3,462 research outputs found

    Erratum to: One-class kernel subspace ensemble for medical image classification

    Get PDF

    One-Class Classification: Taxonomy of Study and Review of Techniques

    Full text link
    One-class classification (OCC) algorithms aim to build classification models when the negative class is either absent, poorly sampled or not well defined. This unique situation constrains the learning of efficient classifiers by defining class boundary just with the knowledge of positive class. The OCC problem has been considered and applied under many research themes, such as outlier/novelty detection and concept learning. In this paper we present a unified view of the general problem of OCC by presenting a taxonomy of study for OCC problems, which is based on the availability of training data, algorithms used and the application domains applied. We further delve into each of the categories of the proposed taxonomy and present a comprehensive literature review of the OCC algorithms, techniques and methodologies with a focus on their significance, limitations and applications. We conclude our paper by discussing some open research problems in the field of OCC and present our vision for future research.Comment: 24 pages + 11 pages of references, 8 figure

    Dissimilarity-based Ensembles for Multiple Instance Learning

    Get PDF
    In multiple instance learning, objects are sets (bags) of feature vectors (instances) rather than individual feature vectors. In this paper we address the problem of how these bags can best be represented. Two standard approaches are to use (dis)similarities between bags and prototype bags, or between bags and prototype instances. The first approach results in a relatively low-dimensional representation determined by the number of training bags, while the second approach results in a relatively high-dimensional representation, determined by the total number of instances in the training set. In this paper a third, intermediate approach is proposed, which links the two approaches and combines their strengths. Our classifier is inspired by a random subspace ensemble, and considers subspaces of the dissimilarity space, defined by subsets of instances, as prototypes. We provide guidelines for using such an ensemble, and show state-of-the-art performances on a range of multiple instance learning problems.Comment: Submitted to IEEE Transactions on Neural Networks and Learning Systems, Special Issue on Learning in Non-(geo)metric Space

    Cascade of classifier ensembles for reliable medical image classification

    Get PDF
    Medical image analysis and recognition is one of the most important tools in modern medicine. Different types of imaging technologies such as X-ray, ultrasonography, biopsy, computed tomography and optical coherence tomography have been widely used in clinical diagnosis for various kinds of diseases. However, in clinical applications, it is usually time consuming to examine an image manually. Moreover, there is always a subjective element related to the pathological examination of an image. This produces the potential risk of a doctor to make a wrong decision. Therefore, an automated technique will provide valuable assistance for physicians. By utilizing techniques from machine learning and image analysis, this thesis aims to construct reliable diagnostic models for medical image data so as to reduce the problems faced by medical experts in image examination. Through supervised learning of the image data, the diagnostic model can be constructed automatically. The process of image examination by human experts is very difficult to simulate, as the knowledge of medical experts is often fuzzy and not easy to be quantified. Therefore, the problem of automatic diagnosis based on images is usually converted to the problem of image classification. For the image classification tasks, using a single classifier is often hard to capture all aspects of image data distributions. Therefore, in this thesis, a classifier ensemble based on random subspace method is proposed to classify microscopic images. The multi-layer perceptrons are used as the base classifiers in the ensemble. Three types of feature extraction methods are selected for microscopic image description. The proposed method was evaluated on two microscopic image sets and showed promising results compared with the state-of-art results. In order to address the classification reliability in biomedical image classification problems, a novel cascade classification system is designed. Two random subspace based classifier ensembles are serially connected in the proposed system. In the first stage of the cascade system, an ensemble of support vector machines are used as the base classifiers. The second stage consists of a neural network classifier ensemble. Using the reject option, the images whose classification results cannot achieve the predefined rejection threshold at the current stage will be passed to the next stage for further consideration. The proposed cascade system was evaluated on a breast cancer biopsy image set and two UCI machine learning datasets, the experimental results showed that the proposed method can achieve high classification reliability and accuracy with small rejection rate. Many computer aided diagnosis systems face the problem of imbalance data. The datasets used for diagnosis are often imbalanced as the number of normal cases is usually larger than the number of the disease cases. Classifiers that generalize over the data are not the most appropriate choice in such an imbalanced situation. To tackle this problem, a novel one-class classifier ensemble is proposed. The Kernel Principle Components are selected as the base classifiers in the ensemble; the base classifiers are trained by different types of image features respectively and then combined using a product combining rule. The proposed one-class classifier ensemble is also embedded into the cascade scheme to improve classification reliability and accuracy. The proposed method was evaluated on two medical image sets. Favorable results were obtained comparing with the state-of-art results

    Toward a General-Purpose Heterogeneous Ensemble for Pattern Classification

    Get PDF
    We perform an extensive study of the performance of different classification approaches on twenty-five datasets (fourteen image datasets and eleven UCI data mining datasets). The aim is to find General-Purpose (GP) heterogeneous ensembles (requiring little to no parameter tuning) that perform competitively across multiple datasets. The state-of-the-art classifiers examined in this study include the support vector machine, Gaussian process classifiers, random subspace of adaboost, random subspace of rotation boosting, and deep learning classifiers. We demonstrate that a heterogeneous ensemble based on the simple fusion by sum rule of different classifiers performs consistently well across all twenty-five datasets. The most important result of our investigation is demonstrating that some very recent approaches, including the heterogeneous ensemble we propose in this paper, are capable of outperforming an SVM classifier (implemented with LibSVM), even when both kernel selection and SVM parameters are carefully tuned for each dataset
    • …
    corecore