic dynamical coupling
between the two relaxation processes, which has not been unveiled so far.

The GLE derived in this thesis can be used as the starting point for a more microscopic
description of nonlinear effects in dielectric relaxation of supercooled liquids under strong
fields, for which a microscopic picture is currently lacking. Further applications of the
proposed framework include quantum dissipative transport and Josephson tunnelling with
dissipation, driven dynamics of colloids in soft matter systems, and molecular dynamics
simulations of liquids and of amorphous solids in oscillatory shear. In future work this
framework would be used to provide more microscopic insights into the dynamical nature of
this coupling and in the context of the Ngai coupling model (Ngai, 1998).

Meanwhile, applying this analysis to mechanical response, the resultant framework
(nonaffine lattice dynamics) also establishes that, in order to explain the mechanical α-
relaxation and the α-wing asymmetry in metallic glass, an excess of soft vibrational modes,
as well as strong memory effects in the dynamics due to non-local electronic coupling
between many atoms, are necessary ingredients that cannot be neglected. A crucial input
to the theory is the VDOS. Surprisingly, the qualitative features (i.e. peak positions) of the
VDOS appear to play the main role in determining the viscoelastic response of the glass,
implying a common behavior linking the JG β -relaxation to vibrational dynamics in glassy
systems. These results should undoubtedly be useful for developing a universal theory of
secondary relaxations in metallic glasses.

Applying the framework of nonaffine lattice dynamics to pre-stretched bonds might
be a first step in the direction of a theory of granular matter and disordered solids where
internal stresses are explicitly taken into account. The system of spring networks is rigid
also below the Maxwell rigidity threshold, whereas for pre-compressed bonds the onset of
rigidity is shifted to higher coordination number. Since this approach is directly applicable to
a variety of glassy and partly-ordered systems that feature a boson peak, not only molecular
glasses and metallic glasses but also polymer glasses (Hong et al., 2008), silica glasses (Ilg
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and Barrat, 2007), by suitably extending the theory to include bond-bending interactions
that are needed to describe covalent bonds. For non-centrosymmetic crystals such as the
quartz (Chumakov et al., 2014), I have shown that employing an empirical potential for
α-quartz, with long-range Coulombic effects explicitly considered, the elastic constants
of α-quartz, consisting of the contribution of affine and nonaffine contributions, can be
excellently recovered, where the nonaffine force field indeed plays a crucial role in the elastic
constants.

These results are also relevant to studies of the boson peak (i.e. excess with respect
to Debye’s ω2 law in the VDOS), which is typically observed in glasses but has recently
also been measured in α-quartz (Chumakov et al., 2014). Recent works have highlighted
the close connection between nonaffine elasticity and the boson peak anomaly (Milkus and
Zaccone, 2016; Senguly and Sengupta, 2017), and it has been suggested that the root cause
of both boson peak and nonaffine elasticity could be traced back to the inherent lack of
centrosymmetry of both glasses and non-centrosymmetric crystals such as α-quartz (Milkus
and Zaccone, 2016).

With the analytical formula for the estimated damping constant available, one can also
work backwards and reveal the extent of disorder in a material using the scaling law of
damping coefficient. In a continuum medium, the disorder reflects the variation of local
elastic modulus C. For example, in α-quartz, the (largest) linewidth is measured around
the resonance of 10meV along (1,0,0) to have the width Γ ∼ 5meV (Burkel, 2001). The
Young’s modulus C11 was computed to be 90GPa, therefore, this gives us an estimate for the
disorder variance σ ∼ 30GPa= 0.3C11, a reasonable value of ‘low disorder’. Very recently it
has been reported the damping coefficient scales linearly with frequency in granular packings
(Zhai et al., 2020), and hence Γ∼ q as the acoustic branch has ω = cq at low q. This is in full
agreement with my predicted damping law in Eq. (6.9). Importantly, the linear damping has
been observed in packings with heterogeneous distributions of contact stiffness, whereas in
packings with uniform contact stiffness the linear damping is less visible. When q becomes
large, the lattice Green’s function and the elastic Green’s function are no longer equivalent
(Trinkle, 2008). Considering the wave propagation with large wavevectors will be a possible
future direction. Regarding to the controversial Rayleigh scattering, also note that many
numerical simulations addressing this problem so far only extract affine elastic constants,
while the nonaffine contribution to elasticity might be important in some systems and should
be examined in detail in future work, although nonaffinity does not appear to be a necessary
ingredient for the appearance of the anomalous scattering. Moreover, Moriel et al. (2019)
argued on the basis of numerical data on computer glasses that Rayleigh scaling is expected
at low wavenumbers, at which soft quasilocalised modes are scarce, while the logarithmically
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enhanced Rayleigh scaling of the form Γ(q)∼ qd+1 lnq arises at higher q. In that case, the
way to extract phononic and nonphononic excitations is different from Mizuno and Ikeda
(2018), which might result in the different features of enhanced logarithmic dependence. I
also note that the enhanced logarithmic Rayleigh scattering contributed by power-law elastic
or stress correlations in my theory arises in a broad intermediate range of q. However, the
discussion about this issue is beyond the scope of my current work, and will be studied in
detail in future work.

My analysis with replica field is restricted to the athermal limit. At finite temperature,
elastic correlators would receive additional effects from anharmonicity (Baggioli and Zaccone,
2019; Mizuno et al., 2020) and other thermal effects. I expect this problem to be important
also for plasticity and yielding, which could be the object of future work.
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Appendix A

Binary metallic glasses with the EAM
potential

It would be more convenient to work in unrescaled coordinates firstly and the results would
be manifest via ∂ f (X)/∂X = (∂ f (X(x))/∂x)(dx/dX) for functions f and X depending on
x only. Thus, in this section, I write RI as unscaled tagged-particle positions. In order to
calculate the dynamics and the viscoelastic response, I need to evaluate the interaction energy
between atoms in the material. In particular, I need to find expressions for the Hessian matrix
and for the affine force field Ξ

µ

I,κχ
, as a function of the interatomic interaction potential,

given under the EAM. Upon considering the various contributions to the interaction potential
between atoms in the CuZr- based MGs, the total potential energy acting on a tagged atom I
is given by

UI = FA

(
∑
J ̸=I

ρAB(RIJ)

)
+

1
2 ∑

J ̸=I
ψAB(RIJ). (A.1)

Recall RIJ represents the radial distance between I and J, ρAB is the contribution to the
electronic charge density from particle J of type B at the location of particle I of type A;
ψAB is a pairwise potential between an atom of type A and an atom of type B, and FA is the
embedding function that gives the energy required to place the tagged particle I of type A
into the electron cloud. Hence, the total potential is the sum over all particles, U = ∑I UI .

The many-body nature of the EAM potential is a result of the embedding energy term.
Both summations in the formula are over all neighbors J of particle I within the cutoff
distance (Sutton and Chen, 1990). Then I can get the net force acting on a tagged atom using
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the following set of relations:

nIJ =
RIJ

RIJ
; ρ̄I = ∑

J ̸=I
ρAB(RIJ) (A.2)

ZIJ =
∂UI

∂RIJ
=

1
2

∂ψAB(RIJ)

∂RIJ
+

∂FA

∂ ρ̄I

∂ρAB(RIJ)

∂RIJ
(A.3)

fI =−
∂U

∂RI
=−∂UI

∂RI
−

∂∑K ̸=I UK

∂RI

=−∂UI

∂RI
−

∂ ∑K ̸=I UK

∂RJK

∂RIK

∂RI

=−∂UI

∂RI
+

∂ ∑K ̸=I UK

∂RJK

RIK

RIK

=−∂UI

∂RI
+ ∑

K ̸=I
ZKI

RIK

RIK
. (A.4)

The Hessian is then written for I ̸= J as:

HIJ|I ̸=J =
∂ 2U

∂RIRJ
=

∂
∂UI
∂RI

∂RJ
−

∂ ∑K ̸=I ZKI
RIK
RIK

∂RJ

=
∂ 2UI

∂RI∂RJ
− ∂ZJI

∂RJ

RJI

RJI
−ZJI

∂
RIJ
RIJ

∂RJ
−

∂ ∑K ̸=I,K ̸=J ZKJ
RIK
RIK

∂RJ

=
∂ 2UI

∂RI∂RJ
− ∂ZJI

∂RIJ

∂RIJ

∂RJ
⊗ RIJ

RIJ
−ZJI

∂
RIJ
RIJ

RJ
− ∑

K ̸=I,K ̸=J

∂ZKI

∂RJ
⊗ RIK

RIK
(A.5)

with d = 3:

∂
RIJ
RIJ

∂RJ
=

I3×3

RIJ
− RIJ⊗RIJ

R3
IJ

, (A.6)

and:

HII =
∂ 2U

∂RIRI
=

∂ 2UI

∂R2
I
−

∂ ∑K ̸=I ZKI

∂RJ

RIK

RIK
− ∑

K ̸=I
ZKI

∂
RIK
RIK

∂RI

=
∂ 2UI

∂R2
I
+

∂ ∑K ̸=I ZJI

∂RJ

RIK

RIK
⊗ RIK

RIK
− ∑

K ̸=I
ZKI

∂
RIK
RIK

∂RI

=
∂ 2UI

∂R2
I
+

∂ ∑K ̸=I ZJI

∂RJ

RIK

RIK
⊗ RIK

RIK
+ ∑

K ̸=I
ZKI

(
I3×3

RIK
− RIK⊗RIK

R3
IK

)
(A.7)

for the diagonal I = J elements. To find ΞΞΞI,κχ = ∑J ΞΞΞIJ,κχ , I write
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Ξ
µ

IJ,κχ
=−SIJ,µν

∂Rν
IJ

∂ηκχ

=−1
2

SIJ,µν(δνκRχ

IJ +δνχRκ
IJ) (A.8)

with:

S
IJ
=

∂ 2UI

∂RIJ∂RIJ
=

∂

∂RIJ

(
∂U

∂RIJ

)
=

∂

∂RIJ

(
∑
K

∂UK

∂RIJ

)

=
∂

∂RIJ

(
∑

K,L ̸=K

∂UK

∂RLK

∂RLK

∂RIJ

)

=
∂

∂RIJ

(
∂UI

∂RJI

∂RJI

∂RJI
+

∂UJ

∂RJI

∂RJI

∂RJI

)
∂UI

∂RJI

∂RJI

∂RJI

=
∂

∂RIJ

(
ZIJ

RIJ

RIJ
+ZJI

RIJ

RIJ

)
=

∂

∂RIJ
(ZIJnIJ +ZJInIJ)

=
∂ZIJ

∂RIJ
nIJ +ZIJ

∂nIJ

∂RIJ
+

∂ZJI

∂RIJ
nIJ +ZJI

∂nIJ

∂RJI

=
∂

∂RIJ

(
∂UI

∂RIJ

)
nIJ +ZIJ

∂

∂RIJ

(
RIJ

RIJ

)
+

∂

∂RIJ

(
∂UJ

∂RIJ

)
nIJ +ZJI

∂

∂RIJ

(
RIJ

RIJ

)

= ∑
K

∂

(
∂UI
∂RIJ

)
∂RIK

∂RIK

∂RIJ
nIJ +ZIJ

RIJ−RIJ
∂RIJ
∂RIJ

R2
IJ

+∑
K

∂

(
∂UJ
∂RIJ

)
∂RJK

∂RJK

∂RIJ
nIJ +ZJI

RIJ−RIJ
∂RIJ
∂RIJ

R2
IJ

=
∂ 2UI

∂ 2RIJ
nIJnIJ +ZIJ

(1−nIJnIJ)

RIJ
+

∂ 2UJ

∂ 2RIJ
nIJnIJ

+ZJI
(1−nIJnIJ)

RIJ
. (A.9)
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To distinguish S from H, one can rewrite H(I ̸= J) as

HIJ =
∂ 2U

∂RI∂RJ
=

∂

∂RI

(
∑
K

∂UK

∂RJ

)
=

∂

∂RI

(
∑

K,L ̸=K

∂UK

∂RKL

∂RKL

∂RJ

)

=
∂

∂RI

(
∑
L ̸=J

∂UJ

∂RJL

∂RJL

∂RJ
+ ∑

K ̸=J,L ̸=K

∂UK

∂RKL

∂RKL

∂q j

)

=
∂

∂RI

(
∑
L ̸=J

∂UJ

∂RJL

∂RJL

∂RJ
+ ∑

K ̸=J

∂UK

∂RKJ

∂RKJ

∂RJ

)

=
∂

∂RI

(
∑
L ̸=J

∂UJ

∂RJL

RJL

∂RJL
+ ∑

K ̸=J

∂UK

∂RKJ

RJK

∂RJK

)

= ∑
K ̸=J

∂

∂RI

(
∂UJ

∂RJK

RJK

RJK
+

∂UK

∂RKJ

RJK

RJK

)

= ∑
K ̸=J

(
∑
L ̸=J

∂

∂RJL

(
∂UJ

∂RJK

)
∂RJL

∂RI

RJK

RJK

)
+

∂UJ

∂RJI

∂

∂RI

(
RJI

RJI

)

+ ∑
K ̸=J

(
∑
L ̸=J

∂

∂RKL

(
∂UK

∂RJK

)
∂RKL

∂RI

RJK

RJK

)
+

∂UI

∂RJI

∂

∂RI

(
RJI

RJI

)
= ∑

K ̸=J

(
∂

∂RJI

(
∂UJ

∂RJK

)
∂RJI

∂RI

RJK

RJK

)
+ZJI

(−1+nIJnIJ)

RIJ

+ ∑
K ̸=J

(
∑

L ̸=K

∂

∂RKL

(
∂UK

∂RKJ

)
∂RKL

∂RI

RJK

RJK

)
+ZIJ

(−1+nIJnIJ)

RIJ

= ∑
K ̸=J

(
∂

∂RJI

(
∂UJ

∂RJK

)
nIJnJK

)
+ZJI

(−1+nIJnIJ)

RIJ

+ ∑
K ̸=J,I

∂

∂qKI

(
∂UK

∂RKJ

)
nIKnJK + ∑

K ̸=I

∂ 2UI

∂RIK∂RIJ
nIKnJI

+ZIJ
(−1+nIJnIJ)

RIJ
. (A.10)



Appendix B

From particle-particle to particle-bath
oscillator interactions

Performing Taylor expansion up to the 2nd order around the minimum surface R◦I , the
Hamiltonian can be written as

H =
N

∑
I

d

∑
µ

(MI s̈
µ

I )
2

2
+U (R◦I )+

1
2

N

∑
IJ

d

∑
µ,ν

sµ

I sν
J

[
∂ 2U (RI)

∂Rµ

I ∂Rν
J

]
R◦I

. (B.1)

The full solution of the displacement of particle I can be written as

sI(t) =
Nd

∑
m

em
I√
MI

(Ame−iωmt +Bmeiωmt), (B.2)

where em
I is the elements of I-th particle in eigenvector of the dynamical matrix corresponding

to the m-th mode and Am,Bm are coefficients subject to initial conditions. I can write the
expression more generally:

sI(t) =
Nd

∑
m

1√
MI

εεε
m
I Qm(t). (B.3)

The εεεm
I are distinguished from em

I only in normalisation. For particle I, from mechanical
equilibrium position RI = R◦I , its position is rµ

I (t) = Rµ

I + sµ

I (t). Substituting this back to
Eq. (B.1), I have

H =
1
2

Nd

∑
m

∣∣Q̇m
∣∣2 + 1

2

Nd

∑
m

ω
2
m |Qm|2 +U (RI), (B.4)

where the first two terms on the RHS are kinetic and potential energies in terms of canon-
ical coordinates Qm(t), respectively. I can also define the canonical momenta as Pm =
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∂H /∂Qm = Q̇m. Clearly, there are Nd independent harmonic oscillators.
Next consider the Hamiltonian including one tagged particle (position Rµ

0 , mass M0):

H ′ = ∑
µ

M0(s̈
µ

0 )
2

2
+U (R0)+

1
2

Nd

∑
m

∣∣Q̇m
∣∣2 + 1

2

Nd

∑
m

ω
2
m |Qm|2 +U (R◦I )+U (R0,RI). (B.5)

The last term is the potential due to interaction between the tagged particle and remaining
oscillators. I assume the linear coupling, which is U (Rµ

0 ,RI) = U (Rµ

0 ,Qm) = ∑m cmRµ

0 Qm

where cm reflects the coupling strength between the tagged particle and m-th oscillator, which
are different.

In oscillatory electric field, there is an additional electric potential contributing to Hamil-
tonian,

HE =−∑
Iµ

zIEµ(t)(Rµ

I + sµ

I (t))

=−∑
Iµ

zIEµ(t)Rµ

I −∑
Iµm

zIEµ(t)√
MI

Qm(t)(ε
µ

I )
m

=−∑
Iµ

zIEµ(t)Rµ

I −∑
m

(
∑
Iµ

zIEµ(t)√
MI

(ε
µ

I )
m

)
Qm(t), (B.6)

where zI label the charge. The first term depending on RI can be absorbed into U (RI) and
one could repeat above steps to obtain the Hamiltonian of harmonic oscillators in external
dielectric field. Let the electric field be along one direction (say x). From Eq (B.6), it is clear
that the "charge" is carried by each oscillator, which is ∑I zI(ε

x
I )

m/
√

MI .



Appendix C

Time-frequency conversion and
derivation of Eqs. (5.1)- (5.2)

I present the conversion from viscoelastic response in the time-domain (in which experimental
data have been taken) to viscoelastic response in the frequency domain. The converted data
have been used for comparison with the theoretical predictions in the main text.

The stress response to a strain η(t) in the time domain is given by the Boltzmann causality
principle as

σ(t) =
∫ t

−∞

C(t− t ′)η̇(t ′)dt ′ (C.1)

where C(t) is the time-dependent elastic modulus and η̇ is the strain rate. I take the Fourier
transform of Eq. (C.1):

σ̃(ω) =
∫

∞

−∞

∫
∞

−∞

C(t− t ′)H(t− t ′)η̇(t)e−iωtdt ′dt

=
∫

∞

−∞

C(u)H(u)e−iωudu
∫

∞

−∞

η̇(t ′)e−iωtdt (C.2)

where u = t− t ′. Note that, the domain of σ(t) is generally the whole real line, while the
domain of C(t) is defined only for t > 0. If the Fourier transform exists, then we can denote
it by σ̃(ω), which is given by

σ̃(ω) = F [C(t)]F [η̇(t)] = C̃(ω)η̃(ω). (C.3)

Note that the second equation is the usual expression of linear stress-strain relation in the
frequency domain (Lemaitre and Maloney, 2006).
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In the stress-relaxation experiments, one starts by applying to the (initially relaxed)
sample a sudden deformation η0:

η(t < 0) = 0; η(t > 0) = η0 = const. (C.4)

"Sudden" means that the deformation is applied over a time much shorter than the shortest
time-scale of the Maxwell distribution τmin, and can thus be modelled as a Heaviside step
function. Under these conditions, I can write

η̇0(t) = η0δ (t). (C.5)

From Eq.(C.1) and Eq.(C.5), I have:

σ(t) =
∫ t

−∞

η0C(t− t ′)δ (t ′)dt ′, (C.6)

⇒ σ(t < 0) = 0; σ(t > 0) = η0C(t). (C.7)

The experimental data in the time-domain might be fitted with the Kohlrausch empirical
function in order to obtain a smooth function for the Fourier transformation. Also, this allows
us to enucleate the α-relaxation from the data. I therefore take the Fourier transform of the
empirical Kohlrausch function σ(t) = σ∞+σ0e−(t/τ)β

used for the fitting of the experimental
data: ∫

∞

0
[σ∞ +σ0e−(t/τ)β

]e−iωtdt = C̃(ω)
∫

∞

0
η0e−iωtdt. (C.8)

Upon rearranging terms, I thus obtain:

σ∞

σ0
+ iω

∫
∞

0
e−(t/τ)β

(cosωt− isinωt)dt = C̃(ω)
η0

σ0
. (C.9)

This simplifies to the real and imaginary part of C̃(ω) =C′(ω)+ iC′′(ω), which corresponds
to Eq. (5.1) and Eq. (5.2), respectively.



Appendix D

The long-range autocorrelation of the
stress tensor

Here I assume Cµνκχ has no fluctuations, while fluctuations exist in the internal stress, a
situation encountered in glasses (Maier et al., 2018). Writing pIJ =−(1/2)V ′IJ(rIJ)rIJ , the
local stress tensor can be decomposed at the pair level as:

σ
1
IJ = pIJ,

σ
2
IJ =−pIJ cos(2θIJ),

σ
3
IJ =−pIJ sin(2θIJ). (D.1)

In this representation, σ1
IJ is the pair-level pressure, while σ2

IJ and σ3
IJ = σ

xy
IJ represent two

shear stresses. I am able to express effective elastic constants Sµνκχ in this new representation.
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Given σ1,σ2,σ3, I obtain

Sxxxx(r) =Cxxxx +σ
2(r)−σ

1(r)

Sxxxy(r) =Cxxxy +σ
3(r)

Sxxyx(r) =Cxxyx

Sxxyy(r) =Cxxyy

Sxyxx(r) =Cxyxx +σ
3(r)

Sxyxy(r) =Cxyxy−σ
1(r)−σ

2(r)

Sxyyx(r) =Cxyyx

Sxyyy(r) =Cxyyy

Syxxx(r) =Cyxxx

Syxxy(r) =Cyxxy

Syxyx(r) =Cyxyx +σ
2(r)−σ

1(r)

Syxyy(r) =Cyxyy +σ
3(r)

Syyxx(r) =Cyyxx

Syyxy(r) =Cyyxy

Syyyx(r) =Cyxyy +σ
3(r)

Syyyy(r) =Cyyyy−σ
1(r)−σ

2(r). (D.2)

Substituting Eq. (D.2) back to Eq. (2.111) gives (I drop the ring on r):

ρ
∂ 2ux

∂ t2 =
∂

∂ rx

[(
Cxxxx +σ

2(r)−σ
1(r)

) ∂ux

∂ rx +
(
Cxxxy +σ

3(r)
) ∂ux

∂ ry +Cxxyx ∂uy

∂ rx +Cxxyy ∂uy

∂ ry

]
+

∂

∂ ry

[(
Cxyxx +σ

3(r)
) ∂ux

∂ rx +
(
Cxyxy−σ

1(r)−σ
2(r)

) ∂ux

∂ ry +Cxyyx ∂uy

∂ rx +Cxyyy ∂uy

∂ ry

]
;

ρ
∂ 2uy

∂ t2 =
∂

∂ rx

[
Cyxxx ∂ux

∂ rx +Cyxxy ∂ux

∂ ry +
(
Cyxyx +σ

2(r)−σ
1(r)

) ∂uy

∂ rx +
(
Cyxyy +σ

3(r)
) ∂uy

∂ ry

]
+

∂

∂ ry

[
Cyyxx ∂ux

∂ rx +Cyyxy ∂ux

∂ ry +
(
Cyyyx +σ

3(r)
) ∂uy

∂ rx +
(
Cyyyy−σ

1(r)−σ
2(r)

) ∂uy

∂ ry

]
.

(D.3)

I assume only σ3 exhibits long-range behavior, i.e. σ3(r)= ρσ0+ρ∆σ(r) is expressed in
terms of its mean value plus a random part, i.e. ∆σ(r) = 0 and ∆σ(r′)∆σ(r′+ r) = B(r) =
γ cos(4θ)/(r2 + a2) ≡ cos(4θ)B(r) for some constants γ and a again. All other elastic
constants like Cµνκχ or σ1,σ2 are short-ranged and hence can be regarded as constants
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when r is large. The long-range decay in shear stress correlations has been derived using
generalised hydrodynamic theory in (Maier et al., 2018). Then the elastic wave equation
becomes

ρ
∂ 2ux(r)

∂ t2 = S xνκχ ∂ 2uν

∂ rκ∂ rχ
+

∂∆σ(r)
∂ rx

∂ux

∂ ry +
∂∆σ(r)

∂ ry
∂ux

∂ rx ;

ρ
∂ 2uy(r)

∂ t2 = S yνκχ ∂ 2uν

∂ rκ∂ rχ
+

∂∆σ(r)
∂ rx

∂uy

∂ ry +
∂∆σ(r)

∂ ry
∂uy

∂ rx , (D.4)

where S µνκχ corresponds to the r-independent part of elastic or stress tensors. In frequency
space, the equation of motion of the frequency-dependent displacement vector u(r,z) is

A(z)u(r,z) = 0,

with Aµν =−zδ
µν −∑

κχ

S µνκχ
∇κ∇χ − ∑

κ ̸=χ

(∇κ [∆σ∇χ ])δ
µν . (D.5)

The fluctuation of σ(r) is implemented by the probability distribution for its fluctuating part,

P[∆σ(r)] = P0 exp
[
−1

2

∫
d2rd2r′∆σ(r)B−1(r− r′)∆σ(r′)

]
. (D.6)

The Lagrangian is expressed as (scaled by ρ),

L =
1
2

∫
d2ruT Au = ux(Axxux +Axyuy)+uy(Ayxux +Ayyuy)

=
1
2

∫
d2r

{
−zu ·u− ∑

µνκχ

uµS µνκχ
∇κ∇χuν −ux

∇x(∆σ∇yux)−ux
∇y(∆σ∇xux)−uy

∇x(∆σ∇yuy)

−uy
∇y(∆σ∇xuy)

}
=

1
2

∫
d2r

{
−zu ·u− ∑

µνκχ

uµS µνκχ
∇κ∇χuν − [∇x(ux

∆σ∇yux)+∇y(ux
∆σ∇xux)−2∆σ(∇yux)(∇xux)]

−[x↔ y]}

=
1
2

∫
d2r

{
−zu ·u− ∑

µνκχ

uµS µνκχ
∇κ∇χuν +2∆σ [(∇yuy)(∇xuy)+(∇xux)(∇yux)]

}
,

(D.7)

where the last equality holds because objects like ∇x(ux∆σ∇yux) vanish on the boundary.
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Using the replica-field representation, the generating functional for calculating the aver-
aged Green’s function takes the form

⟨Zn(0)⟩ ≡
∫

D [ua(r)]D [∆σ(r)]P0 exp

[
−1

2

n

∑
a=1

∫
d2r{−zua(r)2 +2∆σ [(∇yuy)(∇xuy)+(∇xux)(∇yux)]}

− ∑
µνκχ

uµS µνκχ
∇κ∇χuν − 1

2

∫
d2rd2r′∆σ(r)B−1(r− r′)∆σ(r′)

]

≈
∫

D [ua(r)]exp

[
−1

2

n

∑
a=1

∫
d2r

{
−zua(r)2− ∑

µνκχ

uµS µνκχ
∇κ∇χuν

}

+
1
2

n

∑
a,b=1

∫
d2rd2r′[(∇yuy

a(r))(∇xuy
a(r))+(∇xux

a(r))(∇yux
a(r))]B(r− r′)[(∇yuy

b(r
′))(∇xuy

b(r
′))

+(∇xux
b(r
′))(∇yux

b(r
′))]
]
, (D.8)

where again a,b = 1, ...,n. I introduce effective matrix fields Λ
µνκχ

ab (r,r′,z) to replace the
∆σ(r) in the harmonic part of the effective equation of motion:

⟨Zn(0)⟩ ≈
∫

D [ua(r)]D [Λ
µνκχ

ab (r,r′,z)]Λ0·

exp

{
−1

2

n

∑
a=1

∫
d2r

[
−zua(r)2− ∑

µνκχ

uµS µνκχ
∇κ∇χuν

]
− 1

2

n

∑
a,b=1

∑
µν ,κ ̸=χ

∫
d2rd2r′·[

Λ
µνκχ

ab (r,r′,z)B−1(r− r′) ∑
κ ′ ̸=χ ′

Λ
µνκ ′χ ′

ab (r,r′,z)−uµ
a (r)∇κΛ

µνκχ

ab (r,r′,z)∇χuν
b (r
′)δ µν

]}
.

(D.9)
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The way Λ
µνκχ

ab introduced is to make Eq. (D.9) consistent with Eq. (D.5) and Λ0 is a
normalisation constant. The generating function including source Jµν

ab (r,r′) is then:

⟨Zn(J)⟩=
∫

D [ua(r)]D [Λ
µνκχ

ab (r,r′,z)]Λ0 exp

{
−1

2

n

∑
a,b=1

∑
µν ,κ ̸=χ

∫
d2rd2r′·[

ua(r)Aab(Λ
µνκχ

ab )ub(r′)+ ∑
κ ′ ̸=χ ′

Λ
µνκχ

ab B−1(r− r′)Λµνκ ′χ ′

ab +2Jµν

ab Λ
µνκχ

ab

]}
,

(D.10)

where

Aab(Λ
µνκχ

ab )≡ δ
ab

δ (r− r′)(−zδ
µν − ∑

µνκχ

S µνκχ
∇κ∇χ)− ∑

κ ̸=χ

∇κΛ
µνκχ

ab ∇χδ
µν .

(D.11)

By evaluating derivatives of ⟨Zn(J)⟩ with respect to Jµν

ab at Jµν

ab = 0, we are able to find the
averaged Green’s function of Λ

µνκχ

ab . Integrating ua out in Eq. (D.9), I obtain a field theory
involving only the Λ field:

⟨Zn(0)⟩ ∝

∫
D [Λ]e

{
− 1

2 ·∑
n
ab=1 ∑µν ,κ ̸=χ

(
lndetA(Λµνκχ

ab )+∑κ ′ ̸=χ ′
∫

d2rd2r′Λµκχν B−1(r−r′)Λµνκ ′χ ′
)}
.

(D.12)

To solve the saddle-point problem, I take

δ

δΣµν

(
TrlnA(Σµν)+

∫
d2rd2r′ΣµνB−1(r− r′)Σµν

)
= 0 (D.13)

at Σ
µν

0 , yielding

⟨Σµν

0 ⟩=
1
2 ∑

κ ̸=χ

∇κB(r− r′)∇χ⟨G0(rµ ,r′ν ,z)⟩δ µν ; (D.14a)

G0(rx,r′x,z) =
[
−z− (Cxxxx +σ

2−σ
1)∇x∇x− (Cxxxy +Σ

xx
0 )∇x∇y− (Cxyxx +Σ

xx
0 )∇y∇x

−(Cxyxy−σ
1−σ

2)∇y∇y
]−1

; (D.14b)

G0(ry,r′y,z) =
[
−z− (Cyxyy +Σ

yy
0 )∇x∇y− (Cyxyy +Σ

yy
0 )∇y∇x− (Cyxyx +σ

2−σ
1)∇x∇x

−(Cyyyy−σ
1−σ

2)∇y∇y
]−1

; (D.14c)

G0(rx,r′y) = [−Cxxyx
∇x∇x−Cxxyy

∇x∇y−Cxyyx
∇y∇x−Cxyyy

∇y∇y]
−1 ; (D.14d)

G0(ry,r′x) = [−Cyxxx
∇x∇x−Cyxxy

∇x∇y−Cyyxx
∇y∇x−Cyyxy

∇y∇y]
−1 . (D.14e)
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In q space, the condition on the one-particle CPA Green’s function may be rewritten as:

⟨Σµν

0 ⟩=−
1
2 ∑

κ ̸=χ

δ
µνqκqχ

∫
d2kB̃(q−k)⟨G0(k)⟩; B̃(q)≡

∫
d2reiq·rB(r) (D.15a)

G0(qx,qx,z) =
[
−z+(Cxxxx +σ

2−σ
1)qxqx +(Cxxxy +Σ

xx
0 )qxqy +(Cxyxx +Σ

xx
0 )qyqx

+(Cxyxy−σ
1−σ

2)qyqy
]−1

(D.15b)

G0(qy,qy,z) =
[
−z+(Cyxyy +Σ

yy
0 )qxqy− (Cyxyy +Σ

yy
0 )qyqx +(Cyxyx +σ

2−σ
1)qxqx

+(Cyyyy−σ
1−σ

2)qyqy
]−1

(D.15c)

G0(qx,qy) = [Cxxyxqxqx +Cxxyyqxqy +Cxyyxqyqx +Cxyyyqyqy]
−1 (D.15d)

G0(qy,qx) = [Cyxxxqxqx +Cyxxyqxqy +Cyyxxqyqx +Cyyxyqyqy]
−1 (D.15e)

Applying similar manipulations as for disorder in elastic constants in Chapter 6, one can
find that the self-energy scales as,

Im⟨Σµν

0 (q)⟩ ∼ −q2 lnq. (D.16)
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