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Background: Amyotrophic Lateral Sclerosis (ALS) is a relentlessly progressive

neurodegenerative condition with limited therapeutic options at present. Survival from

symptom onset ranges from 3 to 5 years depending on genetic, demographic,

and phenotypic factors. Despite tireless research efforts, the core etiology of the

disease remains elusive and drug development efforts are confounded by the lack

of accurate monitoring markers. Disease heterogeneity, late-stage recruitment into

pharmaceutical trials, and inclusion of phenotypically admixed patient cohorts are some

of the key barriers to successful clinical trials. Machine Learning (ML) models and

large international data sets offer unprecedented opportunities to appraise candidate

diagnostic, monitoring, and prognostic markers. Accurate patient stratification into

well-defined prognostic categories is another aspiration of emerging classification and

staging systems.

Methods: The objective of this paper is the comprehensive, systematic, and critical

review of ML initiatives in ALS to date and their potential in research, clinical, and

pharmacological applications. The focus of this review is to provide a dual, clinical-

mathematical perspective on recent advances and future directions of the field. Another

objective of the paper is the frank discussion of the pitfalls and drawbacks of specific

models, highlighting the shortcomings of existing studies and to provide methodological

recommendations for future study designs.

Results: Despite considerable sample size limitations, ML techniques have already

been successfully applied to ALS data sets and a number of promising diagnosis

models have been proposed. Prognostic models have been tested using core clinical

variables, biological, and neuroimaging data. Thesemodels also offer patient stratification

opportunities for future clinical trials. Despite the enormous potential of ML in ALS

research, statistical assumptions are often violated, the choice of specific statistical

models is seldom justified, and the constraints of ML models are rarely enunciated.
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Conclusions: From a mathematical perspective, the main barrier to the development

of validated diagnostic, prognostic, and monitoring indicators stem from limited sample

sizes. The combination of multiple clinical, biofluid, and imaging biomarkers is likely to

increase the accuracy of mathematical modeling and contribute to optimized clinical

trial designs.

Keywords: amyotrophic lateral sclerosis, machine learning, diagnosis, prognosis, risk stratification, clustering,

motor neuron disease

1. INTRODUCTION

Amyotrophic Lateral Sclerosis (ALS) is an adult-onset multi-
system neurodegenerative condition with predominant motor
system involvement. In Europe, its incidence varies between
2 or 3 cases per 100 000 individuals (Hardiman et al.,
2017) and its prevalence is between 5 and 8 cases per 100
000 (Chiò et al., 2013b). An estimated 450 000 people are
affected by ALS worldwide according to the ALS Therapy
Development Institute. While no unifying pathogenesis has
been described across the entire spectrum of ALS phenotypes,
the incidence of the condition is projected to rise in the
next couple of decades (Arthur et al., 2016) highlighting the
urgency of drug development and translational research. Given
the striking clinical and genetic heterogeneity of ALS, the
considerable differences in disability profiles and progression
rates, flexible individualized care strategies are required in
multidisciplinary clinics (den Berg et al., 2005), and it is also
possible that precision individualized pharmaceutical therapies
will be required.

Depending on geographical locations, the terms “ALS”
and “Motor Neuron Disease” (MND) are sometimes used
interchangeably, but MND is the broader label, encompassing a
spectrum of conditions, as illustrated by Figure 1. The diagnosis
of ALS requires the demonstration of Upper (UMN) and Lower
Motor Neuron (LMN) dysfunction. The diagnostic process is
often protracted. The careful consideration of potential mimics
and ruling out alternative neoplastic, structural, and infective
etiologies, is an important priority (Hardiman et al., 2017).
ALS often manifests with subtle limb or bulbar symptoms
and misdiagnoses and unnecessary interventions in the early
stage of the disease are not uncommon (Zoccolella et al.,
2006; Cellura et al., 2012). Given the limited disability in
early-stage ALS, many patients face a long diagnostic journey
from symptom onset to definite diagnosis which may otherwise
represent a valuable therapeutic window for neuroprotective
intervention. Irrespective of specific healthcare systems the
average time interval from symptoms onset to definite diagnosis
is approximately 1 year (Traynor et al., 2000). ALS is
now recognized as a multi-dimensional spectrum disorder.
From a cognitive, neuropsychological perspective, an ALS-
Frontotemporal Dementia (FTD) spectrum exists due to shared
genetic and pathological underpinnings. Another important
dimension of the clinical heterogeneity of ALS is the proportion
of UMN / LMN involvement which contributes to the spectrum
of Primary Lateral Sclerosis (PLS), UMN-predominant ALS,

classical ALS, LMN-predominant ALS, and ProgressiveMuscular
Atrophy (PMA), as presented in Figure 1.

The genetic profile of MND patients provides another
layer of heterogeneity. Specific genotypes such as those
carrying the C9orf72 hexanucleotide expansions or those
with Super Oxide Dismutase 1 (SOD1) mutations have been
associated with genotype-specific clinical profiles. These
components of disease heterogeneity highlight the need
for individualized management strategies and explain the
considerable differences in prognostic profiles. Differences
in survival due to demographic, phenotypic, and genotypic
factors are particularly important in pharmaceutical trials so
that the “treated” and “placebo-control” groups are matched in
this regard.

With the ever increasing interest in Machine Learning (ML)
models, a large number of research papers have been recently
published using ML, classifiers, and predictive modeling in ALS
(Bede, 2017). However, as these models are usually applied to
small data sets by clinical teams, power calculations, statistical
assumptions, and mathematical limitations are seldom discussed
in sufficient detail. Accordingly our objective is the synthesis
of recent advances, discussion of common shortcomings and
outlining future directions. The overarching intention of this
paper is to outline best practice recommendations for ML
applications in ALS.

2. METHODS

Machine learning is a rapidly evolving field of applied
mathematics focusing on the development and implementation
of computer software that can learn autonomously.
Learning is typically based on training data sets and a
set of specific instructions. In medicine, it has promising
diagnostic, prognostic, and risk stratification applications
and it has been particularly successful in medical oncology
(Kourou et al., 2015).

2.1. Main Approaches
Machine learning encompasses two main approaches;
“supervised” and “unsupervised” learning. The specific method
should be carefully chosen based on the characteristics of the
available data and the overall study objective.

“Unsupervised learning” aims to learn the structure of
the data in the absence of either a well-defined output or
feedback (Sammut and Webb, 2017). Unsupervised learning
models can help uncover novel arrangements in the data which
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FIGURE 1 | The clinical heterogeneity of Motor Neuron Disease common phenotypes and distinct syndromes.

in turn can offer researchers new insights into the problem
itself. Unsupervised learning can be particularly helpful in
addressing patient stratification problems. Clustering methods
can be superior to current clinical criteria, which are often based
on a limited set of clinical observations, rigid thresholds, and
conservative inclusion/exclusion criteria for class membership.
The K-means algorithm is one of the most popular methods.
It recursively repeats two steps until a stopping criterion is
met. First, samples are assigned to the closest cluster, which are
randomly initialized, then cluster centers are computed based on
the centroid of samples belonging to each cluster. Unsupervised
learning methods have been successfully used in other fields of
medicine (Gomeni and Fava, 2013; Marin et al., 2015; Beaulieu-
Jones and Greene, 2016; Ong et al., 2017; Westeneng et al., 2018).
Figure 2 represents an example of a patient stratification scheme
using an unsupervised learning algorithm.

Supervised learning focuses on mapping inputs with outputs
using training data sets (Sammut and Webb, 2017). Supervised
learning problems can be divided into either classification
or regression problems. Classification approaches allocate test
samples into specific categories or sort them in a meaningful
way (Sammut and Webb, 2017). The possible outcomes of
the modeled function are limited to a set of predefined
categories. For example, in the context of ALS, a possible

classification task is to link demographic variables, clinical
observations, radiological measures, etc. to diagnostic labels
such as “ALS,” “FTD,” or “healthy.” Schuster et al. (2016b),
Bede et al. (2017), Ferraro et al. (2017), and Querin et al.
(2018) have implemented diagnostic models to discriminate
between patients with ALS and healthy subjects. Regression
problems on the other hand, deal with inferring a real-
valued function dependent on input variables, which can be
dependent or independent of one another (Sammut and Webb,
2017). For instance, in the context of prognosis, a possible
regression task could consist of designing a model which
accurately predicts motor decline based on clinical observations
(Hothorn and Jung, 2014; Taylor A. A. et al., 2016). When a
regression task deals with time-related data sequences, often
called “longitudinal data” in a medical context, it is referred to
as “time series forecasting.” The core characteristics of the data,
which are most likely to define group-membership are referred to
as “features.”

2.2. Common Machine Learning Models
While a plethora of ML models have been developed and
successfully implemented for economic, industrial, and
biological applications (Hastie et al., 2009; Bishop, 2016;
Goodfellow et al., 2017), this paper primarily focuses on ML
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FIGURE 2 | Clustering model for patient stratification. The available data consist of basic clinical features; age and BMI. Given this specific ALS patient population, the

objective is to explore if patients segregate into specific subgroups. After running a clustering algorithm, we obtain clusters and cluster memberships for each patient.

Further analysis of shared traits within the same cluster can help identify novel disease phenotypes. (A) Initial data samples without output. (B) Identify cluster and

cluster membership. (C) Stratify samples based on shared feature traits.

methods utilized in ALS research. These include Random Forests
(RF) (Hothorn and Jung, 2014; Ko et al., 2014; Beaulieu-Jones
and Greene, 2016; Sarica et al., 2016; Taylor A. A. et al., 2016;
Ferraro et al., 2017; Fratello et al., 2017; Huang et al., 2017;
Jahandideh et al., 2017; Seibold et al., 2017; Pfohl et al., 2018;
Querin et al., 2018), Support Vector Machines (SVM) (Srivastava
et al., 2012; Welsh et al., 2013; Beaulieu-Jones and Greene,
2016; Bandini et al., 2018; D’hulst et al., 2018), Neural Networks
(NN) (Beaulieu-Jones and Greene, 2016; van der Burgh et al.,
2017), Gaussian Mixture Models (GMM) (Huang et al., 2017),
Boosting methods (Jahandideh et al., 2017; Ong et al., 2017),
k-Nearest Neighbors (k-NN) (Beaulieu-Jones and Greene, 2016;
Bandini et al., 2018). Generalized linear regression models are
also commonly used (Gordon et al., 2009; Taylor A. A. et al.,
2016; Huang et al., 2017; Li et al., 2018; Pfohl et al., 2018), but
will not be presented here. Please refer to Bishop (2016) for
additional information on linear modeling. Our review of ML
model families does not intend to be comprehensive with regards
to MLmodels utilized in other medical subspecialties. Additional
models with successful implementation in neurological
conditions include Latent Factor models (Geifman et al., 2018)
and Hidden Markov Models (HMM) (Martinez-Murcia et al.,
2016) which have been successfully implemented in Alzheimer
disease cohorts.

2.2.1. Random Forests
Tree-based methods partition the input space into sets that
minimize an error function, impurity, or entropy (Hastie et al.,
2009). A decision tree is a tree-based method that can be
described as a series of bifurcations with yes/no questions. To
compute the output of a data sample, one needs to start at the
top of the tree, and iteratively decide where to go next based on
the answer. Figure 3 illustrates an example of a decision tree for
diagnosis modeling in ALS.

“Random Forest” (RF) is a ensemble method based on
decision trees. By relying on multiple learning algorithms to
combine their results, ensemble methods obtain a more efficient
prediction model. Each tree in the RF is built on a random
subset of the training data and available features. This increases
robustness to outliers and generalizability. The final estimation
is the average or majority of the trees’ estimation depending on
whether the target is a regression or classification task (Louppe,
2014). Most RFs contain more than a hundred decision trees and
decision tree length and width can also be sizable depending on
the number of input features. In ML, the term “interpretability”
refers to the degree to which the machine’s decision is
comprehensible to a human observer (Miller, 2017). While
global model interpretability is de facto rather low, RFs evaluate
feature importance with regards to its discriminatory power.
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FIGURE 3 | Decision tree model for diagnosis. The available data consist of

three basic neuroimaging features: average Corticospinal Tract (CST)

Fractional Anisotropy (FA), Motor Cortex (MC) thickness, and average Corpus

Callosum (CC) FA. For patient 0, these features are reduced CST FA, reduced

MC thickness, reduced CC FA. The target is to classify subjects between

healthy and ALS subjects. Establishing a diagnosis requires to run through the

decision tree till there are no more questions to answer. At step 1, the closed

question directs to the right node due to patient 0’s CST pathology. At step 2,

the closed question directs to the right node due to patient 0’s MC pathology.

At step 3, the closed question directs to the left node due to patient 0 CC

involvement. Step 3 is the last step as there is no more steps below. The

diagnosis for patient 0 is the arrival cell value which is ALS.

Feature relevance is appraised based on the error function upon
which the decision trees were built. Extremely Randomized Trees
(Extra Trees) have shown promising results for discriminating
patients suffering from Progressive Supranuclear Palsy (PSP) and
Multiple System Atrophy (MSA) using speech analysis (Baudi
et al., 2016). Please refer to Breiman (2001) for a more thorough
description of decision trees and RFs and to Rokach (2016)
and Shaik and Srinivasan (2018) for a general overview of
forest models and their evolution. Figure 4 illustrates a possible
diagnostic application of RF in ALS.

2.2.2. Support Vector Machines
Support Vector Machines (SVM) map input data into high
dimensional spaces, called feature spaces, using a non-linear
mapping function (Vapnik, 2000). They define a hyperplane that
best separates the data. While traditional linear modeling is
performed in the input space, SVMs perform linear modeling
after projecting the data into another space. The features which
discriminate in the projected space, also known as “feature space,”
derive from input features but these are not readily interpretable.
The feature space hyperplane is defined by a limited set of
training points called support vectors, hence the name of the

method. The chosen hyperplane maximizes the margins between
the closest data samples on each side of the hyperplane, which is
why SVMs are also referred to as “large margins classifier.” These
vectors are identified during the “learning phase” after solving a
constrained optimization problem. SVMs work as a “black box”
as the logic followed by the model cannot be directly interpreted.
SVM were state-of-the-art models before being outperformed by
NN architecture. That being said, SVMmodels can adjust well to
imaging specific tasks such as anomaly detection using one class
SVM. Medical applications of one class SVMs have addressed the
issues of tumor detection (Zhang et al., 2004) or breast cancer
detection (Zhang et al., 2014). Please refer to Bishop (2016) for
more information on SVMs. Figure 5 illustrates an example of a
SVM used to predict prognosis in ALS.

2.2.3. Neural Networks
A “perceptron,” also called “artificial neuron,” is a simplified
representation of a human neuron. It is defined by its afferents
(inputs), the inputs’ respective weights and a non-linear function.
The perceptron’s output is the linear combination of its inputs
onto which the non-linear function is applied. The linear
combination consists of the sum of the multiplications of each
input and their respective weight. Perceptrons can be compiled,
the output of one perceptron providing the input of the next
perceptron. The resulting structure is called a “multi-layer
perceptron” which is the most common Neural Network (NN)
framework. The contribution of each input to the neuron is
modulated by its respective weight which is commonly regarded
as a “synapse.” NN structures are chosen based onmanual tuning
and model weights are selected using iterative optimization
methods. The stochastic gradient descent method is one of
the most popular approaches. Specific model architectures are
optimally-suited for specific data types such as “Recurrent NNs”
(RNN) for time series or “Convolutional NNs” (CNN) for images.
Deep learning models are NN models with significant depth or
number of layers (hence the name deep learning) and extensive
height or number of nodes per layer, which strongly limits their
direct interpretability, similarly to SVMs. Deep learning models
are currently state-of-the-art in multiple domains, specifically
those which deal with imaging data. Substantial achievements
were reached in the field of oncology with regards to melanoma
(Esteva et al., 2017), breast cancer and prostate cancer detection
(Litjens et al., 2016). Advanced neural network architecture such
as the Generative Adversarial Networks (GAN) (Goodfellow
et al., 2014) have been tested in a medical imaging synthesis
(Nie et al., 2017) or patient record generation (Choi et al., 2017)
contexts. Please refer to Goodfellow et al. (2017) for additional
material on NNs, Amato et al. (2013) for NN applications in
medical diagnosis, Lisboa and Taktak (2006) for NN models in
decision support in cancer and Suzuki (2017). Figure 6 provides
a schematic example of NNs to aid prognostic modeling in ALS
using a two layer multi-layer perceptron.

2.2.4. Gaussian Mixture Models
Gaussian Mixture Models (GMM) are probabilistic models
which can be used in supervised or unsupervised learning.
The model hypothesis is that the data can be modeled as
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FIGURE 4 | Random forest for diagnosis. The available data consist of basic biomarkers features which are MUNIX, CSF Neurofilament (NF) levels, Vital Capacity

(VC), and BMI. The objective is to classify subjects between healthy and ALS patients. The RF contains 3 decisions trees which use different feature subsets to learn a

diagnosis model. Tree A learns on all available features, Tree B learns on MUNIX and VC, Tree C learns on NF levels and BMI. Each tree proposes a diagnosis. RF

diagnosis is computed based on the majority vote of each of the trees contained in the forest. Given that two out of three trees concluded that patient 0 had ALS, the

final diagnosis suggested by the model is ALS.

FIGURE 5 | SVM model for prognosis. The available data consist of basic clinical and demographic features; age and site of onset. The objective is to classify patients

according to 3-year survival. In the input space (where features are interpretable), no linear hyperplane can divide the two patient populations. The SVM model

projects the data into a higher dimensional space—in our example a three dimensional space. The set of two features is mapped to a set of three features. In the

feature space, a linear hyperplane can be computed which discriminates the two populations accurately. The three features used for discrimination are unavailable for

analysis and interpretability is lost in the process.

a weighted-sum of finite Gaussian-component densities. Each
density component is characterized by two parameters: a mean
vector and a covariance matrix. Component parameters are
estimated using the “Expectation Maximization” (EM) algorithm
based on maximizing the log likelihood of the component

densities. Inference is performed by drawing from the estimated
mixture of Gaussian densities. GMMhas achieved good results in
medical applications, including medical imaging (de Luis-García
et al., 2011) and diagnosing of PD (Khoury et al., 2019). Please
refer to Rasmussen (2005) for additional material on GMMs,
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FIGURE 6 | Neural Network model for prognosis. The available data consist of basic demographic and clinical features: age, BMI and diagnostic delay. For patient 0,

these features are 50, 15kg/m2, and 15 months, respectively. The objective is to predict ALSFRS-r in 1 year. The multi-layer perceptron consists of two layers. Nodes

are fed by input with un-shaded arrows. At layer 1, the three features are combined linearly to compute three node values, C1, C2, and C3. C1 is a linear combination

of age and delay, C2 is a linear combination of age, delay and BMI, and C3 is a linear combination of BMI and delay. For patient 0, computing the three values returns

10, 2, and 2 for C1, C2, and C3, respectively. At layer 2, outputs from layer 1 (i.e., C1, C2, and C3) are combined linearly to compute two values, CA and CB. CA is a

linear combination of C1 and C2 while CB is a linear combination of C1 and C3. For patient 0, computing the two values gives 24 and 14 for CA and CB, respectively.

Model output is computed after computing linear combination of CA and CB and applying a non-linear function (in this case a maximum function which can be seen

as a thresholding function which accepts only positive values). The output is the predicted motor functions decline rate. For patient 0, the returned score is 26.

Moon (1996) for more information on the EM algorithm and
Roweis and Ghahramani (1999) for a global overview of Gaussian
mixture modeling.

2.2.5. k-nearest Neighbors
k-Nearest Neighbors (k-NN) is an instance-based model.
Inference is performed according to the values of its nearest
neighbors. The advantage of the model is that limited training
is required: all of the training data is kept in memory and is
used during the prediction phase. Based on a selected distance
function, the K most similar neighbors to the new sample are
identified. The new sample’s label is the average of its nearest
neighbors’ label. An advanced version of the method is called
Fuzzy k-NN (Fk-NN) which has been used to diagnose PD based
on computational voice analyses (Chen et al., 2013). Please refer
to Bishop (2016) for more information on k-NNmodels and Aha
et al. (1991) for a review on instance-based ML models.

2.2.6. Boosting Methods
Boosting algorithms are ensemble methods: they rely on a
combination of simple classifiers. In contrast to RFmodels, which
are made up of decision trees and output a result based on
the average or majority vote of the decision belonging to the
RF mode, boosting algorithms are based on simple classifiers.
The concept behind boosting is combining multiple “weak”
(performance wise) learning models. This combination provides
a more robust model than working with a simple base model.
Model learning is based on finding the right weighting of the

weak learners which make up the model to learn an efficient
global model. Recent applications of boosting models include
analysis of genetic information to inform on breast cancer
prognosis (Lu et al., 2019) and cardiac autonomic neuropathy
(Jelinek et al., 2014). Please refer to Bishop (2016) for more
information on boosting methods and (Schapire, 2003) for a
general overview of boosting methods.

As opposed to relying on a single ML model, models have
been increasingly used in combination. For example, NN has
been combined with a RF in Beaulieu-Jones and Greene (2016)
where the NN output is fed into the RF model. Learning sub-
models on specific feature sets have been used to feed sub-model
outputs to another ML model as in Fratello et al. (2017) which
trained two RF models on different imaging data sets (functional
and structural MRI features) and combined intermediate outputs
as the final model output. Model combination and model
integration can significantly enhance overall performance, but
the complexity of both approaches is often underestimated. ML
model constraints are even more stringent when used as part of
combined or integrated models.

2.3. The Limitations of Machine Learning
Approaches
ML models have considerable advantages over traditional
statistical approaches for modeling complex datasets. Most
ML models, including the six approaches presented above,
do not require stringent assumptions on data characteristics.
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They offer novel insights by identifying statistically relevant
correlations between features and, in the case of supervised
learning, of a specific outcome. Despite the pragmatic advantages,
the application of ML models requires a clear understanding
of what determines model performance and the potential
pitfalls of specific models. The most common shortcomings
will be discussed in the following section. Concerns regarding
data analyses will be examined first, which include data
sparsity, data bias, and causality assumptions. Good practice
recommendations for model design will then be presented,
including the management of missing data, model overfitting,
model validation, and performance reporting.

2.3.1. Data Sparsity
“Data sparsity” refers to working and interpreting limited data
sets which is particularly common in medical applications.
Medical data is often costly, difficult to acquire, frequently
require invasive (biopsies, spinal fluid), uncomfortable (blood
tests), or time consuming procedures (Magnetic Resonance
Imaging). Other factors contributing to the sparsity of medical
data include strict anonymization procedures, requirements
for informed consent, institutional, and cross-border data
management regulations, ethics approvals, and other governance
issues. The processing, storage, and labeling of medical data
is also costly and often requires specific funding to upkeep
registries, DNA banks, brain banks, biofluid facilities, or
magnetic resonance repositories (Turner et al., 2011; Bede et al.,
2018b; NEALS Consortium, 2018; Neuroimaging Society in ALS,
2018). Multicenter protocols are particularly challenging and
require additional logistics, harmonization of data acquisition,
standardized operating procedures, and bio-sample processing,
such as cooling, freezing, spinning, staining, etc.

Most ML models have originally been intended, developed,
and optimized for huge quantities of data. Accordingly, the
generalizability of most ML models depends heavily on the
number of samples upon which it can effectively learn.
Additionally, there is the “curse of dimensionality.” The number
of samples required for a specific level of accuracy grows
exponentially with the number of features (i.e., dimensions)
(Samet, 2006). If the number of samples is restrictively low,
then the features lose their discriminating power, as all samples
in the dataset seem very distinct from one another (Pestov,
2007). MLmodels learn the underlying relationship between data
samples through feature correlations. This requires the ability
to discriminate between similar and dissimilar samples in the
dataset. Calculating the Sample to Feature Ratio (SFR), i.e., the
number of samples available per feature, is a simple way to assess
whether the sample size is satisfactory for a given model. An
“SFR” of around 10–15 is often considered the bare minimum
(Raudys, 2001), but this is based on historical statistical models
and may be insufficient for working with complex ML models.
Working with a low SFR can lead to both model “underfitting” or
“overfitting.” These concepts will be introduced below.

2.3.2. Data Bias
Discussing data bias is particularly pertinent when dealing
with medical data. Most ML models assume that the training

data used is truly representative of the entire population. The
entire spectrum of data distribution should be represented in
the training data, just as observed in the overall population,
otherwise the model will not generalize properly. For example, if
a model is presented with a phenotype which was not adequately
represented in the training data set, the model will at best label
it as an “outlier” or at worst associate it to the wrong category
label. Medical data are particularly prone to suffer from a variety
of data biases which affect recorded data at different analysis
levels (Pannucci and Wilkins, 2010). The four most common
types of bias include: study participation bias, study attrition bias
, prognostic factormeasurement bias, and outcomemeasurement
bias (Hayden et al., 2013). In ALS, study participation bias, -
a.k.a. “clinical trial bias,” is by far the most significant. It affects
prognostic modeling in particular, as patients in clinical trials
do not reflect the general ALS population: they are usually
younger, tend to suffer from the spinal form of ALS and have
longer survival (Chio et al., 2011). Unfortunately, very little
can be done to correct for participation bias post-hoc, therefore
its potential impact needs to be carefully considered when
interpreting the results. Study attrition bias also influences ALS
studies as data censoring is not always systematically recorded.
“Censoring” is a common problem in medical research; it refers
to partially missing data, typically to attrition in longitudinal
studies. Prognostic factor measurements can be influenced by
subjective and qualitative medical assessments and by “machine
bias” in imaging data interpretation. The single most important
principle to manage these factors, especially if limited data
are available, is overtly discussing the type of bias affecting a
particular study, and openly reporting them.

2.3.3. Causality Assumption
ML models identify strong (i.e., statistically significant)
correlations between input features and the output in the case
of supervised learning. Models can only capture observed
correlations which are fully contained within the training
data. Causality between features and the output cannot be
solely established based on significant correlations in the
dataset, especially when working with small and potentially
unrepresentative population samples. Causality is sometimes
inferred based on ML results which can be misleading.

2.4. Good Practice Recommendations
2.4.1. Feature Selection
Identifying the most appropriate features is a crucial step in
model design. In “sparse data” situations, the number of features
should be limited to achieve an acceptable SFR and to limit
model complexity. Various feature selection and engineering
approaches exist, which can be chosen and combined depending
on primary study objectives. It can be performed manually based
on a priori knowledge or using a RF model which ranks data
features based on feature importance. This method is commonly
used in medical contexts as it easily gives a broad overview
of the feature set. Dimension reduction is another option,
with linear methods such as Principal Component Analysis
(PCA) or Independent Component Analysis (ICA) and non-
linear methods such as manifold learning methods. Automated
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feature selection methods, such as the “wrapper” or “filtering,”
undergo an iterative, sometimes time-consuming process where
features are selected based on their impact on overall model
performance. Finally, provided that sufficient data are available,
NN Auto Encoders (AE) models can also reliably extract relevant
features. To this day, feature selection and engineering cannot
be fully automated and human insight is typically required
for manual tuning of either the features or the algorithms
performing feature selection. Please refer to Guyon et al. (2006)
for further information on feature selection strategies, Fodor
(2002) for an overview of dimension reduction techniques and
(Lee and Verleysen, 2007) for additional material on non-linear
dimension reduction.

2.4.2. Missing Data Management
While most ML models require complete data sets for adequate
learning, medical data are seldom complete and missing
features are also common. Missing data may originate from
data censoring in longitudinal studies or differences in data
acquisition. One common approach tomissing data management
is the discarding of incomplete samples. This has no effect
on model design provided there is sufficient data left and
that sample distribution is unaltered after discarding. This
strategy usually requires large volumes of data with only a
small and random subset of missing records. This condition
however is rarely met in a clinical setting, where data is
sparse, and missing data patterns are typically not random.
Missing data can often be explained by censoring or specific
testing procedures. Discarding data in these situations may
increase data bias as it alters the sample distribution. The
first step to missing data management is therefore to explore
the mechanisms behind missing data features. Features can
be “missing completely at random,” without modifying the
overall data distribution, “missing at random,” when missing
feature patterns are based on other features available in
the dataset or “non-missing at random” for the remaining
cases. Depending on the type of missing data, an appropriate
imputation method should be selected. Basic data imputation
methods, such as mean imputation, work well on “missing
completely at random” cases but induce significant bias for
“missing at random” scenarios. In this case, advanced imputation
methods such as “Multiple Imputation using Chained Equations”
(MICE) (van Buuren, 2007) or “Expectation Maximization”
(EM) (Nelwamondo et al., 2007) algorithms operate well.
Recently, missing data imputation has been managed using
Denoising Auto-Encoders (DAE) models (Nelwamondo et al.,
2007; Costa et al., 2018), which have a specific NN architecture.
MICE and EM algorithms are statistical methods which
substitute missing feature values with feature values from
the most similar records in the training set. DAE models
build a predictive model using the data available with no
missing features to assess substitution values.“Non-missing at
random” patterns are usually dealt with missing at random
imputation methods, but this induces bias in data which
needs to be specifically acknowledged. Please refer to Little
(2002) for general principles on missing data management and

(Rubin, 1987) for missing data imputation for “non-random
missing” patterns.

2.4.3. Model Overfitting
Each model design is invariably associated with a certain type
of error. “Bias” refers to erroneous assumptions associated
with a model, i.e., certain interactions between the input
and the output may be overlooked by the model. ‘Variance’
refers to errors due to the model being too sensitive to
training data variability. The learnt model may be excessively
adjusted to the training data and poorly generalizable to the
overall population if it has only captured the behavior of
the training dataset. “Irreducible error” is inherent to model
design and cannot be dealt with post-hoc. “Bias” and “variance”
are interlinked, which is commonly referred to as the “bias-
variance trade-off.” A high level of bias will lead to model
“underfitting,” i.e., the model does not represent adequately
the training data. A high level of variance will lead to model
“overfitting,” i.e., the model is too specific to the training data.
Overfitting is critical, as it is easily overlooked when evaluating
model performance and with the addition of supplementary
data, the model will not be able to accurately categorize
the new data. This severely limits the use of “overfitted”
models. Complex models tend to “overfit” more than simpler
models and they require finer tuning. Carefully balancing
variance and bias is therefore a key requirement for ML model
design. Please refer to Bishop (2016) for more information
on overfitting.

2.4.4. Validation Schemes
Working with an optimal validation scheme is crucial in ML.
Validation schemes usually split available data into “training”
and “testing” datasets, so that performance can be assessed on
novel data. Training and testing data should share the same
distribution profile, which in turn should be representative of
the entire population. Overfitting is a common shortcoming
of model designs and carefully chosen validation schemes can
help to avoid it. Several validation frameworks exist, “hold out
validation” and “cross validation” being the two most popular.
The former splits the initial dataset into two sets, one for training
the other for testing. The latter performs the same splitting
but multiple times. The model is learned and tested each time
and the overall performance is averaged. Nevertheless, caution
should be exercised in a sparse data context as validation schemes
do not compensate well for poorly representative data. Please
refer to Bishop (2016) for additional considerations regarding
validation schemes.

2.4.5. Harmonization of Performance Evaluation and

Reporting
Formal and transparent performance assessments are
indispensable to compare and evaluate in ML frameworks.
To achieve that, standardized model performance metrics are
required. In classification methods, model evaluation should
include sensitivity and specificity, especially in a diagnostic
context. Sensitivity (or “recall”) is the true positive rate, and
specificity is the true negative rate. “Accuracy” and Area Under
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the “Receiver Operating Curve” (ROC) metrics can be added but
should never be used alone to characterize model performance.
Accuracy is the average of sensitivity and specificity. ROC
is used to represent sensitivity and specificity trade-offs in a
classifier model (Fawcett, 2004). The ROC space represents the
relationship between the true positive rate (i.e., sensitivity) and
the false positive rate (which is 1 - specificity). Given a threshold
sensitivity rate, the prediction model will return a specificity rate,
adding a data point to the ROC. Multiple thresholding enables
the generation of the ROC curve. Perfect predictions lead to
100% sensitivity and 100% specificity (i.e., 0% false positives)
which leads to an Area Under the ROC (AUC) of 1. Random
predictions will return a 50% accuracy rate which is represented
by a continuous straight line connecting the plot of 0% sensitivity
with 100% specificity and the plot of 100% sensitivity with 0%
specificity, which leads to an AUC of 0.5. Accuracy can hide a
low specificity rate if there is a class imbalance and AUC can
be misleading as it ignores the goodness of fit of the model and
predicted probability values (Lobo et al., 2008). In regression
approaches, Root Mean Squared Error (RMSE) (also referred
to as Root Mean Square Deviation) and R2, the coefficient of
determination, are good metrics. R2 represents the ratio of
explained variation over the total variation of the data (Draper
and Smith, 1998). The closer this index is to one, the more the
model explains all the variability of the response data around its
mean. Hence the model fits the data well. It is advisable to report
multiple performance index for model evaluation as each metric
reflects on a different aspect of the model. Using confidence
intervals when possible is another good practice, as it conveys
the uncertainty relative to the achieved error rate. General
reporting guidelines for model design and model evaluation
are summarized in the Transparent Reporting of a multivariate
prediction model for Individual Prognosis or Diagnosis, or
TRIPOD, statement (Moons et al., 2015).

Both “supervised” and “unsupervised” learning approaches
have a role in clinical applications, the former for diagnosis and
prognosis, the latter for patient stratification. There are a large
number of ML models available, but recent work in medicine
has primarily centered on three models: RF, SVM, and NN
models. The advantages and drawbacks of the specific models
are summarized in Table 1 (Hastie, 2003). The following factors
should be considered when implementing ML models for a
specific medical project:

Data limitation considerations:

– SFR assessment
– Data bias assessment
– Causality assumptions

Model design considerations:

– Feature selection with regards to SFR
– Missing data management
– Overfitting risk assessment
– Validation framework selection
– Performance metric selection
– Comprehensive model performance reporting.

3. RESULTS

Diagnostic, prognostic, and risk stratification papers were
systematically reviewed to outline the current state of the art
in ML research efforts in ALS. Consensus diagnostic criteria,
established monitoring methods, and validated prognostic
indicators provide the gold standard to which emerging ML
applications need to be compared to.

3.1. Current Practices in ALS
3.1.1. Current Practices in ALS for Diagnosis
The diagnosis of ALS is clinical, and the current role of
neuroimaging, electrophysiology, and cerebrospinal fluid (CSF)
analyses is to rule out alternative neurological conditions
which may mimic the constellation of symptoms typically
associated with ALS. Patients are formally diagnosed based on
the revised El Escorial criteria (Brooks, 1994; Brooks et al., 2000;
de Carvalho et al., 2008) which achieve low false negative rates
(0.5%), but suffer from relatively high false positive rates (57%)
(Goutman, 2017). As most clinical trials rely on the El Escorial
criteria for patient recruitment, erroneous inclusions cannot
be reassuringly ruled out (Agosta et al., 2014). Additionally,
misdiagnoses are not uncommon in ALS (Traynor et al., 2000)
and these, typically early-stage, ALS patients may be left out from
pharmaceutical trials.

3.1.2. Established Prognostic Indicators
Providing accurate prognosis and survival estimates in the
early-stage ALS is challenging, as these are influenced by a
myriad of demographic, genetic and clinical factors. There
is a growing consensus among ALS experts that the most
important determinants of poor prognosis in ALS include,
bulbar-onset, cognitive impairment, poor nutritional status,
respiratory compromise, older age at symptom onset, and
carrying the hexanucleotide repeat on C9orf72 (Chiò et al., 2009).
Functional disability is monitored by the revised ALS Functional
Rating Scale (ALSFRS-r) worldwide (Cedarbaum et al., 1999),
which replaced the AALS scale (Appel ALS) (Appel et al., 1987).
The ALSFRS-r is somewhat subjective as it is based on reported
abilities in key domains of daily living, such asmobility, dexterity,
respiratory and bulbar function. Despite its limitations, such
as being disproportionately influenced by lower motor neuron
dysfunction, the ALSFRS-r remains the gold standard instrument
to monitor clinical trials outcomes. Prognostic modeling in ALS
is typically approached in two ways; either focusing on survival
or forecasting functional decline.

3.1.3. Current Practices in ALS for Patient

Stratification
Current patient stratification goes little beyond key clinical
features and core phenotypes. These typically include sporadic
vs. familial, bulbar vs. spinal, ALS-FTD vs. ALS with no
cognitive impairment (ALSnci) (Turner et al., 2013). A number
of detailed patient classification schemes have been proposed
based on the motor phenotype alone, as in Mora and Chiò
(2015) and (Goutman, 2017): “classic,” “bulbar,” “flail arm,” “flail
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TABLE 1 | Overview of model pros & cons, updated from Hastie (2003).

Characteristics Neural

network

SVM Decision

tree

RF Generelized

linear model

Gaussian

mixture model

k-NN Boosting

Model complexity High High Low Fair Low High Low Fair

Sensitivity to data

sparsity

High High Low Fair Low High High Fair

Sensitivity to data bias High High High High High High High High

Interpretability Poor Poor Fair Poor Good Poor Good Poor

Predictive power Good Good Poor Good Poor Good Poor Good

Ability to extract linear combinations

of features

Good Good Poor Poor Poor Poor Poor Poor

Natural handling of

missing values

Poor Poor Good Good Poor Good Good Good

Robustness to outliers in input space Poor Poor Good Good Fair Good Good Good

Computational scalability Poor Poor Good Good Good Poor Poor Good

SVM, Support Vector Machine; RF, Random Forest; k-NN, k-Nearest Neighbors.

leg,” “UMN-predominant,” “LMN-predominant,” “respiratory-
onset,” “PMA,”“PLS,” “Mills’ syndrome,” etc. Patients may also be
classified into cognitive phenotypes such as ALS with cognitive
impairment (ALSci), ALS with behavioral impairment (ALSbi),
ALS-FTD, ALS with executive dysfunction (ALSexec) (Phukan
et al., 2011), as presented in Figure 1. Diagnostic criteria for
these phenotypes tend evolve, change and are often revisited once
novel observations are made (Strong et al., 2017). Irrespective
of the specific categorization criteria, these classification systems
invariably rely on clinical evaluation, subjective observations,
choice of screening tests, and are subsequently susceptible to
classification error (Goutman, 2017). Adhering to phenotype
definitions can be challenging, as performance cut-offs for some
categories, such as cognitive subgroups (i.e., ALSbi/ ALSci) may
be difficult to implement (Strong et al., 2009; Al-Chalabi et al.,
2016). Al-Chalabi et al. (2016) used muscle bulk, tone, reflexes,
age at onset, survival, diagnostic delay, ALSFRS-r decline,
extra-motor involvement, symptom distribution, and family
history as key features for patient stratification. ALS and FTD
share common aetiological, clinical, genetic, radiological and
pathological features and the existence of an ALS-FTD spectrum
is now widely accepted. Up to 15% of patients develop frank
dementia (Kiernan, 2018) and 60% show some form of cognitive
or behavioral impairment (Phukan et al., 2011; Elamin et al.,
2013; Kiernan, 2018). The presence of cognitive impairment
is hugely relevant for machine-learning applications because
neuropsychological deficits have been repeatedly linked to poorer
survival outcomes (Elamin et al., 2011), increased caregiver
burden (Burke et al., 2015), specific management challenges
(Olney et al., 2005), and require different management strategies
(Neary et al., 2000; Hu et al., 2009).

Clinical staging systems
One aspect of patient stratification is to place individual patients
along the natural history of the disease by allocating them to
specific disease phases or “stages.” The utility of staging in ALS
is 2-fold; it guides the timing of medical interventions (non-
invasive ventilation, gastrostomy, advance directives) and also

allows the separation of patients early in their disease trajectory
from “late-phase” patients in clinical trials. Three staging systems
have been recently developed; Kings’ (Roche et al., 2012), MiToS
(Chiò et al., 2013a), and Fine Till 9 (FT9) (Thakore et al.,
2018). While the MiToS stage can be directly calculated based
on ALSFRS-r scores, the Kings’ stage is a derived measure. It is
noteworthy, that the stages and the ALSFRS-r score are highly
correlated (Balendra et al., 2014a). Both staging systems have
been cross-validated, compared and they are thought to reflect
on different aspects of the disease (Hardiman et al., 2017). The
MiToS system is more sensitive to the later phases of the disease,
while Kings’ system reflects more on the earlier phases of ALS.
The FT9 system is not partial to earlier or later stages. The FT9
framework defines stages based on ALSFRS-r subscores, using
9 as a threshold after testing different values on the PRO-ACT
dataset. One of the criticism of MiToS, is that stage reversion is
possible and that it does not directly capture disease progression
(Balendra et al., 2014b). Ferraro et al. (2016) compared MiToS
and King clinical staging systems and Thakore et al. (2018)
compared all three systems on PRO-ACT data.

Current diagnostic approaches in ALS are suboptimal and
often lead to considerable diagnostic delay. Prognostic protocols
are not widely validated and current patient stratification
frameworks don’t represent the inherent heterogeneity of ALS.
Accordingly, machine-learning approaches have been explored to
specifically address these three issues.

3.2. Results in Diagnosis
3.2.1. Advances in Biomarker Research
The majority of ML research projects focus on the development,
optimization, and validation of diagnostic biomarkers. These
typically include clinical, biofluid, and neuroimaging indicators.
Diagnostic model performance depends on the feature’s ability to
describe how the disease affects the subjects. Optimal diagnostic
biomarkers should not only discriminate between ALS patients
and healthy controls but also between ALS patients and patients
with mimic or alternative neurological conditions (Bede, 2017).
Ideally, an optimal diagnostic model should have outstanding
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early-stage sensitivity and specificity so that patients can be
recruited into clinical trials early in their disease.

Clinical biomarker research
MUNIX (Fathi et al., 2016) is a non-invasive neurophysiological
method which is extensively used in both clinical and research
settings. It may also have the ability to capture pre-symptomatic
motor neuron loss (Escorcio-Bezerra et al., 2018), therefore it has
the potential to confirm early-stage disease in suspected cases.
An earlier diagnosis would in turn enable the earlier initiation
of neuroprotective therapy with established drugs and more
importantly, earlier entry into clinical trials.

Biological biomarker research
Cerebrospinal Fluid (CSF) Neurofilaments (NF) are regarded
as one of the most promising group of “wet” biomarkers
in ALS (Rossi et al., 2018; Turner, 2018). Typically, research
studies assess both Neurofilament Light (NF-L) chain and
phosphorylated Heavy (pNF-H) chain levels that are released
due to axonal degeneration and can be detected in the CSF
and serum. Studies have consistently shown increased CSF pNF-
H levels in ALS and up to ten times higher levels than in
patients with Alzheimer disease (Brettschneider et al., 2006) or
other neurological conditions (Gresle et al., 2014; Steinacker
et al., 2015). Even though ALS studies have consistently detected
raised pNF-H concentrations, these values vary considerably in
the different reports. CSF NF-L levels were linked to reduced
pyramidal tract Fractional Anisotropy (FA) and increased Radial
Diffusivity (RD) (Menke et al., 2015) and NF-L levels are
also thought to correlate with progression rates (Tortelli et al.,
2014). Other biological biomarkers include proxies of oxidative
stress, such as CSF 4-hydroxy-2,3-nonenal (4-HNE) (Simpson
et al., 2004) or 3-nitrotyrosine (3-NT) (Tohgi et al., 1999).
Neuroinflammation is another important feature of ALS, and
several studies have detected an increase in inflammation-
associated molecules, such as interleukin-6 (IL-6) and TNF alpha
(TNF − α) (Moreau et al., 2005) and galectin-3 (GAL-3) (Zhou
et al., 2010). Increased levels of CSF Chitotriosidase-1 (CHIT1)
is thought to indicate increased microglial activity (Varghese
et al., 2013). Raised levels of CSF hydrogen sulfide (H2S) was
also reported in ALS, which is released by astrocytes and migrolia
and is known to be toxic for motor neurons (Davoli et al., 2015).
These are all promising wet biomarkers, indicative of disease-
specific pathological processes and it is likely that a panel of
several biomarkers may be best suited for diagnostic purposes.

Genetic biomarker research
A shared pathological hallmark of neurodegenerative conditions
is protein aggregation. The accumulation of the Transactive
Response DNA Binding Protein 43 (TDP-43) is the most
consistent pathological finding in approximately 95% of ALS
cases (Neumann et al., 2006). Given the widespread aggregation
and accumulation of TDP-43 in FTD-ALS spectrum, TDP-43
detection, measurement or imaging is one of the most promising
biomarkers strategies. A recent meta-analysis evaluated the
diagnostic utility of CSF TDP-43 levels in ALS (Majumder et al.,
2018) and found that increased levels may be specific to ALS, as

TDP-43 levels are significantly raised compared to FTD as well.
Reports on SOD1 levels in the CSF of ALS patients have been
inconsistent; some studies detected increased levels (Kokić et al.,
2005) whereas others have identified decreased levels (Ihara et al.,
2005) or levels comparable to controls (Zetterström et al., 2011).

Proteomics biomarker research
Beyond the interpretation of clinical and imaging data, ML
models have an increasing role in genetics, RNA processing and
proteomics (Bakkar et al., 2017). Using IBMWatson 5 new RNA-
Binding Proteins (RBPs) were identified which were previously
not linked to ALS; Heterogeneous nuclear ribonucleoprotein
U (hnRNPU), Heterogeneous nuclear ribonucleoprotein Q
(SYNCRIP), Putative RNA-binding protein 3 (RBMS3), ell
Cycle Associated Protein 1 (Caprin-1) and Nucleoporin-like 2
(NUPL2). ML models play an important role in modern genetic
analyses (Libbrecht and Noble, 2015) but considerable variations
exist in their application between various medical subspecialties.
One of the roles of ML in genomics is to identify the location
of specific protein-encoding genes within a given DNA sequence
(Mathé et al., 2002). In the field of proteomics, ML has been
extensively utilized to predict 3-dimensional folding patterns
of proteins. Approaches such as Deep Convolutional Neural
Fields (DeepCNF) have been successful in predicting secondary
structure configurations (Wang et al., 2016). In proteomics, ML
models are also utilized for loopmodeling, and protein side-chain
prediction (Larranaga et al., 2006).

Imaging biomarker research
Neuroimaging offers unique, non-invasive opportunities to
characterize disease-associated structural and functional changes
and imaging derived metrics have been repeatedly proposed as
candidate biomarkers (Turner et al., 2011; Agosta et al., 2018a;
Bede et al., 2018b). The primary role of MRI in current clinical
practice is the exclusion of alternative structural, neoplastic and
inflammatory pathology in the brain or spinal cord which could
manifest in UMN or LMN dysfunction similar to ALS. Diffusion
tensor imaging (DTI) has gained a lot of attention as DTI-
derived metrics, such as FA, Mean Diffusivity (MD), RD, or Axial
Diffusivity (AD) have already been successfully used to identify
ALS patients in ML models (RF) (Bede et al., 2017; Querin et al.,
2018). The DTI signature of ALS is firmly established thanks to
a myriad of imaging studies, and it includes the commissural
fibers of the corpus callosum and the bilateral Corticospinal Tract
(CST) (Turner et al., 2009; Bede et al., 2014). The latter has
been associated to clinical UMN dysfunction, as well as rate of
progression in specific sub-regions (Schuster et al., 2016a). White
matter degeneration in frontal and temporal regions have been
linked to cognitive and behavioral measures (Agosta et al., 2010;
Christidi et al., 2017) and specific genotypes (Bede et al., 2013a).
While callosal (Filippini et al., 2010; Bede et al., 2013a) and
CST (Agosta et al., 2018b) degeneration seems to be a common
ALS-associated signature, frontotemporal and cerebellar white
matter degeneration seems to be more specific to certain
phenotypes (Prell and Grosskreutz, 2013; Bede et al., 2014). From
a gray matter perspective, motor cortex atrophy is a hallmark
finding irrespective of specific genotypes and phenotypes (Bede
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et al., 2012) which is readily captured by cortical thickness or
volumetric measures. Other gray matter regions, such as frontal
(Lulé et al., 2007), basal ganglia (Bede et al., 2013c, 2018a; Machts
et al., 2015), or cerebellar regions (Prell and Grosskreutz, 2013;
Batyrbekova et al., 2018) may be more specific to certain patient
cohorts. What is important to note, is that considerable white
matter degeneration can already be detected around the time
of diagnosis which progress relatively little, as opposed to the
incremental gray matter findings in the post-symptomatic phase
of the disease (Bede and Hardiman, 2017; Menke et al., 2018).
The relevance of these observations is that white matter metrics
may be particularly suitable for diagnostic models, whereas gray
matter metrics in monitoring applications.

3.2.2. Overview of Research in Diagnosis
ML methods have already been extensively tested to aid the
diagnosis of ALS (Gordon et al., 2009; Welsh et al., 2013; Sarica
et al., 2016; Schuster et al., 2016b; Bede et al., 2017; Ferraro et al.,
2017; Fratello et al., 2017; D’hulst et al., 2018; Li et al., 2018;
Querin et al., 2018). Diagnostic models are typically developed
within a classification framework with limited category labels,
such as “healthy” vs. “ALS.” Srivastava et al. (2012) implemented
a model to discriminate patients within the Spinal Muscular
Atrophy (SMA) spectrum. A similar attempt has not been made
in ALS yet but could prove very valuable. A number of imaging
features have been explored in recent years (Sarica et al., 2016;
Schuster et al., 2016b; Bede et al., 2017; Ferraro et al., 2017;
Fratello et al., 2017; D’hulst et al., 2018; Querin et al., 2018).

Performance was highest using combined imaging metrics
(Bede et al., 2017) outperforming diagnostic models relying solely
on clinical features (Li et al., 2018) which typically achieve up
to 68% sensitivity and 87% specificity. Current models however
are severely limited by small sample sizes and achieve lower
true positive rates than the El Escorial’s criteria but dramatically
improve false negative rates. In general, diagnostic models
based on imaging data achieve a sensitivity above 80% which
is very encouraging especially given the emergence of larger
data sets (Müller et al., 2016). It is crucial to evaluate model
performance in comparison to the current gold standard criteria
and report both sensitivity (true positive rate) and specificity
(true negative rate). Additional metrics seem also necessary such
as accuracy and AUC which provides a global indication of the
model’s performance.

Performance analysis
Welsh et al. (2013),Schuster et al. (2016b),Bede et al.
(2017),Ferraro et al. (2017),Fratello et al. (2017),D’hulst et al.
(2018), and Querin et al. (2018) only used single-centre imaging
data for their model design. Bede et al. (2017) used a canonical
discriminant function and achieved an accuracy of 90% (for 90%
sensitivity and 90% specificity). Sarica et al. (2016),Ferraro et al.
(2017),Fratello et al. (2017), and Querin et al. (2018) used RFs
achieving accuracy rates between 77.5 and 86.5%. Schuster et al.
(2016b) used a binary logistic regression model and reached
78.4% (90.5% sensitivity and 62.5% specificity). Welsh et al.
(2013) and D’hulst et al. (2018) used SVMs reaching an accuracy
of 71 and 80%, respectively. A relatively low accuracy of 71%

(Welsh et al., 2013) and low specificity of 12.5% (D’hulst et al.,
2018) may stem from model overfitting. The complexity of
SVM models, class imbalance (D’hulst et al., 2018), data sparsity
(Welsh et al., 2013) are some of the factors which may contribute
to their relatively poorer performance. Li et al. (2018) used a
linear regression model based on clinical data and reached 77.5%
accuracy, 68% sensitivity and 87% specificity. Half of the studies
(Welsh et al., 2013; Sarica et al., 2016; Bede et al., 2017; D’hulst
et al., 2018; Querin et al., 2018) focused on discriminating ALS
patients from healthy controls. Four studies (Gordon et al.,
2009; Ferraro et al., 2017; Fratello et al., 2017; Li et al., 2018)
went further and attempted to identify ALS within a range of
neurological diseases including patients with Parkinson’s Disease
(PD), Kennedy’s Disease (KD), PLS, etc. Srivastava et al. (2012)
focused on identifying specific SMA phenotypes. Please refer to
Table 2 for an overview of ML papers focusing on the diagnosis
of ALS.

Technical analysis
From a methods point of view, all of the above papers overtly
present their pre-processing pipeline (Sarica et al., 2016; Schuster
et al., 2016b; Bede et al., 2017; Ferraro et al., 2017; Fratello
et al., 2017; D’hulst et al., 2018; Querin et al., 2018) and feature
selection strategy (Gordon et al., 2009; Srivastava et al., 2012;
Welsh et al., 2013; Sarica et al., 2016; Schuster et al., 2016b;
Bede et al., 2017; Fratello et al., 2017; Querin et al., 2018).
Imaging analyses need to take the effect of age, gender, and
education on MRI data into account, as these have a major
impact on white and gray matter metrics. Studies control for
these demographic factors differently; while age is generally
adjusted for (Zhang et al., 2018), the effect of gender (Bede
et al., 2013b) and education (Cox et al., 2016) are often
overlooked which can affect model development. Judicious
feature selection is paramount as model complexity is directly
related to the number of features fed into the model. Limiting
model complexity, especially in the context of sparse data is
crucial to avoid model overfitting. Feature selection is often
based, either on group comparisons or a priori imaging or
pathological information. Features often include imaging
measures of key, disease-associated anatomical regions, such as
measures of the motor cortex or pyramidal tracts (Bede et al.,
2016). Existing studies use very different validation schemes to
test model performance. Cross-validation is the most commonly
used (Srivastava et al., 2012; Sarica et al., 2016; Schuster et al.,
2016b; Fratello et al., 2017; Querin et al., 2018), followed by
holdout validation (Bede et al., 2017; Ferraro et al., 2017) and
leave-one-out validation (Welsh et al., 2013; D’hulst et al.,
2018). While robust validation schemes are essential, they don’t
circumvent overfitting especially when limited data are available.
“Cross validation” and “leave-one-out” approaches are generally
more robust than holdout validation. Special caution should
be exercised with regards to validation reports in sparse data
situations, where validation schemes have a limited ability to
assess model performance. Querin et al. (2018) and Li et al.
(2018) both show SFR higher than ten (15 and 12 ,respectively)
which comply with minimum SFR recommendations
(Raudys, 2001).
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TABLE 2 | Research overview: diagnosis.

Key Dataset(s)

origin

Dataset(s)

type

Dataset(s)

length

Scope Biomarker(s)

type

Pre-processing

(if any)

Validation

(if any)

Model(s)

tested

Performance

Gordon et al.,

2009

Eleanor and

Lou Gehrig

MDA/ALS

Research

Center

Real-life 34 ALS, UMN,

PLS

Clinical FS None

described

Linear

regression

-

Srivastava

et al., 2012

Boston

Children

Hospital

Real-life 46 SMA

phenotypes

Clinical,

genetic

FS CV SVM AUC (0.928)

Welsh et al.,

2013

Michigan

MND Clinic

Real-life 63 ALS, healthy Imaging FS LOOV SVM AUC:0.7,

Acc:71%,

Spec:74%,

Sens:68.8%

Sarica et al.,

2016

Catanzaro

Magna

Graecia

University

Real-life 48 ALS, healthy Clinical,

imaging

SP, FS CV RF Acc:80%

Schuster

et al., 2016b

Trinity College

Dublin

Real-life 147 ALS, healthy Imaging SP, FS CV Logistic

regression

Acc:78.4%,

Sens:90.5%,

Spec:62.5%

Bede et al.,

2017

Trinity College

Dublin

Real-life 150 ALS, healthy Imaging SP, FS HOV Discriminant

function

Acc:90%,

Sens:90%,

Spec:90%

Ferraro et al.,

2017

MND Clinics

in Northern

Italy

Real-life 265 ALS, UMN,

ALS mimics

Imaging SP HOV RF Acc:87%,

Spec:75%,

Sens:92%

Fratello et al.,

2017

UK PD Brain

Bank

Real-life 120 ALS, PD,

healthy

Imaging SP, FS CV RF Acc:80%

D’hulst et al.,

2018

University

Hospital

Leuven and

Turino ALS

Center

Real-life 370 ALS, healthy Imaging SP LOOV SVM Acc:80%,

Sens:85%,

Spec:12.5%

Li et al., 2018 Australia Clinical trial 81 ALS, KD,

ALS mimics

Clinical FS None

described

Linear

regression

Acc:77.5%,

Sens:68%,

Spec:87%

Querin et al.,

2018

Pitiè

Salpêtrière

Hospital

Real-life 105 ALS, healthy Imaging SP CV RF AUC:0.96,

Acc:86.5%,

Sens:88%,

Spec:85%

CV, Cross Validation; LOOV, Leave One Out Validation; HOV, Hold Out Validation; AUC, Area under the ROC Curve; Acc, Accuracy; Sens, Sensitivity; Spec, Specificity; PD, Parkinson’s

Disease; FS, Feature Selection; SP, Signal Processing.

3.3. Results in Prognosis
3.3.1. Advances in Biomarker Research
As the precise mechanisms of disease propagation in ALS are
largely unknown (Ravits, 2014; Ayers et al., 2015), research
has focused on the identification of candidate prognostic
biomarkers including potential clinical, biological, imaging, and
genetic indicators. Prognostic model performance depends on
the feature’s ability to capture the disease spread. Optimal
prognostic biomarkers should not only discriminate between
different ALS phenotypes but categorize individual patients to
common disease progression rates (slow vs. fast progressors)
(Schuster et al., 2015).

Clinical biomarker research
Several recent studies examined the specific impact of
psychosocial factors, cognitive impairment, nutritional status
and respiratory compromise, on prognosis. Psychosocial

adjustments in ALS may have an under-recognized impact on
prognosis (Matuz et al., 2015). The potential effect of mood on
disease progression has only been investigated on a relatively
small number of samples to date (Johnston et al., 1999).

Biological biomarker research
Recent research suggests that prognostic modeling that does
not rely on a priori hypotheses could lead to more accurate
prognostic models than does driven by pre-existing hypotheses.
For instance, elevations in Creatine Kinase (CK) were linked
to LMN involvement and faster disease progression (Rafiq
et al., 2016; Goutman, 2017) using the PRO-ACT data
(Ong et al., 2017).

Genetic biomarker research
In a clinical setting, genetic testing is often only performed in
familial forms of ALS. C9orf72 repeat expansions account for
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40% of hereditary ALS cases and 10% of sporadic ALS cases
(Goutman, 2017) and hexanucleotide repeats are associated
with specific clinical traits (Byrne et al., 2012). More than
30 genes have been implicated in the pathogenesis of ALS to
date and samples are often screened for Angiogenin (ANG),
Dynactin subunit 1 (DCTN1), Fused in sarcoma (FUS),
Optineurin (OPTN), SOD1, Transactive Response DNA Binding
Protein (TARDBP), Ubiquilin (UBQLN2), Valosin-Containing
Protein (VCP) (Chen et al., 2013; Renton et al., 2013; Taylor
J. P. et al., 2016), Alsin Rho Guanine Nucleotide Exchange
Factor (ALS2), Polyphosphoinositide phosphatase (FIG4),
Probable Helicase Senataxin (SETX), Spatacsin (SPG11),
Vesicle-Associated membrane protein-associated Protein B/C
(VAPB) (Chen et al., 2013; Renton et al., 2013), Heterogeneous
nuclear ribonucleoprotein A1 (HNRNPA1), Profilin 1 (PFN1),
Sequestosome 1 (SQSTM1) (Renton et al., 2013; Taylor J. P. et al.,
2016), Coiled-coil-helix-coiled-coil-helix domain-containing
protein 10 (CHCHD10), Matrin 3 (MATR3), Serine/Threonine-
protein Kinase (TBK1) (Taylor J. P. et al., 2016), sigma-1 receptor
(SIGMAR1), Diamine oxidase (DAO) (Chen et al., 2013),
Charged multivesicular body protein 2b (CHMP2B), Ataxin-2
(ATXN2), Neurofilament Heavy (NEFH), Elongator complex
protein 3 (ELP3) (Renton et al., 2013) as well as Receptor
tyrosine-protein kinase (ERBB4), Unc-13 homolog A (UNC13A),
Peripherin (PRPH), TATA-binding protein-associated factor
2N (TAF15), Spastin (SPAST), Lamin-B1 (LMNB1), Sterile
alpha and TIR motif-containing protein 1 (SARM1), C21orf2,
(never in mitosis gene a)-related kinase 1 (NEK1), Granulin
Precursor (GRN), Microtubule Associated Protein Tau (MAPT)
and Presenilin 2 (PSEN2). IBM Watson software has been
successfully utilized to identify other candidate genes; such as
hnRNPU, SYNCRIP, RBMS3, Caprin-1 andNUPL2 (Bakkar et al.,
2017). Genomic research teams have increasingly capitalized on
ML methods worldwide, as they can handle copious amounts of
data for systematic processing, genomic sequence annotation,
DNA pattern recognition, gene expression prediction, and the
identification of genomic element combinations (Libbrecht and
Noble, 2015).

The benefit of multiparametric datasets
Early machine learning efforts have been hampered by the
lack of large data sets in ALS, which is increasingly addressed
by the availability of large international repositories, such as
those maintained by NISALS (Müller et al., 2016; Neuroimaging
Society in ALS, 2018), NEALS (NEALS Consortium, 2018), and
PRO-ACT which includes more than 10 000 patient records
from 23 clinical trials in total. Similar initiatives had been
carried out in other neurological conditions, as part of the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) (Mueller
et al., 2005), the Parkinson’s Progression Marker’s Initiative
(PPMI) (Marek et al., 2011) and Tract HD (Tabrizi et al., 2012).
Emerging large data sets, like PRO-ACCT, also serve as validation
platforms for previously identified biomarkers. For example,
vital capacity was identified as early as 1993 (Schiffman and
Belsh, 1993) as a predictor of disease progression and proved
relevant in the Prize4Life challenge (Küffner et al., 2014). Other
validated biomarkers include creatinine (Atassi et al., 2014;

Küffner et al., 2014; Ong et al., 2017), BMI (Atassi et al., 2014;
Küffner et al., 2014; Ong et al., 2017), CK (Ong et al., 2017),
Alkaline Phosphatase (ALP)(Küffner et al., 2014; Ong et al.,
2017), albumin (Ong et al., 2017), total birilubin (Ong et al.,
2017), and uric acid (Atassi et al., 2014). Other predictive clinical
features such as onset at age, region of onset, and respiratory
compromise have long been firmly established (Chio et al., 2009;
Creemers et al., 2014).

3.3.2. Overview of Research in Prognosis
While prognostic forecasting has historically been undertaken
using traditional statistical approaches in ALS (Ince et al., 2003;
Forbes, 2004; Visser et al., 2007; Coon et al., 2011; Atassi et al.,
2014; Elamin et al., 2015; Marin et al., 2015; Rong et al., 2015;
Tortelli et al., 2015; Wolf et al., 2015; Knibb et al., 2016; Reniers
et al., 2017), ML models have an unprecedented potential to
identify novel prognostic indicators (Gomeni and Fava, 2013;
Hothorn and Jung, 2014; Ko et al., 2014; Beaulieu-Jones and
Greene, 2016; Taylor A. A. et al., 2016; Huang et al., 2017;
Jahandideh et al., 2017; Ong et al., 2017; Schuster et al., 2017;
Seibold et al., 2017; van der Burgh et al., 2017; Bandini et al.,
2018; Pfohl et al., 2018; Westeneng et al., 2018). Most prognostic
models use clinical features to determine prognosis in ALS but
two recent papers enriched their clinical data with imaging
measures (Schuster et al., 2017; van der Burgh et al., 2017).
Seven studies designed their prediction model around both
clinical and biological data, (Hothorn and Jung, 2014; Ko et al.,
2014; Beaulieu-Jones and Greene, 2016; Huang et al., 2017;
Jahandideh et al., 2017; Ong et al., 2017; Seibold et al., 2017)
and nine studies developed their prognostic model based on
PRO-ACT data, (Gomeni and Fava, 2013; Hothorn and Jung,
2014; Ko et al., 2014; Beaulieu-Jones and Greene, 2016; Taylor
A. A. et al., 2016; Huang et al., 2017; Jahandideh et al., 2017;
Ong et al., 2017; Seibold et al., 2017). Prognosis is typically
defined either as functional decline or survival and is either
approached as a classification problemwith predefined categories
or as a regression problem with a specific survival or functional
thresholds. The most accurate regression approach had a RMSE
of 0.52 (with regards to the ALSFRS rate) (Hothorn and Jung,
2014) and one of the most accurate classification method (Ko
et al., 2014) reached 66% accuracy, 66% sensitivity, and 65%
specificity using a RF. Bandini et al. (2018) achieved 87% accuracy
with a SVM model a fairly complex model built on only 64
samples - which puts the model at a high risk of overfitting. For
outcome prediction as a regression problem, best results were
reached by Pfohl et al. (2018) using a RF. For outcome prediction
as a classification problem, best performance was achieved by
Westeneng et al. (2018) with 78% accuracy using a multivariate
Royston-Parmar model.

Statistical methods
Previous prognostic studies in ALS primarily used traditional
statistical approaches, mostly Cox regressions, mixed effect
models and Kaplan-Meier estimators. These models have
relatively stringent data assumptions which limit model validity
and limit data exploration. Nevertheless, they were instrumental
in identifying key prognosis indicators in ALS, such as diagnostic
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delay (Forbes, 2004; Elamin et al., 2015; Marin et al., 2015;
Wolf et al., 2015; Knibb et al., 2016; Reniers et al., 2017),
age at symptom onset (Forbes, 2004; Marin et al., 2015; Wolf
et al., 2015; Knibb et al., 2016; Reniers et al., 2017), functional
disability (Visser et al., 2007; Elamin et al., 2015; Marin et al.,
2015; Wolf et al., 2015; Reniers et al., 2017), El Escorial
categorization (Forbes, 2004; Marin et al., 2015; Wolf et al.,
2015), comorbid FTD or executive dysfunction (Elamin et al.,
2015; Wolf et al., 2015; Knibb et al., 2016), site of onset
(Forbes, 2004; Elamin et al., 2015), Riluzole therapy (Forbes,
2004; Knibb et al., 2016), vital capacity (Visser et al., 2007),
muscle weakness (Visser et al., 2007), involvement of body
regions (Visser et al., 2007), gender (Wolf et al., 2015), BMI
(Atassi et al., 2014), presence of C9orf72 mutations (Reniers
et al., 2017). Other prognostic studies focused on the macrophage
marker Cluster of Differentiation 68 (CD68) (Ince et al., 2003),
neuropsychological deficits (Coon et al., 2011), creatinine and
uric acid levels (Atassi et al., 2014), tongue kinematics (Rong
et al., 2015), anatomical spread (Tortelli et al., 2015), and LMN
involvement (Reniers et al., 2017). A number of studies have
specifically focused on survival (Forbes, 2004; Visser et al.,
2007; Coon et al., 2011; Atassi et al., 2014; Elamin et al.,
2015; Marin et al., 2015; Tortelli et al., 2015; Wolf et al.,
2015; Reniers et al., 2017). Ince et al. (2003) performed an a
posteriori analysis of disease progression based on MRI data.
Coon et al. (2011) analyzed the impact of language deficits and
behavioral impairment on survival. Rong et al. (2015) assessed
the implications of early bulbar involvement. To this date,
most reliable predictive features are clinical factors, but similar
approaches can be extended to biofluid, genetic, and imaging
data. Both ML and traditional statistical approaches perform
better with multi-modal data. Existing ML studies in ALS show
considerable differences in their methodology and validation
approaches. Please refer to Table 3 for an overview of ALS papers
focusing on prognostic modeling.

Performance analyses
RF is the most commonly used model in ALS, implemented in
eight of the fourteen reviewed studies (Hothorn and Jung, 2014;
Ko et al., 2014; Beaulieu-Jones and Greene, 2016; Taylor A. A.
et al., 2016; Huang et al., 2017; Jahandideh et al., 2017; Seibold
et al., 2017; Pfohl et al., 2018) and it is also one of the best
performing methods (Beaulieu-Jones and Greene, 2016; Taylor
A. A. et al., 2016; Huang et al., 2017; Pfohl et al., 2018). Boosting,
another ensemble method, was tested by Jahandideh et al. (2017)
and Ong et al. (2017). The boosting algorithm outperformed the
RF model in Jahandideh et al. (2017). NN models were used
successfully in two studies: Beaulieu-Jones and Greene (2016)
and van der Burgh et al. (2017). Regression models have also
been extensively used in ALS, including generalized linearmodels
(Taylor A. A. et al., 2016; Huang et al., 2017; Pfohl et al., 2018),
Royston-Parmar models for Westeneng et al. (2018), and non-
linear Weibull models (Gomeni and Fava, 2013). Regression
models, despite their stringent assumptions, have great potential
in clinical applications (Westeneng et al., 2018). Seibold et al.
(2017) used an innovative RF approach to establish the impact
of Riluzole therapy on functional decline and survival. Out of

the ten models built on clinical data, nine were based on PRO-
ACT data (Gomeni and Fava, 2013; Hothorn and Jung, 2014; Ko
et al., 2014; Beaulieu-Jones and Greene, 2016; Taylor A. A. et al.,
2016; Huang et al., 2017; Jahandideh et al., 2017; Ong et al., 2017;
Seibold et al., 2017).

Prognosis in ALS is typically either addressed as a
classification or a regression problem. In studies using the
classification approach, categories are defined based on
functional decline (Gomeni and Fava, 2013; Ko et al., 2014; Ong
et al., 2017;Westeneng et al., 2018), survival (Schuster et al., 2017;
Pfohl et al., 2018), or disease phase (Bandini et al., 2018). Studies
using the regression approach predicted survival (Beaulieu-Jones
and Greene, 2016; Huang et al., 2017; van der Burgh et al., 2017;
Pfohl et al., 2018), Riluzole effect (Seibold et al., 2017), functional
decline (Hothorn and Jung, 2014; Taylor A. A. et al., 2016),
or respiratory function (Jahandideh et al., 2017). ALSFRS-r is
invariably used in these studies, highlighting that it remains the
gold standard instrument to monitor disease progression. Most
prognostic models rely solely on clinical features,sometimes
enriched with biological data. Radiological data are seldom
used in these models, and often rely on relatively small datasets;
Schuster et al. (2017) included 69 and van der Burgh et al. (2017)
135 subjects. Despite their considerable sample size limitations,
these models achieved relatively promising results with accuracy
rates above 79%. Unfortunately, as in the case of diagnostic
modeling, large datasets of imaging data, especially longitudinal,
are still relatively difficult to acquire in single-centre settings.

A variety of metrics have been utilized for model performance
evaluation. For classification tasks, these typically include AUC,
specificity and sensitivity, accuracy and concordance (C-index),
and for regression methods, RMSE, R2, mean absolute error,
and Pearson correlations between real and predicted estimates
are usually reported. Approximately half of the reviewed papers
used RF to assess variable importance (Hothorn and Jung,
2014; Huang et al., 2017; Jahandideh et al., 2017; Ong et al.,
2017; Seibold et al., 2017; Pfohl et al., 2018; Westeneng et al.,
2018). Pfohl et al. (2018) carried out correlation analysis
and PCA component projection analysis which proved very
instructive. Gamma glutamyl-transferase, was identified as a
potential prognostic indicator by Ong et al. (2017). Despite
the obvious advantages, model testing is only rarely carried
out on external data sets (Jahandideh et al., 2017) for which
population data should ideally be used (Taylor A. A. et al.,
2016). Many referral centres develop models based on local
datasets (Schuster et al., 2017; van der Burgh et al., 2017; Pfohl
et al., 2018), which are more accessible than population-based
data. Population-based data are increasingly available thanks to
national (Donaghy et al., 2009; Talman et al., 2016) and regional
(Rosenbohm et al., 2017) registries and increasingly thanks to
international consortia (Turner et al., 2011; Müller et al., 2016;
Westeneng et al., 2018).

The direct comparison of model performances in ALS ML
studies is challenging as performance metrics, prediction targets,
sample sizes and study designs are hugely divergent. There
is little evidence that a specific type of input data, clinical
features alone or clinical data enriched with other data types,
enhances model performance. This is due to the lack of large
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TABLE 3 | Research overview: prognosis with statistical models.

Key Dataset(s)

origin

Dataset(s)

type

Dataset(s)

length

Scope Biomarker(s)

type

Pre-processing

(if any)

Validation

(if any)

Model(s)

tested

Ince et al., 2003 Newcastle

upon

Tyne MND

clinic

Real-life 81 Progression Imaging None described Not required Univariate

analysis

Forbes, 2004 Scottish

ALS-MND

Register

Population 1226 Outcome Clinical None described Not required Cox time

dependent

regression

modeling

Visser et al., 2007 Dutch

university

hospitals

Real-life 37 Outcome Clinical,

genetic,

biological

None described Not required Univariate

analysis

Coon et al., 2011 Mayo Clinic Real-life 56 Outcome Clinical,

imaging

None described Not required KM analysis

Atassi et al., 2014 PRO-ACT Clinical trial 8635 Outcome,

progression

Clinical,

biological

Data cleaning Not required Multivariate

analysis

Elamin et al., 2015 Irish and

Italian

(Piemonte)

ALS registry

Population 326 Outcome Clinical,

genetic

FS HOV Proportional

hazards Cox

Marin et al., 2015 FRALim

register

Population 322 Outcome Clinical None described Not required Cox

regression

(KM)

Rong et al., 2015 - Clinical trial 66 Progression Clinical FS Not required Linear Mixed

Effect, KM

analysis

Tortelli et al., 2015 University of

Bari MND

Center

Clinical trial 145 Outcome Clinical None described Not required Bivariate

model for

correlation

Wolf et al., 2015 Rhineland-

Palatinate

Register

Population 193 Outcome Clinical FS Not required Cox

proportional

hazards

Knibb et al., 2016 South-East

England

Register

Population 575 Outcome,

progression

Clinical MVR CV Cox

proportional

hazards, ACT

Reniers et al.,

2017

University

Hospitals

Leuven

Real-life 396 Outcome Clinical None described Not required Univariate

and

multivariate

Cox

regression

HOV, Hold Out Validation; CV, Cross Validation; ACT, Accelerated Failure Time; KM, Kaplan Meier; MVR, Missing Value Removal; FS, Feature Selection.

scale databases which routinely store biological samples and
imaging data along with clinical observations. It is likely that
the incorporation of genetic, biological, and imaging features,
will improve prognostic modeling. Some studies candidly discuss
their methodological limitations, and model overfitting is the
most often cited shortcoming. Data censoring is often mentioned
when using PRO-ACT data and selection bias when relying on
clinical trial data. Most studies discuss the issues around feature
selection and the importance of limiting feature dimension.
Model interpretability concerns are sometimes raised when using
NN models (van der Burgh et al., 2017). Westeneng et al.
(2018) published their findings according to the methodology
introduced by Moons et al. (2015) setting an example of
performance reporting. Please refer toTables 4, 5 for an overview
of ML studies in ALS focusing on prognostic projections.

Data management approaches
Most studies perform some kind of data pre-processing, such
as feature selection (Gomeni and Fava, 2013; Ko et al., 2014;
Taylor A. A. et al., 2016; Huang et al., 2017; Jahandideh et al.,
2017; Schuster et al., 2017; Bandini et al., 2018; Pfohl et al.,
2018; Westeneng et al., 2018), signal processing (Schuster et al.,
2017; van der Burgh et al., 2017; Bandini et al., 2018), and
address missing data (Hothorn and Jung, 2014; Beaulieu-Jones
and Greene, 2016; Taylor A. A. et al., 2016; Huang et al., 2017;
Jahandideh et al., 2017; Ong et al., 2017; Seibold et al., 2017;
Pfohl et al., 2018; Westeneng et al., 2018). Feature importance
analysis prior to model design provides important insights before
feature selection (Hothorn and Jung, 2014; Taylor A. A. et al.,
2016; Huang et al., 2017; Jahandideh et al., 2017; Ong et al.,
2017; Seibold et al., 2017; Pfohl et al., 2018). Feature selection
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TABLE 4 | Research overview: Prognosis with ML models (1/2).

Key Dataset(s)

origin

Dataset(s)

type

Dataset(s)

length

Scope Biomarker(s)

type

Pre-processing

(if any)

Validation

(if any)

Model(s)

tested

Performance Framework

Gomeni and Fava,

2013

PRO-ACT Clinical trial 338 Progression Clinical FS HOV non-linear

Weibull

AUC:0.96 Classification

Hothorn and Jung,

2014

PRO-ACT Clinical trial 1822 Progression Clinical,

biological

MVI, VIA HOV RF RMSE:0.52

(ALSFRS rate),

PC:40%

Regression

Ko et al., 2014 PRO-ACT Clinical trial 1822 Progression Clinical,

biological

FS HOV RF Spec:66%,

Sens:65%,

Acc:66%

Classification

Beaulieu-Jones and

Greene, 2016

PRO-ACT Clinical trial 3398 Outcome Clinical,

biological

MVI CV NN, RF,

SVM, k-NN,

DT,

NN with RF

(best)

AUC:0.692 Classification

Taylor A. A. et al.,

2016

PRO-ACT,

Emery ALS

Clinic

Clinical trial,

real-life

4372 Progression Clinical FS, MVR,

VIA

HOV GLM,

RF (best)

R2:58.2%,

MC:0.942,

ME:-0.627

(ALSFRS

score)

Regression

van der Burgh et al.,

2017

University

Medical

Center

Utrecht

Real-life 135 Outcome Clinical,

imaging

SP HOV NN Acc:84.4% Classification

Huang et al., 2017 PRO-ACT Clinical trial 6565 Outcome Clinical,

biological

FS, MVR,

VIA

CV GP, Lasso,

RF (best)

C-ind:0.717 Regression

Jahandideh et al.,

2017

PRO-ACT,

NEALS

Clinical trial,

population

4406 Progression Clinical,

biological

FS, MVI,

VIA

CV RF,

XGBoost,

GBM (best)

RMSE:0.635

(FVC),

R2:66.9%

Regression

Ong et al., 2017 PRO-ACT Clinical trial 1568-6355 Progression,

outcome

Clinical,

biological

MVR, VIA CV Boosting For P:

AUC:0.82,

Acc:56.5%,

Spec:74%,

Sens:39%,

For O:

AUC:0.83,

Acc:76.7%,

Spec:76.1%,

Sens:77.3%

Classification

CV, Cross Validation; HOV, Hold Out Validation; AUC, Area under the ROC Curve; Acc, Accuracy; Sens, Sensitivity; Spec, Specificity; MC,Model Calibration; ME, Mean Error; PC,

Pearson’s Correlation; DT, Decision Tree; GLM, Generalized Linear Model; k-NN, k-Nearest Neighbors; FS, Feature Selection; MVI, Missing Value Imputation; VIA, Variable Importance

Analysis; MVR, Missing Value Removal; P, Progression; O, Outcome; C-ind, Concordance; GP, Gaussian Process; GBM, Gradient Boosting Model; SP, Signal Processing; FVC, Forced

Vital Capacity.

is automated when using RF, NN, or boosting models. Missing
data management is crucial when dealing with medical data
sets as it has a strong impact on data bias and overall model
performance. Huang et al. (2017),Seibold et al. (2017),Taylor
A. A. et al. (2016), and Ong et al. (2017) discarded data
samples with missing features which can introduce further bias
in sparse data situations. Mean imputation, which is a simple
imputation method, was performed by Jahandideh et al. (2017)
and Hothorn and Jung (2014). Simple imputation methods
can increase bias in data as these methods assume missing
‘completely at random’ characteristics which rarely reflect real-
life scenarios. Consequently, multiple imputation approaches
such as NN approaches (Beaulieu-Jones and Greene, 2016) or
MICE (Westeneng et al., 2018) are favored. With few exceptions,
Seibold et al. (2017), most studies report their validation

framework in detail. Cross-validation schemes are used by some
(Beaulieu-Jones andGreene, 2016; Huang et al., 2017; Jahandideh
et al., 2017; Ong et al., 2017; Bandini et al., 2018; Pfohl et al.,
2018; Westeneng et al., 2018) and hold out validation schemes
are implemented by others (Gomeni and Fava, 2013; Hothorn
and Jung, 2014; Ko et al., 2014; Taylor A. A. et al., 2016; van der
Burgh et al., 2017). Dataset population ranges between 64 and
11 475 samples which explains the considerable methodological
differences in pre-processing, data analysis and overall model
design. SFR ranges between < 1 (with 135 samples for 2 376
features (van der Burgh et al., 2017)) to close to 1100 (with 6
565 samples for 6 features (Huang et al., 2017)). Small SFRs are
mostly due to either data type scarcity (Schuster et al., 2017;
van der Burgh et al., 2017; Bandini et al., 2018) or the use of
complex models such as NN (Beaulieu-Jones and Greene, 2016).
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TABLE 5 | Research overview: Prognosis with ML models (2/2).

Key Dataset(s)

origin

Dataset(s)

type

Dataset(s)

length

Scope Biomarker(s)

type

Pre-processing

(if any)

Validation

(if any)

Model(s)

tested

Performance Framework

Schuster et al.,

2017

Trinity

College

Dublin

Real-life 69 Outcome Clinical, imaging SP, FS CV Logistic

regression

Spec:83.34%,

Sens:75%,

Acc:79.19%

Classification

Seibold et al.,

2017

PRO-ACT Clinical trial 2534-3306 Progression,

outcome

Clinical,

biological

MVR, VIA None RF Treatment

effect on

outcome and

progression

Regression

Bandini et al.,

2018

- Clinical trial 64 Progression Clinical SP, FS CV k-NN, SVM

(best)

Spec:86.1%,

Sens:88.8%,

Acc:87%

Classification

Pfohl et al., 2018 Emery ALS

Clinic

Real-life 801 Outcome Clinical MVI, FS,

VIA

CV GLM,

RF (best)

RMSE:547

+/-46 days,

R2:52%,

AUC:0.85

Regression,

Classification

Westeneng et al.,

2018

14 European

ALS centers

Real-life 11475 Outcome Clinical FS, MVI CV MRP Acc:78%,

MC:1.01,

AUC:0.86

Classification

CV, Cross Validation; AUC, Area under the ROC Curve; Acc, Accuracy; Sens, Sensitivity; Spec, Specificity; MC, Model Calibration; GLM, Generalized Linear Model; k-NN, k-Nearest

Neighbors; MRP, Multivariate Royston-Parmar; FS, Feature Selection; MVI, Missing Value Imputation; VIA, Variable Importance Analysis; MVR, Missing Value Removal;SP, Signal

Processing.

Six studies have used less than nine features for model design
(Gomeni and Fava, 2013; Hothorn and Jung, 2014; Ko et al.,
2014; Huang et al., 2017; Ong et al., 2017; Westeneng et al., 2018)
reaching SFRs over 100 samples per feature.

3.4. Advances in Risk Stratification
Accurate patient stratification is not only essential for clinical
trial designs but also for individualized patient care (Kiernan,
2018). Current stratification strategies are surprisingly limited
and do not utilize patient clustering for pharmaceutical research
and medical interventions. Only two drugs have been approved
by the FDA to treat ALS to date: Riluzole (Rilutek) and Edavarone
(Radicava).While there is some debate if themaximal therapeutic
benefit of Riluzole may be in late-stage disease (Dharmadasa
et al., 2018; Fang et al., 2018), recent research suggest that
Edavarone effect may be superior in the earlier phases of
ALS (Goutman, 2017; Kiernan, 2018). It is also noteworthy,
that past clinical trials were primarily based on heterogeneous
ALS populations. The inconclusive findings of admixed cohorts
may not apply to specific patient subgroups (Bozik et al.,
2014) or presymptomatic cohorts. Rigorous patient stratification
would have an important role in addressing these shortcomings.
Unsupervised learning methods, such as the one carried out by
Beaulieu-Jones and Greene (2016) using denoised autoencoder
and t-distributed Stochastic Neighbor Embedding (t-SNE),
provide novel means of monitoring patients. However, as for
most unsupervised learning methods, selecting the appropriate
number of patient clusters requires extensive empirical testing.

3.4.1. Overview of Stratification Initiatives
Patient stratification in ALS is often explored from a prognostic
perspective (Visser et al., 2007; Gomeni and Fava, 2013; Ko et al.,
2014; Elamin et al., 2015; Marin et al., 2015; Beaulieu-Jones

and Greene, 2016; Ong et al., 2017; van der Burgh et al., 2017;
Pfohl et al., 2018; Westeneng et al., 2018) approaching it as a
classification problem and patient categories are defined to build
the model. Balendra et al. (2014a) analyzed progression patterns
using the King’s staging system. Clinical stages are potential input
variables for stratification, and therapeutic intervention can be
tested based on disease subgroups or disease stage.

Patient stratification was performed based on clinical
observations alone in seven recent studies (Visser et al.,
2007; Balendra et al., 2014a; Ko et al., 2014; Elamin et al.,
2015; Burke et al., 2017; van der Burgh et al., 2017; Pfohl
et al., 2018). Variables, such as limb involvement (Visser
et al., 2007), disease-stage (Balendra et al., 2014a), ALSFRS-
r decline (Ko et al., 2014), executive dysfunction (Elamin
et al., 2015), behavioral impairment (Burke et al., 2017), and
survival (van der Burgh et al., 2017; Pfohl et al., 2018) have
been used for patient stratification. Other studies relied on
unsupervised techniques to identify patient subgroups. These
methods either used model estimation (Gomeni and Fava, 2013;
Westeneng et al., 2018), K-means (Ong et al., 2017), a tree-
growing algorithm called Recursive Partitioning and Amalgation
(Marin et al., 2015) or NNs with a denoising autoencoder
(Beaulieu-Jones and Greene, 2016). Clustering was performed
either based on clinical features alone (Gomeni and Fava, 2013;
Marin et al., 2015; Westeneng et al., 2018) or based on clinical
features and biological data (Beaulieu-Jones and Greene, 2016;
Ong et al., 2017).

Contrary to supervised learning problems, unsupervised
learning methods do not have clear and easily presentable
performance metrics. Possible options include the description
of inter- and intra-patient subgroup distances and outlier
distribution. The optimal number of models (equivalent to
cluster number) can be identified using an iterative procedure
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for studies based on model estimation (Gomeni and Fava, 2013;
Westeneng et al., 2018).

Clustering methods
Patient clustering was performed on various datasets in ALS;
clinical trial data (Gomeni and Fava, 2013; Balendra et al., 2014a;
Ko et al., 2014; Ong et al., 2017), “real-life data” (Visser et al.,
2007; van der Burgh et al., 2017; Pfohl et al., 2018; Westeneng
et al., 2018) and population data (Elamin et al., 2015; Marin
et al., 2015; Burke et al., 2017). The term “real-life” data is used
to samples which derive from local recruitment, typically single-
center non-pharmacological studies, where data are acquired
prospectively but do not represent entire populations. Access to
large patient databases with limited missing data is fundamental
to the development of accurate stratification schemes. Recent
initiatives such as the Prize4Life challenge (Küffner et al., 2014),
the PRO-ACT database and Euro-MOTOR consortium (Rooney
et al., 2017; Visser et al., 2018) have proven invaluable resources
for research and should be continued and expanded. PRO-
ACT’s main limitation with regards to patient stratification
is its inclusion bias. Working with population data leads to
more representative results as clinical trial datasets tend to be
associated with considerable bias. The identification of specific
patient subgroups is most accurate when the data truly represents
an entire patient population.

The maximum number of clusters does not typically exceed
five in ALS research; Gomeni and Fava (2013), Ko et al.
(2014), Beaulieu-Jones and Greene (2016), Ong et al. (2017),
and Pfohl et al. (2018) work with only two patient subgroups,
Visser et al. (2007), Elamin et al. (2015), van der Burgh
et al. (2017), and Burke et al. (2017) with three patient
subgroups, Marin et al. (2015) with four patient subgroups
and Balendra et al. (2014a); Westeneng et al. (2018) with five
patient subgroups. Depending on the available data, feature
type, and data source working with a limited number of
clusters may be desirable. This can be particularly challenging
in ALS, where a number of phenotypes contribute to clinical
heterogeneity. Identifying the correct number of clusters is a
common problem in unsupervised learning which can only
be solved with ad-hoc analyses. Please refer to Tables 6, 7

for an overview of studies focusing on risk stratification
in ALS.

ALS studies approach patient stratification in strikingly
different ways. Visser et al. (2007) proposed an innovative PMA
strategy which is based on limb involvement and focuses on
symmetrical vs. asymmetrical limb weaknesses. Current ALS
phenotyping already considers aspects of limb involvement, but
this could be extended to adopt more detailed characterization.
Gomeni and Fava (2013) divided patients into slow- and
fast-progressing groups based on non-linear Weibull model
estimation, which can account for linear, sigmoid or exponential
evolutions. Two clusters were retained based on model fitting,
as three-cluster attempts proved less conclusive. Balendra et al.
(2014a) explored King’s stages (Roche et al., 2012) on LiCALS
and Mito Target data and demonstrated a viable alternative
to ALSFRS-r and traditional patient stratification strategies.
Clinical staging is thought to represent pathological stages

better than ALSFRS-r. Alternative clinical staging systems,
such as MiToS (Chiò et al., 2013a) or Fine’Till 9 (Thakore
et al., 2018) could be tested further to assess if they are
more sensitive in the earlier or later stages of the disease.
Ko et al. (2014) performed an interesting patient classification
study based on ALSFRS-r decline but choice of threshold,
0.6 ALSFRS-r point / month was not expounded. Elamin
et al. (2015) divided patients into three risk groups based
on a scoring system, which was based on site of onset,
ALSFRS-r, and executive dysfunction. Marin et al. (2015)
identified four groups using an unsupervised ML technique:
Recursive partitioning and amalgamation. Membership rules
were derived from analyzing ALSFRS-r decline and El Escorial
criteria. Beaulieu-Jones and Greene (2016) investigated PRO-
ACT survival data using denoising autoencoders, a deep learning
model, and used the visualization algorithm t-SNE to visualize
how the NN model had divided the subjects according to short
vs. long survival. These results are particularly promising as
NN models can work well without extensive feature selection.
van der Burgh et al. (2017) segregated patients into three
classes based on survival times defined by Elamin et al. (2015).
Burke et al. (2017) proposed three subgroups for clustering
based on executive dysfunction (“non-significant,” “mild,” and
“severe symptoms”) using the Beaumont Behavioral Inventory
(Elamin et al., 2016), a questionnaire on patient behavior
completed by the patient and caregivers. Ong et al. (2017) used
unsupervised ML techniques Partitioning Around Medoids and
K-Means to identify patient clusters for disease progression and
survival. Partitioning Around Medoids and K-Means differ on
cluster computing as the former computes the medoid (data
point whose average dissimilarity with the other data points
is minimal) while the latter computes the average value. Two
clusters were optimally suited for both algorithms. Pfohl et al.
(2018) used empirically defined survival times based on clinician
experience. Westeneng et al. (2018) identified five patient
groups after Royston-Parmar model analysis and estimation.
Differing patient stratification strategies can be successfully
combined as demonstrated by Burke et al. (2017) who analyzed
cognitive impairment stratification with regards to King’s clinical
staging system.

4. DISCUSSION

4.1. Summary of Main Findings
4.1.1. Diagnosis
ML models have been increasingly explored in diagnostic
applications in ALS. Thesemodels have the potential to supersede
the current gold standard diagnostic approach which is based
on clinical evaluation and uses the El Escorial criteria. The
El Escorial criteria is thought to suffer from low specificity
(Goutman, 2017). Recent ML models in ALS have reached
comparable sensitivity and specificity values to the El Escorial
criteria. The main barriers to model performance stem from
limited data availability for training and poor sample to
feature ratios. Future strategies should centre on models using
multimodal data, and models which discriminate phenotypes
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TABLE 6 | Research overview: Patient stratification (1/2).

Key Dataset(s)

origin

Dataset(s)

type

Dataset(s)

length

Scope Approach Clustering

feature(s)

Number of

clusters found

Visser et al., 2007 Dutch university

hospitals

Real-life 37 Progression Clinical

observations

Limb involvement 3

Gomeni and Fava,

2013

ProACT Clinical trial 338 Progression Unsupervised

(non-linear

Weibull model

estimation)

Clinical features 2

Balendra et al.,

2014a

LiCALS, Mito

Target

Clinical trial 725 Progression Clinical

observations

Clinical stages 5

Ko et al., 2014 ProAct Clinical trial 1822 Progression Clinical

observations

ALSFRS decline

rate

2

Elamin et al., 2015 Irish ALS registry,

Italy (Piemonte

Region)

Population 326 Outcome Clinical

observations

Score based

on onset type,

ALSFRS rate

an executive

disfunction

3

Marin et al., 2015 FRALim register Population 322 Outcome Unsupervised

(RECPAM)

Clinical features 4

RECPAM, Recursive Partitioning and Amalgation.

TABLE 7 | Research overview: Patient stratification (2/2).

Key Dataset(s)

origin

Dataset(s)

type

Dataset(s)

length

Scope Approach Clustering

feature(s)

Number of

clusters found

Beaulieu-Jones

and Greene, 2016

ProAct Clinical trial 3398 Outcome Unsupervised

learning (DA)

Clinical and

biological features

2

van der Burgh

et al., 2017

University

Medical Center

Utrecht

Real-life 135 Outcome Clinical

observations

Survival time

based on

Elamin2015

categories

3

Burke et al., 2017 Irish ALS Register Population 383 Progression Clinical

observations

Behavioral

impairment based

on BBI score

3

Ong et al., 2017 ProAct Clinical trial 1568-6355 Progression,

outcome

Unsupervised

(PAM and

K-Means)

Clinical and

biological features

2x2

Pfohl et al., 2018 Emery ALS Clinic Real-life 801 Outcome Clinical

observations

Survival time

(empirical)

2

Westeneng et al.,

2018

14 European ALS

centers

Real-life 11475 Outcome Unsupervised

(RP model

estimation)

Clinical features 5

DA, Denoising Autoencoders; PAM, Partitioning Around Medoids; RP, Royston-Parmar; BBI, Beaumont Behavioral Inventory.

within the ALS spectrum and distinguish ALS from disease-
controls. Optimally, these models should be developed to enable
an early, definite, and observer independent diagnosis of ALS.

4.1.2. Prognosis
The development of accurate prognostic models attracts
considerable interest, and is fuelled by initiatives like the
challenge launched by Prize4Life (Küffner et al., 2014).
Prognostic model performance depends heavily on each
feature’s relevance to disease propagation. Current models
rely primarily on clinical findings and laboratory tests which
might not be sufficient to predict disease evolution. Despite

these challenges, recent models have provided a reasonable
gross estimate of death risk (Ong et al., 2017), survival
(Schuster et al., 2017; van der Burgh et al., 2017; Westeneng
et al., 2018) and progression rates (Ong et al., 2017). The
most important constraints of prognostic modeling stem from
significant data bias, limited data availability, poor missing
data management, and limited sample to feature ratios.
Performance reporting should be standardized for model
comparisons, reproducibility, and benchmark development.
Future studies should include multimodal data, multiple
timepoints, include ALS patients with comorbid FTD and
appraise disease progression in terms of clinical stages instead
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of solely relying on ALSFRS-r. Effective prognostic modeling
should also account for disease heterogeneity to provide
patients and clinicians with accurate prognostic insights across
multiple phenotypes.

4.1.3. Risk Stratification
Novel computerized risk stratification initiatives are urgently
required in ALS, as this aspect of ALS research has been
relatively ignored to date. Existing studies tend to stratify patients
according to rather basic categorization rules, limiting their
analyses to a restricted number of clusters and focusing mostly
on clinical features. Future research should focus on working
with multimodal and longitudinal datasets and analyzing model-
derived clustering with commonly used ALS phenotypes.
Optimized patient stratification schemes will undoubtedly
improve clinical trial design and has the potential to identify
clinically relevant ALS subtypes.

5. CONCLUSIONS

ML models have enormous academic and clinical potential
in ALS. With the increasing availability of large datasets,
multicentre initiatives, high-performance computer platforms,
open-source analysis suites, the insights provided by flexible ML
models are likely to supersede those gained from conventional
statistical approaches. The choice of the ML model need to
be carefully tailored to a proposed application based on the
characteristics of the available data and the flexibility, assumption
and limitation profile of the candidate model. While ALS
research to date has overwhelmingly relied on conventional ML
approaches, emerging models and neural network architectures
have considerable potential to advance the field. Novel models
such as “black box” methods however may suffer from similar
pitfalls than established algorithms. The meticulous evaluation

of data characteristics, appraisal of data bias, missing data,
sample to feature ratio is indispensable irrespective of the
choice of ML model. Novel models may have outperformed
traditional approaches, but data constraints and limitations are
often overlooked. Model overfitting is the most commonly
encountered shortcoming of recent studies which limits the
generalizability of a proposed model. Transparent performance
assessment using standardized metrics, robust missing data
management and adherence to reporting guidelines are key
requirements for future machine learning studies in ALS.
Despite the drawbacks of current models and the methodological
limitations of recent studies, the momentous advances in the field
suggest that ML models will play a pivotal role in ALS research,
drug discovery, and individualized patient care.
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GLOSSARY

ALS : Amyotrophic Lateral Sclerosis
ALSbi : Behaviorally impaired ALS
ALSFRS : ALS Functional Rating Scale
ALSbi : behaviorally impaired ALS
ALSnci : ALS with no cognitive impairment
ALSci : ALS with cognitive impairment
ALSexec : ALS with executive dysfunction
AUC : Area Under the ROC Curve
AD : Axial Diffusivity
CNN : Convolutional Neural Network
CSF : Cerebrospinal fluid
CST : Corticospinal
DeepCNF : Deep Convolutional Neural Fields
DTI : Diffusion Tensor Imaging
FA : Fractional Anisotropy
FTD : Frontotemporal Dementia
GMM : Gaussian Mixture Model
KD : Kennedy’s disease
k-NN : k-Nearest Neighbors
LMN : Lower Motor Neurons
MD : Mean Diffusivity
ML : Machine Learning
MND : Motor Neuron Disease
NN : Neural Network
PBP : Progressive Bulbar Palsy
PCA : Principal Component Analysis
PD : Parkinson’s Disease
PLS : Primary Lateral Sclerosis
PMA : Progressive Muscular Atrophy
PRO-ACT : Pooled Resource Open-Access ALS Clinical Trials
RBP : RNA-Binding Protein
RD : Radial Diffusivity
RF : Random Forest
RMSE : Root Mean Squared Error
RNN : Recurrent Neural Network
ROC : Receiver Operating Curve
SFR : Sample to Feature Ratio
SMA : Spinal Muscular Atrophy
SVM : Support Vector Machine
t-SNE : t-distributed Stochastic Neighbor Embedding
UMN : Upper Motor Neurons
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