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Abstract

Classification of medical images is an important issue in computer-assisted diagnosis. In this paper, a classification
scheme based on a one-class kernel principle component analysis (KPCA) model ensemble has been proposed for the
classification of medical images. The ensemble consists of one-class KPCA models trained using different image
features from each image class, and a proposed product combining rule was used for combining the KPCA models to
produce classification confidence scores for assigning an image to each class. The effectiveness of the proposed
classification scheme was verified using a breast cancer biopsy image dataset and a 3D optical coherence
tomography (OCT) retinal image set. The combination of different image features exploits the complementary
strengths of these different feature extractors. The proposed classification scheme obtained promising results on the
two medical image sets. The proposed method was also evaluated on the UCI breast cancer dataset (diagnostic), and
a competitive result was obtained.

Keywords: Breast cancer diagnosis; Biopsy image; One-class classifier; Kernel principle component analysis;
Classifier ensemble

1 Introduction
Medical imaging is one of the most important tools in
modern medicine; different types of imaging technologies
such as X-ray imaging, ultrasonography, biopsy imaging,
computed tomography, and optical coherence tomogra-
phy have been widely used in clinical diagnosis for var-
ious kinds of diseases. However, in clinical applications,
it is usually time-consuming to examine an image man-
ually. Moreover, as there is always a subjective element
related to the pathological examination of an image by
human physician, an automated technique will provide
valuable assistance for physicians. A large focus with
respect to medical image analysis has been on automated
image classification. Many recent studies have revealed
that medical images can be properly classified if suit-
able image feature descriptions are chosen [1-3]. These
research demonstrated that by combining different image
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description features, it is possible to improve medical
image classification performance.

Although the classifiers which can provide multi-class
classification such as support vector machines (SVM) and
neural networks are usually selected for medical image
classification [4], one-class classifiers (OCC) [5] that can
work on the samples seen are, so far, more appropriate
for medical image classification task. One-class classifica-
tion is also often called outlier (or novelty) detection as
the learning algorithms are used to differentiate between
data that appears normal and abnormal with respect to
the distribution of the training data. This principle of
one-class classification is thus appropriate with respect
to medical diagnosis and in disease versus no-disease
problems.

In many real classification tasks, using a single clas-
sifier often fails to capture all aspects of the data.
Therefore, a combination of classifiers (an ensemble) is
often considered to be an appropriate mechanism to
address this shortcoming. The main idea behind the
ensemble methodology is to use several classifiers and
combine the individual results in order to produce a
classification that outperforms the outcome that would
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have been produced if the classifiers were to oper-
ate in isolation [6]. Ensembles of one-class classifiers
have also been shown to perform better than individual
classifiers [7-9].

There are many strategies for constructing a classifier
ensemble, with examples including the use of different
training data sets, different feature subsets, various types
of individual classifiers, and different fusion rules. Among
these, the feature subset strategy has shown better per-
formance when the dimensionality of the feature vector
is high compared to the number of the data samples
[10-13]. It is thus suggested that the feature subset ensem-
ble strategy is consequently well suited to medical image
classification problems, as various types of image features
are generally extracted for medical image classification
tasks, which in turn means that the dimensionality of the
vector space is typically beyond the number of image sam-
ples, in which the ‘curse of dimensionality’ occurs, but the
use of the feature subset strategy can avoid such problem.

In this paper, we propose and evaluate a novel clas-
sification scheme for medical images. The proposed
classification scheme utilizes an ensemble of one-class
classifiers, which is built with the feature subset strat-
egy; each one-class classifier is trained with one type of
features extracted from the training images. The kernel
principle component analysis (KPCA) model was chosen
as the base classifier of the ensemble. Given a m-class
classification task and n different kinds of image fea-
tures, the ensemble will consist of m × n KPCA models.
For an unlabeled image, its n-types of features will first
be mapped into the kernel space by the corresponding
n-trained KPCA models from each class. The mapped
features will then be reconstructed from the high dimen-
sional kernel space into the original space by preimage
learning, the distances between the original features and
the reconstructed features will be measured. The dis-
tances given by the KPCA models will be combined to
output a confidence score describing the probability of
the sample belonging to a class. For a m-class classifi-
cation task, the m confidence scores will be obtained,
one for each class. The image will be classified into
the class with the maximum confidence score. Promis-
ing classification performance was obtained using the
proposed classification scheme on two medical image
sets.

2 Related works
In this section, we will first introduce some related
works on one-class classification. Then one-class classifier
ensembles will be discussed.

2.1 One-class classification
Moya et al. originated the term one-class classifica-
tion [14]. Many approaches to one-class classification

have been presented in the literature [5]. Following the
taxonomy in the survey papers of [15-17], the algorithms
used in OCC can be categorized as follows: (i) boundary
methods, (ii) density estimation, and (iii) reconstruction
methods.

Tax and Duin [18,19] sought to solve the problem of
OCC by distinguishing the positive class from all other
patterns in the pattern space; the positive class data was
surrounded by a hyper-sphere which encompassed almost
all positive patterns within the minimum radius. This
method of support vector data description (SVDD) was
different to that proposed by Schölkopf et al. [20] who,
using a separating hyper-plane instead of a hyper-sphere,
tried to separate the pattern space with data from the
space containing no data. Manevitz and Yousef [21] pro-
posed another version of one-class SVM based on iden-
tifying outlier data as representative of the second class,
and they applied their method to the standard Reuters [22]
dataset and noted that their SVM methods was quite sen-
sitive to the choice of representation and kernel. Although
one-class classifiers, such as OCSVM, have been widely
used, the estimated boundary can be sensitive to the
nature of the data [23]. This can be highly problematic for
many applications, especially for medical diagnosis where
the number of false positives must be kept to a minimum,
since an accidental diagnosis of a cancer patient as healthy
may result in death.

Density estimation methods estimate the density of the
target class to form a model with which to represent the
data. The generally used models include Parzen, Gaussian,
and Gaussian mixture models. The test point is classi-
fied by the maximum posterior probability. Generally, this
approach works well when the sample size is sufficiently
high and a flexible model is used. However, when the
model does not fit the data very well, a large bias may
result. Details and some comparisons of these methods
can be found in [24,25].

As the density estimation or support-vector-based
methods require large training sets, when this is not fea-
sible, one can approximate the target class by a simpler
reconstruction model. This type of models tries to cap-
ture the data structure; new objects are projected onto this
model. The reconstruction error, the difference between
the original object x and the projected object p(x), indi-
cates the resemblance of a new object to the original
target distribution. When the training data has a very high
dimensionality, the nearest neighbor methods tend to per-
form badly [26]. In such cases, it can often be assumed
that the target data is distributed in subspaces of much
lower dimensionality. Principle component analysis [27] is
a linear model that has the ability to project the original
data into orthogonal space which can captures the vari-
ance in the data. Many nonlinear subspace models have
also been proposed, such as self-organizing map (SOM),
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auto-encoders, auto-associative networks [28], and kernel
PCA [29].

2.2 Ensemble of one-class classifiers
Ensemble learning is concerned with mechanisms to com-
bine the results of a number of weak learning systems
to produce better learning performance. Several method-
ologies exist for creating an ensemble classifier from
individual classifiers; a survey on the design of multiple
classifier systems can be found in [6]. It has been demon-
strated that combining classifiers can also be effective for
one-class classifiers. The existing classifier combination
strategies can also be used in one-class classifiers. Because
for one-class classifiers, information concerning only one
class is available; thus, the combining of one-class clas-
sifiers is more difficult. Tax and Duin investigated the
influence of feature sets and the types of one-class clas-
sifiers for the best choice of the combination rule [30]. A
bagging-based one-class support vector machine ensem-
ble method was proposed in [31]. A dynamic ensemble
strategy based on structural risk minimization [32] was
proposed by Goh et al. for multi-class image annotation
[7]. Recently, some research results have revealed that cre-
ating a one-class classifier ensemble from different feature
subsets can provide better performance. Perdisci et al.
[33] also used an ensemble of one-class SVMs to create a
‘high-speed payload-based’ anomaly detection system, in
which the features were first extracted and clustered and
the OCSVM ensemble was then constructed based on the
clustered feature subsets. A biometric classification sys-
tem combining different biometric features was proposed
by Bergamini et al. [8], where the one-class SVMs in the
ensemble were trained by the data from different people.
The feature subset strategy provides diversity with respect
to the base classifiers, and some researchers emphasize
the importance of measuring diversity in ensembles so as
to improve classification performance [9,34].

Combining one-class classifiers has also shown promis-
ing performance in medicine and biology [35]. Peng Li
et al. [36] proposed a multi-size patch-based classifier
ensemble, which provides a multiple-level representation
of image content, and this method was evaluated on
colonoscopy images and ECG beat detection [37]. The
k-nearest neighbor classifier was selected as the base clas-
sifier in the work of Okun and Priisalu [38] in which
majority voting was chosen as the combination rules for
the ensemble and the method was evaluated on gene
expression cancer data.

3 One-class kernel subspace ensemble
In this section, the one-class kernel PCA model ensemble
will be introduced. The theory of kernel PCA and pattern
reconstruction via preimage will first be introduced, then
the proposed KPCA ensemble will be described.

3.1 KPCA and pattern reconstruction via preimage
The traditional (linear) PCA tries to preserve the great-
est variations of data by approximating data in a principle
component subspace spanned by the leading eigenvectors,
noises or less important data variations will be removed.
Kernel PCA inherits this scheme; however, it performs lin-
ear PCA in the kernel feature space Hκ . Suppose X ⊂ Rn

is the original input data space and Hκ is a reproducing
kernel Hilbert space (RKHS) (also called feature space)
associated to a kernel function κ(x, y) =< ϕ(x), ϕ(y) >,
where x, y ∈ X. ϕ(·) is a mapping induced by κ that ϕ(x) :
X → Hκ . Given a set of patterns {x1, x2, . . . , xN } ∈ X,
kernel PCA performs the traditional linear PCA in Hκ .
Similar to the linear PCA, KPCA also has the eigendecom-
position:

HKH = U�U ′ (1)

where K is the kernel matrix such that Kij = κ(xi, xj), and

H = I − 1
N

11′ (2)

is the centering matrix, where I is the N × N iden-
tity matrix, 1 =[ 1, 1, . . . , 1]′ is an N × 1 vector, U =
[ α1, . . . , αN ] is the matrix containing eigenvectors αi =
[ αi1, . . . , αiN ]′, and � = diag(λ1, . . . , λN ) contains the
corresponding eigenvalues.

Denote the mean of the ϕ-mapped patterns by ϕ̄ =
1
N

∑N
j=1 ϕ(xj). Then for a mapped pattern ϕ(xi), the cen-

tered map ϕ̃(xi) can be defined as follows:

ϕ̃(xi) = ϕ(xi) − ϕ̄. (3)

The kth eigenvector Vk of the covariance matrix in the
feature space is a linear combination of ϕ̃(xi):

Vk =
N∑

i=1
αkiϕ̃(xi) = ϕ̃αk , (4)

where ϕ̃ =[ ϕ̃(x1), ϕ̃(x2), ..., ϕ̃(xN )]. If we use βk to denote
the projection of the ϕ-image of a pattern x onto the kth
component Vk , then:

βk = ϕ̃(x)′Vk =
N∑

i=1
αkiϕ̃(x)′ϕ̃(xi)

=
N∑

i=1
αkiκ̃(x, xi), (5)

where

κ̃(x, y) = ϕ̃(x)′ϕ̃(y)
= (ϕ(x) − ϕ̄)′(ϕ(y) − ϕ̄)

= κ(x, y) − 1
N

1′kx − 1
N

1′ky + 1
N2 1′K1 (6)
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where kx =[ κ(x, x1), . . . , κ(x, xN )]′. Denote

κ̃x =[ κ̃(x, x1), . . . , κ̃(x, xN )]′

= kx − 1
N

11′kx − 1
N

K1 + 1
N2 11′K1

= H(kx − 1
N

K1), (7)

then βk in Equation 5 can be rewritten as βk = α
′
k κ̃x.

Therefore, the projection P(ϕ(x)) of ϕ(x) onto the sub-
space spanned by the first M eigenvectors can be obtained
by:

P(ϕ(x)) =
M∑

k=1
βkVk + ϕ̄ =

M∑
k=1

(α′
k κ̃x)(ϕ̃αk) + ϕ̄

= ϕ̃Lκ̃x + ϕ̄, (8)

where L = ∑M
k=1 αkα

′
k .

PCA is a simple method whereby a model for the dis-
tribution of training data can be generated. For linear
distributions, PCA can be used; however, many real-world
problems are nonlinear. Methods like Gaussian mixture
models and auto-associative neural networks have been
used for nonlinear problems. These methods, however,
need to solve a nonlinear optimization problem and are
thus prone to local minima and sensitive to the initial-
ization [29]. KPCA runs PCA in the high-dimensional
feature space through the nonlinearity of the kernel, and
this allows for a refinement in the description of the pat-
terns of interest. Therefore, kernel PCA was chosen to
model the nonlinear distribution of the training samples
here.

Kernel PCA has been widely used for classification
tasks. A straightforward method using kernel PCA for
classification is to directly use the distances between the
mapped patterns in the feature space Hκ to obtain the

classification boundaries [29,39]. However, as pointed out
in [29] for kernel PCA, their experimental results showed
that the classification performance highly depends on the
parameters selected for the kernel function, and there is
no guideline for parameter selection in real classification
tasks. It is also demonstrated in a more recent work that it
is not sufficient to use kernel space distance for unsuper-
vised learning algorithms, and the distances in the input
space are more appropriate for classification [40].

In this paper, we focus on the distances between a pat-
tern x and its reconstruction results by the kernel PCA
models trained from different classes. As kernel PCA is
used as an one-class classifier here, which means that
for each class, at least one KPCA model is trained. Sup-
pose there is an m-class classification task, there will be
m KPCA models, one for each class. Given an unlabeled
pattern x, every KPCA model will produce a projection
P(ϕ(x))i, i = 1, . . . , m. During classification, x will be
reconstructed in the input space by every P(ϕ(x))i, then
m reconstruction results x′

1, . . . , x′
m can be obtained, the

distance between x and each x′
i (also called reconstruc-

tion error) is calculated, and x will be assigned to the
class whose KPCA model produces the minimum recon-
struction error. Ideally, the KPCA model trained from the
class which x also belongs to will always give the mini-
mum reconstruction error. In our proposed classification
scheme, multiple KPCA models are trained for each class
and the reconstruction errors of KPCA models from dif-
ferent classes are combined for classification, which is
demonstrated in Section 3.2 and Section 3.3.

In order to obtain the input-space distance between
x and its reconstruction result, it is necessary to map
P(ϕ(x)) back into the input space. The reverse mapping
from feature space back to input space is called the preim-
age problem (Figure 1). However, the preimage problem is
ill-posed and the exact preimage x′ of P(ϕ(x)) in the input

Figure 1 Illustration of KPCA preimage learning. The sample x in the original space is first mapped into the kernel space by kernel mapping ϕ(·),
then PCA is used to project ϕ(x) into P(ϕ(x)), which is a point in a PCA subspace. Preimage learning is used to find the preimage x̂ of x in the
original input space from P(ϕ(x)).



Zhang et al. EURASIP Journal on Advances in Signal Processing 2014, 2014:17 Page 5 of 13
http://asp.eurasipjournals.com/content/2014/1/17

space does not exist [41]; instead, one can only find an
approximation x̂ in the input space such that

ϕ(x̂) = P(ϕ(x)). (9)

In order to address the preimage learning problem,
some algorithms have been proposed. Mika et al. [41] pro-
posed an iterative method to determine the preimage by
minimizing least square distance error. Kwok and Tsang
proposed a distance constraint learning (DCL) method
to find preimage by using a similar technique in multi-
dimensional scaling (MDS) [42]. In a more recent work,
Zheng et al. [43] proposed a weakly supervised penalty
strategy for preimage learning in KPCA; however, their
method needs information for both positive and negative
classes. As we are only interested in one-class scenarios,
the distance constraint method in [42] was selected with
respect to the work described in this paper. We briefly
review the method here.

For any two patterns xi and xj in the input space, the
Euclidean distance d(xi, xj) can be easily obtained. Sim-
ilarly, the feature-space distance d̃(ϕ(xi), ϕ(xj)) between
their ϕ-mapped images in the feature space can also be
obtained. For many commonly used kernels, such as the
Gaussian kernels, there is a simple relationship between
the feature-space distance and the input-space distance
[44]:

d̃
2
ij = Kii + Kjj − 2κ(d2

ij). (10)

Therefore,

κ(d2
ij) = 1

2
(Kii + Kjj −d̃

2
ij ). (11)

As κ is invertible, d2
ij can be obtained if d̃

2
ij is known.

A given training set has n patterns X = {x1, . . . , xn}. For
a pattern x in the input space, the corresponding ϕ(x) is
projected to P(ϕ(x)), then for each training pattern xi in X,
P(ϕ(x)) will be at a certain distance d̃(P(ϕ(x)), ϕ(xi)) from

ϕ(xi) in the feature space. This feature-space distance can
be obtained by:

d̃
2
(P(ϕ(x)), ϕ(x)) = ‖P(ϕ(x))‖2 + ‖ϕ(xi)‖2

− 2P(ϕ(x))′ϕ(xi).
(12)

The Equation 12 can be solved by using Equations 5 and
8. Therefore, the kernel space distances in Equation 11
between P(ϕ(x)) and each xi can be obtained now. Denote
the kernel space distance between P(ϕ(x)) and xi as:

d2 =[ d2
1, d2

2, . . . , d2
n] . (13)

The location of x̂ will be obtained by requiring d2(x̂, xi)
to be as close to the values in (13) as possible, i.e.,

d2(x̂, xi) � d2
i , i = 1, . . . , n. (14)

To this end, in DCL, the training set X is constrained
to the n nearest neighbors of x, and the least square
optimization is used to obtain x̂.

3.2 Construction of one-class KPCA ensemble for image
classification

Given an image set of m classes, the proposed one-class
KPCA ensemble is built as follows: (i) for each image cat-
egory, n-type image features are extracted; (ii) a KPCA
model will be trained for each individual type of the
extracted features; and (iii) therefore, for each image class,
n KPCA models will be constructed. For a m-class prob-
lem, there will be m × n KPCA models in the ensemble.
The construction of the proposed one-class KPCA ensem-
ble is illustrated in Figure 2, where KPCAj

i represents the
model trained by the type j feature from class i.

Figure 2 Construction of one-class KPCA ensemble from different image feature sets. KPCAj
i represents the KPCA model trained from the jth

image feature of class i.
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3.3 Multi-class prediction using an ensemble of one-class
KPCA models

The classification confidence score is used to describe the
probability of the image that belongs to each class. The
confidence score can provide a quantitative measure of
the predictions produced by KPCA models.

Given an unlabeled image x with n extracted features
F = {f1, f2, . . . , fn}, let KPCAj

i represent the KPCA model
belonging to class i and trained from the feature set fj,
where i ∈ {1 . . . m} is the class label and j ∈ {1 . . . n} is
the feature label. For classification, the preimages of each
image feature fj ∈ F will be obtained by all the KPCA
models trained from the jth feature. The DCL method
introduced in Section 3.1 is used for obtaining the preim-
ages. For example, the preimages of f1 will be obtained by
the models KPCA1

i , i = 1, . . . , m. Denote the preimages
of fj as f ′

j = {f ′1
j , f ′2

j , . . . , f ′m
j }, and the squared distance

Dj between fj and f ′
j is used as the reconstruction error,

therefore:

Dj =[ d1
j , d2

j , . . . , dm
j ] , (15)

where dj
i = ‖fj − f ′i

j ‖2, i = 1, . . . , m. In the same way,
the preimages of all the features in F will be obtained,
forming a distance matrix D, which has the dimensions
n×m, where n is the number of KPCA models used for the
preimage learning and m is the number of image classes.
Each row of D represents the reconstruction errors of a
feature in F by m KPCA models from each class:

D =

⎡
⎢⎢⎢⎣

D1
D2
...

Dn

⎤
⎥⎥⎥⎦ =

⎛
⎜⎜⎜⎝

d1
1 d2

1 · · · dm
1

d1
2 d2

2 · · · dm
2

...
... · · · ...

d1
n d2

n · · · dm
n

⎞
⎟⎟⎟⎠ . (16)

Noting that the values in each column of D represents
the reconstruction errors of F using the KPCA models
from the same class, these values provide a measurement
of how an image x is described by the KPCA models
from one class. Since we try to find the KPCA mod-
els from a class which give the minimum reconstruction
error, this indeed is a 1-nearest neighbor search, as we
wish to find the best preimage of x in m preimages. Such
a distance measure can improve the speed of the classifi-
cation. Moreover, it is also in line with the ideas in metric
multi-dimensional scaling, in which smaller dissimilarities
are given more weight, and in locally linear embedding,
where only the local neighborhood structure needs to be
preserved [42].

In order to combine the reconstruction errors from
KPCA models, the reconstruction errors in D are first
normalized using Equation 17:

d̃
j
i = exp(−d j

i /s), (17)

which models a Gaussian distribution from the square
distance. The scale parameter s can be fitted to the distri-
bution of dj

i. Moreover, Equation 17 has the feature that
the scaled value is always bounded between 0 and 1. The
normalized distance matrix D is denoted by D̃.

The normalized reconstruction errors in D̃ are obtained
by different one-class KPCA models, which can be com-
bined to produce the confidence scores (CS) for classifying
x into each class. Let Cs = {cs1, cs2, . . . , csm} denote the
confidence scores for x with respect to each image class.
The confidence scores can be computed from the distance
matrix D̃ by using an appropriate combination rule. A
product rule was proposed in [45] for combining one-class
classifiers:

csk(x) =
∏

k Pk(x|wT)∏
k Pk(x|wT) + ∏

k Pk(x|wO)
, (18)

where k is the label of the target class.
∏

k Pk(x|wT) is the
probabilities of classifying x into the target class obtained
from classifiers of class k, which can be calculated from
the values in one column of the distance matrix D̃ as:

∏
k

Pk(x|wT) =
∏

j=1...n
d̃

k
j . (19)

∏
Pk(x|wO) represents the probability of x belonging to

the outlier class, which is obtained by multiplying all the
values in D̃ except the values from the ‘target’ class k:
∏

Pk(x|wO) =
∏

d̃
i
j , j = 1 . . . n, i = 1 . . . m and i �= k.

(20)

In [30], the authors investigated different mechanisms
for combining one-class classifiers, and their results
showed that the ‘product rule’ in Equation 18 outperforms
other combining mechanisms for one-class classifiers. As
noted in [30,45], when using the product combining rule,
Pk(x|wT) should be available and a distance should be
transformed to a ‘resemblance’ by some heuristic mapping
as in Equation 17.

However, when one-class classifiers are used for multi-
class classification tasks, the product rule in Equation 18
may not perform well. The number of the one-class clas-
sifiers constructed for the outlier classes will exceed the
number of the classifiers for the target class; a problem of
‘imbalance’ thus occurs in Equation 18, where the items
used for producing

∏
k Pk(x|wO) are much more than the

items used for
∏

Pk(x|wT). During classification, some
classifiers from the outlier classes may give small classifi-
cation probabilities when the classifiers estimate that the
pattern is not an outlier. In Equation 18, these small prob-
abilities will still be used to calculate

∏
k Pk(x|wO), even

if there are more classifiers which have a different judge-
ment. In this imbalance situation, due to those relatively
small probabilities, a small value of

∏
k Pk(x|wO) will be



Zhang et al. EURASIP Journal on Advances in Signal Processing 2014, 2014:17 Page 7 of 13
http://asp.eurasipjournals.com/content/2014/1/17

Figure 3 Illustration of KPCA model selection to produce outlier
probability product.

obtained, approaching 0, which makes the classification
confidence scores rather closed to each other.

Here, a variant of the product combining rule of
Equation 18 is proposed to address the imbalance prob-
lem. Instead of using the mapping values from all the
outlier classes’ KPCA models, for those models trained
by a same type of image feature, only the model that
gives the biggest mapping value will be chosen to produce∏

k Pk(x|wO). The proposed product combining rule can
be described as:

csk(x) =
∏

k Pk(x|wT)∏
k Pk(x|wT) + ∏

j P j
k (x|wO)

, (21)

where j is the image feature label and j = 1 . . . n.∏
k Pk(x|wT) can be obtained using Equation 19. Each

P j
k (x|wO) in

∏
j P j

k (x|wO) is the probability of x belongs to
the outlier classes using the jth image feature, which can
be obtained by:

P j
k (x|wO) = max{d̃ i

j }, i = 1 . . . m and i �= k. (22)

The maximum value selection procedure in Equation 21
is illustrated by a simple example in Figure 3. In Figure 3,
there is a four-class classification task (I, II, III, and IV in
the figure), in which four types of features are extracted
from image x. For one type of image feature, there are four

trained KPCA models, each from a different class, giv-
ing four reconstruction results for the same feature of x
(one row in matrix D̃). If we consider class I as the ‘tar-
get’ class (first column in the figure), the four values in the
first column are used to produce the item

∏
k Pk(x|wT) in

Equation 21. The other three column of values are deemed
as the outlier probabilities produced by the KPCA mod-
els from the other three classes. The proposed combining
rule selects the maximum mapping value from each row
to produce the outlier probability product

∏
j P j

k (x|wO).
The selection scheme in Equation 21 ensures that

the numbers of items for calculating
∏

k Pk(x|wO) and∏
Pk(x|wT) are the same. Moreover, the negative effect on

confidence scores brought by the imbalance can also be
removed. The proposed combining rule is in line with the
basic idea of one-class classification, as in the one-class
scenario, one only needs to know if a pattern should be
assigned to the target class or to the outlier class. If one or
more outlier models is able to produce a high outlier prob-
ability product, the current target class should be doubted.
Moreover, by combining the outliers value from different
feature-derived models, the diversity of the ensemble will
be improved, which is an important factor to make an
ensemble learning method successful [46].

Note that since the ‘target class’ is unknown for an
unlabeled image, during classification, each class will be
deemed as the target class in turn to calculate the confi-
dence score, i.e., each column in D̃ will be used in turn to
obtain

∏
k Pk(x|wT) for each class. In such a way, for a m-

class classification, each class will be deemed as the target
class, one by one, to produce m confidence scores; thus the
image will be assigned to the class giving the maximum
classification confidence score.

4 Experiments and results
The effectiveness of the proposed method is illustrated
using a biopsy breast cancer image set, a 3D OCT retinal
image set, and the UCI Wisconsin breast cancer (diagnos-
tic) dataset. The details of the image set and image feature
extractors are given in Section 4.1. Section 4.2 intro-

Figure 4 Typical image instances. (a) Carcinoma in situ: tumor confined to a well-defined small region, usually a duct (arrow). (b) Invasive: breast
tissue completely replaced by the tumor. (c) Normal: normal breast tissue, with ducts and finer structures.
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Table 1 Features extracted from gray level co-occurrence
matrix

Index Features Index Features

1 Energy 12 Sum of squares

2 Entropy 13 Sum average

3 Dissimilarity 14 Sum variance

4 Contrast 15 Sum entropy

5 Inverse difference 16 Difference variance

6 Correlation 17 Difference entropy

7 Homogeneity 18 Information measure of
correlation (1)

8 Auto-correlation 19 Information measure of
correlation (2)

9 Cluster shade 20 Maximal correlation
coefficient

10 Cluster prominence 21 Normalized inverse
difference

11 Maximum probability 22 Normalized inverse
difference moment

duces our experimental setup and the evaluation methods
used in our experiments. The effectiveness of combin-
ing kernel PCAs is illustrated in Section 4.3. Finally, the
proposed method was compared with some state-of-art
ensemble classification methods on the UCI Wisconsin
breast cancer dataset.

4.1 Image set and feature extraction
With respect to the work described in this paper, three
medical image sets were used to evaluate the proposed
classification method: A breast cancer benchmark biopsy
images dataset from the Israel Institute of Technology
[47], a 3D OCT retinal image set, and the breast cancer
dataset (diagnostic) from UCI machine learning reposi-
tory [48].

4.1.1 Breast cancer biopsy image set
The image set consists of 361 samples, of which 119
were classified by a pathologist as normal tissue, 102 as
carcinoma in situ, and 140 as invasive ductal or lobu-
lar carcinoma. The samples were generated from breast
tissue biopsy slides, stained with hematoxylin and eosin.
They were photographed using a Nikon Coolpix� 995
attached to a Nikon Eclipse� E600 (Nikon Corporation,
Shinjuku, Tokyo, Japan) at magnification of ×40 to pro-
duce images with resolution of about 5 μ per pixel. No
calibration was made, and the camera was set to automatic
exposure. The images were cropped to a region of interest
of 760 × 570 pixels and compressed using the lossy JPEG
compression. The resulting images were again inspected
by a pathologist to ensure that their quality was sufficient
for diagnosis. Figure 4 presents three sample images of
healthy tissue, tumor in situ, and invasive carcinoma.

The shape feature and texture feature are critical factors
for distinguishing one image from another. For the biopsy
image discrimination, shapes and textures are also effec-
tive. As we can see from Figure 4, the three kinds of biopsy
images have visible differences in cell externality and tex-
ture distribution. Thus, we use completed local binary pat-
terns (CLBPs) [49] for extracting local textural features,
gray level co-occurrence matrix (GLCM) [50] statistics for
representing global textures, and the curvelet transform
[51] for shape description. These feature descriptors have
shown promising results in our previous work on biopsy
image classification [52].

Different from traditional LBPs, in CLBPs a local region
is represented by three coding operators to represent
the central pixel, the difference signs, and the difference
magnitudes [49]. According to the authors, CLBP can
achieve much better rotation invariant texture classifica-
tion results than conventional LBP-based schemes. In this
paper, we use the 3D joint histogram of these three oper-
ators to generate textural features of breast cancer biopsy

Figure 5 Examples of two 3D OCT images showing the difference between a ‘normal’ (a) and an AMD retina (b).
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Figure 6 Examples of OCT images. (a) Before preprocessing. (b) After preprocessing.

images, and the joint combination of the three compo-
nents gives better classification than when using conven-
tional LBPs and provides a smaller feature dimension. The
dimension of the CLBP feature is 200.

The co-occurrence probabilities provide a second-order
method for generating texture features. The basis for fea-
tures used here is the gray level co-occurrence matrix
[50]. With respect to the work described in this paper,
a total of 22 features were extracted from gray level co-
occurrence matrix, and they are listed in Table 1. Each of
these statistics has a qualitative meaning with respect to
the structure within the gray level co-occurrence matrix.
The total dimension of the GLCM features is 220.

The fastest curvelet transform currently available is the
curvelets via wrapping [51], which was therefore adopted
with respect to our work. From the curvelet coefficients,
some statistics can be calculated from each of these
curvelet sub-bands. In this paper, the mean μ, the stan-
dard deviation δ, and the entropy H are used as the
simple features. If n curvelets are used for the trans-
form, 3n features G =[ Gμ, Gδ , H] are obtained, where
Gμ =[ μ1, μ2, . . . , μn], Gδ =[ δ1, δ2, . . . , δn], and H =
[ h1, h2, . . . , hn]. A 3n-dimensional feature vector can be
used to represent each image in the dataset. Using five
levels of the curvelet transform, 82 sub-bands of curvelet
coefficients are computed, therefore, a 246 dimensional
curvelet feature vector is generated for each image.

4.1.2 3D OCT retinal image set
The 3D OCT retinal image set was collected at the Royal
Hospital of University of Liverpool. The image set con-
tains 140 volumetric OCT images, in which 68 images are

Table 2 Recognition rate (percent) for the biopsy image
data from individual KPCAs and the combined model

Image class CvletK GLCMK LBPK Combined

Normal 70.10 67.70 71.40 92.70

In situ 76.50 72.58 81.83 93.78

Invasive 77.71 68.65 85.57 90.35

from normal eyes and the remainder from eyes that have
age-related macular degeneration (AMD). Figure 5 shows
the example images.

The OCT images are preprocessed by using the Split
Bregman Isotropic Total Variation algorithm with a least
squares approach [53]. The preprocessing step has two
targets: (i) identification and extraction of a volume of
interest (VOI) which also results in noise removal and
(ii) flattening of the retina as appropriate. The example
images after preprocessing can be seen in Figure 6.

As the images are three-dimensional, following the work
in [53], three types image features were used for image
description: local binary patterns of three orthogonal
planes (LBP-TOP), local phase quantization (LPQ) and
multi-scale spatial pyramid (MSSP).

4.1.3 UCI breast cancer dataset
The Wisconsin breast cancer image sets were obtained
from digitized images of fine needle aspirate (FNA) of
breast masses. They describe characteristics of the cell
nuclei present in the image. Ten real-valued features are
computed for each cell nucleus: radius, texture, perime-
ter, area, smoothness, compactness, concavity, concave
points, symmetry and fractal dimension. The 569 images
in the dataset are categorized into two classes: benign and
malignant.

4.2 Experimental setup and performance evaluation
methods

MATLAB 7 was used to implement the proposed process
together with the Gaussian kernel k(x, y) = exp(−‖x −
y‖2/2σ 2). Other types of kernels could have been used;
however, since the Gaussian kernel is commonly used
for the kernel PCA, the SVDD, and the Parzen density,
this kernel is the only kernel used with respect to the
experiments reported here.

Unless otherwise stated, tenfold cross-validation was
used, all the results are averages of ten runs of the ten-
fold cross-validation. The following measures are used to
evaluate the proposed cascade method:
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Table 3 Recognition rate (percent) for the 3D OCT retinal
image data from individual KPCAs and the combined
model

Image class LPQK LBP-TOPK MSSPK Combined

Normal 86.20 88.45 85.56 92.30

AMD 86.50 86.69 85.83 91.82

• Recognition rate (RR) = number of correctly
recognized images / number of testing images

• ROC, receiver operating characteristic graph
• AUC, area under an ROC curve

4.3 Evaluation of kernel PCA ensemble
The KPCA ensemble evaluation using the biopsy image
data and the 3D OCT retinal image data is reported
in this section. For the biopsy images, as introduced in
Section 4.1, three types of image features were extracted,
therefore for each image class, three kernel PCAs were
built with respect to each type of image feature. The
recognition rates of using these KPCAs individually are
listed in column 2 to column 4 in Table 2, where CvletK,
GLCMK, and LBPK represent KPCA models trained from
curvelets, GLCM, and LBP, respectively. The results of
combining all KPCA models are listed in the last col-
umn of Table 2; the combining rule is introduced in
Equation 21. The parameters of KPCAs were set to σ = 4
and n = 40. The combined model gives the best classi-
fication performance for each image class; the averaged
classification accuracy for these three image classes is
92.28%.

The evaluation results on the 3D OCT retinal images
are list in Table 3. Three types of image features were
extracted, namely LPQ, LBP-TOP, and MSSP. Therefore,
for each image class three kernel PCAs were built with
respect to each type of image feature. The recognition
rates of using these KPCAs individually are listed in col-
umn 2 to column 4 in Table 3, where LPQK, LBPK, and
MSSPK represent the KPCA models trained from LPQ,
LBP-TOP, and MSSP, respectively. The results of com-
bining all KPCA models are listed in the last column of
Table 3. The parameters of KPCAs were set to σ = 4 and
n = 40. The combined model gives the best classification

Table 4 Recognition rate (percent) for biopsy image data
from different one-class classifier ensembles

Image class PCA MoG KMeans SVDD Parzen KPCA

Normal 85.17 82.12 80.12 85.56 84.54 92.70

In situ 87.33 84.67 83.46 87.22 81.26 93.78

Invasive 82.56 81.88 79.65 84.67 83.23 90.35

The kernel widths for KPCA and SVDD were set to σ = 4. The number of principal
components for KPCA and PCA were set to n = 40.

Table 5 Recognition rate (percent) for 3D OCT retinal
image data from different one-class classifier ensembles

Image class PCA MoG KMeans SVDD Parzen KPCA

Normal 82.06 84.56 76.96 88.77 82.04 92.30

AMD 81.22 85.67 78.84 86.45 80.73 91.82

The kernel widths for KPCA and SVDD were set to σ = 4. The number of principal
components for KPCA and PCA were set to n = 40.

performance for each image class; the averaged classifica-
tion accuracy for these two image classes is 92.06%.

From Tables 2 and 3, one can see that using the pro-
posed product combining rule, the classification accura-
cies of all the image classes have been improved. This
illustrates that by combining one-class classifiers trained
from different features can improve the classification per-
formance, which is in accordance with the observation in
[30]. For comparison, the other one-class classifiers are
also used as the base classifier of the ensemble, using
the same combining rule, the classification results on the
biopsy image set and the 3D OCT retinal image set are
listed in Tables 4 and 5, respectively.

With respect to the comparison of the operation of
a variety of one-class classifiers, six one-class classifiers
were used as the base classifier for the ensemble: they
are Parzen, SVDD, PCA, Kmeans, MoG, and KPCA. The
receiver operating characteristic (ROC) curves obtained
using different one-class classifiers on the biopsy image
data are shown in Figure 7. The x axis of the ROC curves
is false positive rate (FPr) and the y axis is the true
positive rate (TPr). The FPr and TPr are obtained by
Equations 23 and 24, respectively. A threshold on the
difference between the biggest confidence score and the
second biggest confidence score was used to obtain
the trade-off between TPr and FPr. Initially, the threshold
was set to 0.05, then the threshold was increased by a step
of 0.01 until 0.60, on each threshold value, and the TPr
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Figure 7 Receiver operating characteristics curves of different
one-class classifiers. These curves were used as the base classifier
for the ensemble on the biopsy image data.
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Table 6 AUC of different one-class classifiers used as the
base classifier for the ensemble on the biopsy image data

Parzen SVDD PCA Kmeans MoG KPCA

AUC 84.30 83.61 84.19 84.28 83.67 93.53

and FPr were accounted. The areas under the ROC curves
(AUC), for the compared classifiers, are listed in Table 6;
the KPCA ensemble gives the best result.

TPr = True positive
True positive + False negative

(23)

FPr = False positive
False positive + True negative

(24)

The proposed method was also compared with some
state-of-art methods on the biopsy image set. The meth-
ods compared with are as follows: (i) the level set his-
togram (LSH) method proposed in [54]; (ii) a cascade
classification system (CAS) in [55], which first classi-
fies the images into ‘cancer’ and ‘non-cancer’ categories,
then further classification is implemented within the ‘can-
cer’ category to discriminate different cancer types; (iii) a
hybrid feature (HF) proposed in [56], which used higher-
order spectra (HOS), local binary pattern (LBP), and laws
texture energy (LTE) for histopathological image clas-
sification, in which the Takagi-Sugeno fuzzy model is
selected as the classifier.

In our experiment, based on the description in [54], for
LSH, the images were first converted to grayscale images
that have the intensity range between 0 and 255, then
25 thresholds with the steps of 10 were used to convert
the images into binary images (0 and 1). For each binary
image, the level set segmentation was used to generate a
42-bin histogram for the connected components in the
image. Thus, each image finally generated a feature vector
with the size of 42 × 25 = 1, 050. SVM with RBF ker-
nel was used for classification with the parameter σ that
defines the spread of the radial function set to 4.0, and the
parameter C that defines the trade-off between the clas-
sifier accuracy and the margin was set to 3.0. For CAS,
we used the same classifier, decision tree C5.0, and the
same image features as stated in [55]. The feature vector
for each image is a combination of first-order statistics,
co-occurrence matrix, and steerable filters.

Table 7 Performance comparison of some state-of-art
methods and the proposed method on the biopsy image
set

Classification accuracy Error rate AUC

LSH 87.38 13.62 88.97

CAS 91.94 7.88 93.12

HF 90.27 9.73 91.56

Proposed 92.28 7.72 93.85
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Figure 8 Receiver operating characteristics curves of the
compared methods on the biopsy image data.

Table 7 lists the performance of the compared methods
on the biopsy image set, where one can be noted that the
proposed method achieved the better performance than
other methods. The CAS method obtained an accuracy
of 91.94%, which is superior than the accuracy of LSH
and HF. The LSH method obtained only 87.38% accu-
racy on the biopsy image set. LSH only used the level
set histograms for image description, while other com-
pared methods all used composite image features, which
demonstrates that using a combination of different image
features can improve classification performance. Figure 8
presents the ROC curves of the compared methods; the
AUC of the ROC curves are listed in Table 7.

For the 3D OCT retinal images, a method in [53]
was used to compare with the proposed method. The
method in [53] used the same image data, and the same
image features introduced in Section 4.1.2 were composed
together as the image feature, in which Bayes classifier was
used for classification. A classification accuracy of 91.50%
was reported by the authors, while our proposed system
achieved 92.06%.

The proposed method was also compared with some
state-of-art methods on the UCI breast cancer dataset.
The methods compared are the following: (i) the multi-
layer perceptron ensemble (MLPE) method proposed in
[57]; (ii) a boosted neural network (BoostNN) classifier
in [58]; (iii) a decision tree (DT) and support vector
machine sequential minimal optimization (SVM-SMO)
based ensemble classifier proposed by Luo and Cheng
[59]. The results are listed in Table 8.

Table 8 Comparison of classification accuracy on the UCI
breast cancer image set

MLPE BoostNN DT-SVM-SMO Proposed

Classification 97.10 96.25 91.67 97.28
accuracy
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5 Conclusions
In this paper, a classification scheme based on a one-
class KPCA model ensemble has been proposed for the
classification of medical images. The ensemble consists
of one-class KPCA models trained using different image
features from each image class, and a proposed prod-
uct combining rule was used for combining the kernel
PCA models to produce classification confidence scores
for assigning an image to each class. The effectiveness of
the proposed classification scheme was verified using a
breast cancer biopsy image dataset and a 3D OCT retinal
image set. The proposed classification scheme obtained
high classification accuracy on the tested image sets.

Although the proposed system has shown promising
results with respect to the biopsy image classification task,
there are still some aspects that need to be further inves-
tigated. The benchmark images used in this work were
cropped from the original biopsy scans and only cover
the important areas of the scans. However, it is often dif-
ficult to find regions of interest (ROIs) that contain the
most important tissues in biopsy scans; therefore, more
effort needs to be put into detecting ROIs from biopsy
images. The parameters of the kernel PCA models, such as
the number of principle components and the width of the
Gaussian kernel, were fixed during the experiments. In the
future research, some optimization methods or adaptive
algorithms should be considered for searching the optimal
parameters of KPCA models.
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