6,697,169 research outputs found

    Large and Almost Maximal Neutrino Mixing within the Type II See-Saw Mechanism

    Get PDF
    Within the type II see-saw mechanism the light neutrino mass matrix is given by a sum of a direct (or triplet) mass term and the conventional (type I) see-saw term. Both versions of the see-saw mechanism explain naturally small neutrino masses, but the type II scenario offers interesting additional possibilities to explain large or almost maximal or vanishing mixings which are discussed in this paper. We first introduce ``type II enhancement'' of neutrino mixing, where moderate cancellations between the two terms can lead to large neutrino mixing even if all individual mass matrices and terms generate small mixing. However, nearly maximal or vanishing mixings are not naturally explained in this way, unless there is a certain initial structure (symmetry) which enforces certain elements of the matrices to be identical or related in a special way. We therefore assume that the leading structure of the neutrino mass matrix is the triplet term and corresponds to zero U_{e3} and maximal theta_{23}. Small but necessary corrections are generated by the conventional see-saw term. Then we assume that one of the two terms corresponds to an extreme mixing scenario, such as bimaximal or tri-bimaximal mixing. Deviations from this scheme are introduced by the second term. One can mimic Quark-Lepton Complementarity in this way. Finally, we note that the neutrino mass matrix for tri-bimaximal mixing can be -- depending on the mass hierarchy -- written as a sum of two terms with simple structure. Their origin could be the two terms of type II see-saw.Comment: 25 pages. Comments and references added, to appear in JHE

    Reflections on Metaphysical Explanation

    Get PDF
    The nature of metaphysical explanation is a question that should be constantly on every metaphysician’s mind, and yet it is rare to see explicit statements about the methodological approach that writers take. We tend to just enter the flow of ideas and words in a particular ‘discourse’ and see where it leads us. It is easier that way but can lead us astray. I can’t claim to be a role-model in this respect. I have offered a comment here, a remark there, but plenty room for improvement. However, I have come across quite a few confusions that can be traced to failed understanding of method/approach, and one or two really interesting statements of method. Here I share one such confusion about method, and one interesting view about method

    Videoconferencing via satellite. Opening Congress to the people: Technical report

    Get PDF
    The feasibility of using satellite videoconferencing as a mechanism for informed dialogue between Congressmen and constituents to strengthen the legislative process was evaluated. Satellite videoconferencing was defined as a two-way interactive television with the TV signals transmitted by satellite. With videoconferencing, one or more Congressmen in Washington, D. C. can see, hear and talk with groups of citizens at distant locations around the country. Simultaneously, the citizens can see, hear and talk with the Congressmen

    From probabilities to categorical beliefs: Going beyond toy models

    Get PDF
    According to the Lockean thesis, a proposition is believed just in case it is highly probable. While this thesis enjoys strong intuitive support, it is known to conflict with seemingly plausible logical constraints on our beliefs. One way out of this conflict is to make probability 1 a requirement for belief, but most have rejected this option for entailing what they see as an untenable skepticism. Recently, two new solutions to the conflict have been proposed that are alleged to be non-skeptical. We compare these proposals with each other and with the Lockean thesis, in particular with regard to the question of how much we gain by adopting any one of them instead of the probability 1 requirement, that is, of how likely it is that one believes more than the things one is fully certain of

    On the asymptotic spatial behaviour of the solutions of the nerve system

    Get PDF
    In this paper we investigate the asymptotic spatial behavior of the solutions for several models for the nerve fibers. First, our analysis deals with the coupling of two parabolic equations. We prove that, under suitable assumptions on the coefficients and the nonlinear function, the decay is similar to the one corresponding to the heat equation. A limit case of this system corresponds to the coupling of a parabolic equation with an ordinary differential equation. In this situation, we see that for suitable boundary conditions the solution ceases to exist for a finite value of the spatial variable. Next two sections correspond to the coupling of a hyperbolic/parabolic and hyperbolic/ordinary differential problems. For the first one we obtain that the decay is like an exponential of a second degree polynomial in the spatial variable. In the second one, we prove a similar behaviour to the one corresponding to the wave equation. In these two sections we use in a relevant way an exponentially weighted PoincarĂ© inequality which has been revealed very useful in several thermal and mechanical problems. This kind of results have relevance to understand the propagation of perturbations for nerve models.Peer ReviewedPostprint (author’s final draft

    Theƍsis: A Comparative Study of T. F. Torrance and Rāmānuja

    Get PDF
    This essay is an imaginative conversation as I engage two religious thinkers—the prolific Reformed theologian Thomas F. Torrance (1913-2007) and the great Vedāntin Rāmānuja (traditionally, 1017–1137). I will compare Torrance’s theology1 of theƍsis2 (participation in the life of God) and theƍria (contemplation as a way of participation in the life of God) with those of Rāmānuja. Though the words themselves were likely unknown to Rāmānuja, through his works one can see a notion of theƍsis

    Diffuse emission in the presence of inhomogeneous spin-orbit interaction for the purpose of spin filtration

    Full text link
    A lateral interface connecting two regions with different strengths of the Bychkov-Rashba spin-orbit interaction can be used as a spin polarizer of electrons in two dimensional semiconductor heterostructures. [Khodas \emph{et al.}, Phys. Rev. Lett. \textbf{92}, 086602 (2004)]. In this paper we consider the case when one of the two regions is ballistic, while the other one is diffusive. We generalize the technique developed for the solution of the problem of the diffuse emission to the case of the spin dependent scattering at the interface, and determine the distribution of electrons emitted from the diffusive region. It is shown that the diffuse emission is an effective way to get electrons propagating at small angles to the interface that are most appropriate for the spin filtration and a subsequent spin manipulation. Finally, a scheme is proposed of a spin filter device, see Fig. 9, that creates two almost fully spin-polarized beams of electrons.Comment: 11 pages, 9 figure

    Topology in 2D CP**(N-1) models on the lattice: a critical comparison of different cooling techniques

    Get PDF
    Two-dimensional CP**(N-1) models are used to compare the behavior of different cooling techniques on the lattice. Cooling is one of the most frequently used tools to study on the lattice the topological properties of the vacuum of a field theory. We show that different cooling methods behave in an equivalent way. To see this we apply the cooling methods on classical instantonic configurations and on configurations of the thermal equilibrium ensemble. We also calculate the topological susceptibility by using the cooling technique.Comment: 24 pages, 10 figures (from 16 eps files
    • 

    corecore