1,631 research outputs found

    Management of Islanded Operation of Microgirds

    Get PDF
    Distributed generations with continuously growing penetration levels offer potential solutions to energy security and reliability with minimum environmental impacts. Distributed Generations when connected to the area electric power systems provide numerous advantages. However, grid integration of distributed generations presents several technical challenges which has forced the systems planners and operators to account for the repercussions on the distribution feeders which are no longer passive in the presence of distributed generations. Grid integration of distributed generations requires accurate and reliable islanding detection methodology for secure system operation. Two distributed generation islanding detection methodologies are proposed in this dissertation. First, a passive islanding detection technique for grid-connected distributed generations based on parallel decision trees is proposed. The proposed approach relies on capturing the underlying signature of a wide variety of system events on a set of critical system parameters and utilizes multiple optimal decision tress in a parallel network for classification of system events. Second, a hybrid islanding detection method for grid-connected inverter based distributed generations combining decision trees and Sandia frequency shift method is also proposed. The proposed method combines passive and active islanding detection techniques to aggregate their individual advantages and reduce or eliminate their drawbacks. In smart grid paradigm, microgrids are the enabling engine for systematic integration of distributed generations with the utility grid. A systematic approach for controlled islanding of grid-connected microgrids is also proposed in this dissertation. The objective of the proposed approach is to develop an adaptive controlled islanding methodology to be implemented as a preventive control component in emergency control strategy for microgrid operations. An emergency power management strategy for microgrid autonomous operation subsequent to inadvertent islanding events is also proposed in this dissertation. The proposed approach integrates microgrid resources such as energy storage systems, demand response resources, and controllable micro-sources to layout a comprehensive power management strategy for ensuring secure and stable microgrid operation following an unplanned islanding event. In this dissertation, various case studies are presented to validate the proposed methods. The simulation results demonstrate the effectiveness of the proposed methodologies

    Recent Developments and Challenges on AC Microgrids Fault Detection and Protection Systems–A Review

    Get PDF
    The protection of AC microgrids (MGs) is an issue of paramount importance to ensure their reliable and safe operation. Designing reliable protection mechanism, however, is not a trivial task, as many practical issues need to be considered. The operation mode of MGs, which can be grid-connected or islanded, employed control strategy and practical limitations of the power electronic converters that are utilized to interface renewable energy sources and the grid, are some of the practical constraints that make fault detection, classification, and coordination in MGs different from legacy grid protection. This article aims to present the state-of-the-art of the latest research and developments, including the challenges and issues in the field of AC MG protection. A broad overview of the available fault detection, fault classification, and fault location techniques for AC MG protection and coordination are presented. Moreover, the available methods are classified, and their advantages and disadvantages are discussed

    AN INTELLIGENT PASSIVE ISLANDING DETECTION AND CLASSIFICATION SCHEME FOR A RADIAL DISTRIBUTION SYSTEM

    Get PDF
    Distributed generation (DG) provides users with a dependable and cost-effective source of electricity. These are directly connected to the distribution system at customer load locations. Integration of DG units into an existing system has significantly high importance due to its innumerable advantages. The high penetration level of distributed generation (DG) provides vast techno-economic and environmental benefits, such as high reliability, reduced total system losses, efficiency, low capital cost, abundant in nature, and low carbon emissions. However, one of the most challenges in microgrids (MG) is the island mode operations of DGs. the effective detection of islanding and rapid DG disconnection is essential to prevent safety problems and equipment damage. The most prevalent islanding protection scheme is based on passive techniques that cause no disruption to the system but have extensive non-detection zones. As a result, the thesis tries to design a simple and effective intelligent passive islanding detection approach using a CatBoost classifier, as well as features collected from three-phase voltages and instantaneous power per phase visible at the DG terminal. This approach enables initial features to be extracted using the Gabor transform (GT) technique. This signal processing (SP) technique illustrates the time-frequency representation of the signal, revealing several hidden features of the processed signals to be the input of the intelligent classifier. A radial distribution system with two DG units was utilized to evaluate the effectiveness of the proposed islanding detection method. The effectiveness of the proposed islanding detection method was verified by comparing its results to those of other methods that use a random forest (RF) or a basic artificial neural network (ANN) as a classifier. This was accomplished through extensive simulations using the DigSILENT Power Factory® software. Several measures are available, including accuracy (F1 Score), the area under the curve (AUC), and training time. The suggested technique has a classification accuracy of 97.1 per cent for both islanded and non-islanded events. However, the RF and ANN classifiers\u27 accuracies for islanding and non-islanding events, respectively, are proven to be 94.23 and 54.8 per cent, respectively. In terms of the training time, the ANN, RF, and CatBoost classifiers have training times of 1.4 seconds, 1.21 seconds, and 0.88 seconds, respectively. The detection time for all methods was less than one cycle. These metrics demonstrate that the suggested strategy is robust and capable of distinguishing between the islanding event and other system disruptions

    Intelligent voltage dip mitigation in power networks with distributed generation

    Get PDF
    Includes bibliographical references.The need for ensuring good power quality (PQ) cannot be over-emphasized in electrical power system operation and management. PQ problem is associated with any electrical distribution and utilization system that experiences any voltage, current or frequency deviation from normal operation. In the current power and energy scenario, voltage-related PQ disturbances like voltage dips are a fact which cannot be eliminated from electrical power systems since electrical faults, and disturbances are stochastic in nature. Voltage dip tends to lead to malfunction or shut down of costly and mandatory equipment and appliances in consumers’ systems causing significant financial losses for domestic, commercial and industrial consumers. It accounts for the disruption of both the performance and operation of sensitive electrical and electronic equipment, which reduces the efficiency and the productivity of power utilities and consumers across the globe. Voltage dips are usually experienced as a result of short duration reduction in the r.m.s. (r.m.s.- root mean square) value of the declared or nominal voltage at the power frequency and is usually followed by recovery of the voltage dip after few seconds. The IEEE recommended practice for monitoring electric power quality (IEEE Std. 1159-2009, revised version of June 2009), provides definitions to label an r.m.s. voltage disturbance based upon its duration and voltage magnitude. These disturbances can be classified into transient events such as voltage dips, swells and spikes. Other long duration r.m.s. voltage variations are mains failures, interruption, harmonic voltage distortion and steady-state overvoltages and undervoltages. This PhD research work deals with voltage dip phenomena only. Initially, the present power network was not designed to accommodate renewable distributed generation (RDG) units. The advent and deployment of RDG over recent years and high penetration of RDG has made the power network more complex and vulnerable to PQ disturbances. It is a well-known fact that the degree of newly introduced RDG has increased rapidly and growing further because of several reasons, which include the need to reduce environmental pollution and global warming caused by emission of carbon particles and greenhouse gases, alleviating transmission congestion and loss reduction. RDG ancillary services support especially voltage and reactive power support in electricity networks are currently being recognized, researched and found to be quite useful in voltage dip mitigation

    Power system stability scanning and security assessment using machine learning

    Get PDF
    Future grids planning requires a major departure from conventional power system planning, where only a handful of the most critical scenarios is analyzed. To account for a wide range of possible future evolutions, scenario analysis has been proposed in many industries. As opposed to the conventional power system planning, where the aim is to find an optimal transmission and/or generation expansion plan for an existing grid, the aim in future grids scenario analysis is to analyze possible evolution pathways to inform power system planning and policy making. Therefore, future grids’ planning may involve large amount of scenarios and the existing planning tools may no longer suitable. Other than the raised future grids’ planning issues, operation of future grids using conventional tools is also challenged by the new features of future grids such as intermittent generation, demand response and fast responding power electronic plants which lead to much more diverse operation conditions compared to the existing networks. Among all operation issues, monitoring stability as well as security of a power system and action with deliberated preventive or remedial adjustment is of vital important. On- line Dynamic Security Assessment (DSA) can evaluate security of a power system almost instantly when current or imminent operation conditions are supplied. The focus of this dissertation are, for future grid planning, to develop a framework using Machine Learning (ML) to effectively assess the security of future grids by analyzing a large amount of the scenarios; for future grids operation, to propose approaches to address technique issues brought by future grids’ diverse operation conditions using ML techniques. Unsupervised learning, supervised learning and semi-supervised learning techniques are utilized in a set of proposed planning and operation security assessment tools

    Recognition and classification of power quality disturbances by DWT-MRA and SVM classifier

    Get PDF
    Electrical power system is a large and complex network, where power quality disturbances (PQDs) must be monitored, analyzed and mitigated continuously in order to preserve and to re-establish the normal power supply without even slight interruption. Practically huge disturbance data is difficult to manage and requires the higher level of accuracy and time for the analysis and monitoring. Thus automatic and intelligent algorithm based methodologies are in practice for the detection, recognition and classification of power quality events. This approach may help to take preventive measures against abnormal operations and moreover, sudden fluctuations in supply can be handled accordingly. Disturbance types, causes, proper and appropriate extraction of features in single and multiple disturbances, classification model type and classifier performance, are still the main concerns and challenges. In this paper, an attempt has been made to present a different approach for recognition of PQDs with the synthetic model based generated disturbances, which are frequent in power system operations, and the proposed unique feature vector. Disturbances are generated in Matlab workspace environment whereas distinctive features of events are extracted through discrete wavelet transform (DWT) technique. Machine learning based Support vector machine classifier tool is implemented for the classification and recognition of disturbances. In relation to the results, the proposed methodology recognizes the PQDs with high accuracy, sensitivity and specificity. This study illustrates that the proposed approach is valid, efficient and applicable

    Game-Theoretic and Machine-Learning Techniques for Cyber-Physical Security and Resilience in Smart Grid

    Get PDF
    The smart grid is the next-generation electrical infrastructure utilizing Information and Communication Technologies (ICTs), whose architecture is evolving from a utility-centric structure to a distributed Cyber-Physical System (CPS) integrated with a large-scale of renewable energy resources. However, meeting reliability objectives in the smart grid becomes increasingly challenging owing to the high penetration of renewable resources and changing weather conditions. Moreover, the cyber-physical attack targeted at the smart grid has become a major threat because millions of electronic devices interconnected via communication networks expose unprecedented vulnerabilities, thereby increasing the potential attack surface. This dissertation is aimed at developing novel game-theoretic and machine-learning techniques for addressing the reliability and security issues residing at multiple layers of the smart grid, including power distribution system reliability forecasting, risk assessment of cyber-physical attacks targeted at the grid, and cyber attack detection in the Advanced Metering Infrastructure (AMI) and renewable resources. This dissertation first comprehensively investigates the combined effect of various weather parameters on the reliability performance of the smart grid, and proposes a multilayer perceptron (MLP)-based framework to forecast the daily number of power interruptions in the distribution system using time series of common weather data. Regarding evaluating the risk of cyber-physical attacks faced by the smart grid, a stochastic budget allocation game is proposed to analyze the strategic interactions between a malicious attacker and the grid defender. A reinforcement learning algorithm is developed to enable the two players to reach a game equilibrium, where the optimal budget allocation strategies of the two players, in terms of attacking/protecting the critical elements of the grid, can be obtained. In addition, the risk of the cyber-physical attack can be derived based on the successful attack probability to various grid elements. Furthermore, this dissertation develops a multimodal data-driven framework for the cyber attack detection in the power distribution system integrated with renewable resources. This approach introduces the spare feature learning into an ensemble classifier for improving the detection efficiency, and implements the spatiotemporal correlation analysis for differentiating the attacked renewable energy measurements from fault scenarios. Numerical results based on the IEEE 34-bus system show that the proposed framework achieves the most accurate detection of cyber attacks reported in the literature. To address the electricity theft in the AMI, a Distributed Intelligent Framework for Electricity Theft Detection (DIFETD) is proposed, which is equipped with Benford’s analysis for initial diagnostics on large smart meter data. A Stackelberg game between utility and multiple electricity thieves is then formulated to model the electricity theft actions. Finally, a Likelihood Ratio Test (LRT) is utilized to detect potentially fraudulent meters

    Data generation and model usage for machine learning-based dynamic security assessment and control

    Get PDF
    The global effort to decarbonise, decentralise and digitise electricity grids in response to climate change and evolving electricity markets with active consumers (prosumers) is gaining traction in countries around the world. This effort introduces new challenges to electricity grid operation. For instance, the introduction of variable renewable energy generation like wind and solar energy to replace conventional power generation like oil, gas, and coal increases the uncertainty in power systems operation. Additionally, the dynamics introduced by these renewable energy sources that are interfaced through converters are much faster than those in conventional system with thermal power plants. This thesis investigates new operating tools for the system operator that are data-driven to help manage the increased operational uncertainty in this transition. The presented work aims to an- swer some open questions regarding the implementation of these machine learning approaches in real-time operation, primarily related to the quality of training data to train accurate machine- learned models for predicting dynamic behaviour, and the use of these machine-learned models in the control room for real-time operation. To answer the first question, this thesis presents a novel sampling approach for generating ’rare’ operating conditions that are physically feasible but have not been experienced by power systems before. In so doing, the aim is to move away from historical observations that are often limited in describing the full range of operating conditions. Then, the thesis presents a novel approach based on Wasserstein distance and entropy to efficiently combine both historical and ’rare’ operating conditions to create an enriched database capable of training a high- performance classifier. To answer the second question, this thesis presents a scalable and rigorous workflow to trade-off multiple objective criteria when choosing decision tree models for real-time operation by system operators. Then, showcases a practical implementation for using a machine-learned model to optimise power system operation cost using topological control actions. Future research directions are underscored by the crucial role of machine learning in securing low inertia systems, and this thesis identifies research gaps covering physics-informed learning, machine learning-based network planning for secure operation, and robust training datasets are outlined.Open Acces

    Real-Time Machine Learning Models To Detect Cyber And Physical Anomalies In Power Systems

    Get PDF
    A Smart Grid is a cyber-physical system (CPS) that tightly integrates computation and networking with physical processes to provide reliable two-way communication between electricity companies and customers. However, the grid availability and integrity are constantly threatened by both physical faults and cyber-attacks which may have a detrimental socio-economic impact. The frequency of the faults and attacks is increasing every year due to the extreme weather events and strong reliance on the open internet architecture that is vulnerable to cyber-attacks. In May 2021, for instance, Colonial Pipeline, one of the largest pipeline operators in the U.S., transports refined gasoline and jet fuel from Texas up the East Coast to New York was forced to shut down after being attacked by ransomware, causing prices to rise at gasoline pumps across the country. Enhancing situational awareness within the grid can alleviate these risks and avoid their adverse consequences. As part of this process, the phasor measurement units (PMU) are among the suitable assets since they collect time-synchronized measurements of grid status (30-120 samples/s), enabling the operators to react rapidly to potential anomalies. However, it is still challenging to process and analyze the open-ended source of PMU data as there are more than 2500 PMU distributed across the U.S. and Canada, where each of which generates more than 1.5 TB/month of streamed data. Further, the offline machine learning algorithms cannot be used in this scenario, as they require loading and scanning the entire dataset before processing. The ultimate objective of this dissertation is to develop early detection of cyber and physical anomalies in a real-time streaming environment setting by mining multi-variate large-scale synchrophasor data. To accomplish this objective, we start by investigating the cyber and physical anomalies, analyzing their impact, and critically reviewing the current detection approaches. Then, multiple machine learning models were designed to identify physical and cyber anomalies; the first one is an artificial neural network-based approach for detecting the False Data Injection (FDI) attack. This attack was specifically selected as it poses a serious risk to the integrity and availability of the grid; Secondly, we extend this approach by developing a Random Forest Regressor-based model which not only detects anomalies, but also identifies their location and duration; Lastly, we develop a real-time hoeffding tree-based model for detecting anomalies in steaming networks, and explicitly handling concept drifts. These models have been tested and the experimental results confirmed their superiority over the state-of-the-art models in terms of detection accuracy, false-positive rate, and processing time, making them potential candidates for strengthening the grid\u27s security
    corecore