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Abstract

According to the Lockean thesis, a proposition is believed just in case it is highly probable.
While this thesis enjoys strong intuitive support, it is known to conflict with seemingly
plausible logical constraints on our beliefs. One way out of this conflict is to make
probability 1 a requirement for belief, but most have rejected this option for entailing
what they see as an untenable skepticism. Recently, two new solutions to the conflict
have been proposed that are alleged to be non-skeptical. We compare these proposals
with each other and with the Lockean thesis, in particular with regard to the question of
how much we gain by adopting any one of them instead of the probability 1 requirement,
that is, of how likely it is that one believes more than the things one is fully certain of.

1. Introduction. There has been much recent interest in the question of how to reconcile
purely qualitative and numerical representations of belief states. According to the so-called
Lockean thesis (Foley [1992a; 1992b; 2009]), a proposition is believed (simpliciter, plainly)
just in case its probability has at least a certain threshold value. This proposal works fine if
the threshold is set to 1, but most regard this as imposing too stringent a requirement on
belief. We are not, and should not be, that skeptical: there are many things we believe—and
reasonably so—in the absence of full certainty.

On the other hand, the Lockean thesis becomes problematic for different reasons if the
threshold is set to a value less than 1. In general, the resulting set of beliefs may then fail to
be consistent, or fail to be closed under the relation of logical consequence. Many authors
have thought that this would violate logical norms that are indispensable for belief, at least
if our beliefs are to qualify as rational.1

Recently, Lin and Kelly [2012a; 2012b] and Leitgeb [2013; 2014; 2015; 2017] have proposed
alternatives to the Lockean thesis. These authors aim to connect beliefs simpliciter with
probabilities in a way that maintains logical closure while allowing beliefs simpliciter to
be non-certain. In this paper, we assess these new proposals and compare them with the
Lockean thesis with regard to the question of how much is gained by adopting them as
opposed to settling for the probability 1 requirement. In other words, the question to be
asked for each account is this: how likely is it, on the given account, that you will believe more
than the things you are fully certain of? The answer to this question can be interpreted as a
measure of how much the account improves upon the skepticism entailed by the probability 1
requirement.

Our general approach follows in the footsteps of Rott [2017]. Rott criticized Leitgeb’s
proposal as being overly skeptical, and argued that the otherwise similar theory of Lin and
Kelly does much better in this respect, by calculating the exact likelihoods with which, on
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these proposals as well as on the Lockean thesis, a random probability distribution would
give rise to an informative belief set, that is, a belief set containing non-certain beliefs.

However, Rott [2017] has an important limitation, in that the concrete cases considered
in that paper concern only probability distributions over three and four worlds. In fact, it
shares this limitation with Leitgeb’s and Lin and Kelly’s work, as these authors illustrate
their claims with three-world models only. Toy models can be invaluable for developing
intuitions and achieving a basic understanding of the mechanisms or processes that one is
interested in. But by focusing exclusively on such models, we may be missing problematic
features that only emerge in more realistic models. In the present case, we may not be able
to draw any firm conclusions about how beliefs and probabilities are interconnected on the
basis of how well (or poorly) any proposed bridge principles do in the context of models
involving only a handful of worlds.

If three-world and four-world models are toy models, what would be realistic numbers
of worlds to consider? Chi and Ohlsson [2005, 372] estimate that “a person’s declarative
knowledge base eventually approximates 1 million pieces of knowledge.” It is not clear from
the context whether they really mean “knowledge base” or only “belief base,” and whether
one “piece of knowledge” would correspond to one belief. Suppose they mean “belief base.”
If the beliefs are presumed to be logically independent, then we would need approximately
2106 ≈ 10301,030 worlds to represent our doxastic states.2

Our main interest is in how much “less” skeptical than the probability 1 requirement the
Lockean thesis as well as Leitgeb’s and Lin and Kelly’s accounts are. Thus, we are interested
in the likelihood of our having a personal probability distribution that gives rise to beliefs
other than those we hold because we can rule out some worlds with certainty. And it is
reasonable to assume that, of all the worlds that were just said to be needed to represent
our doxastic states, a great number can be ruled out on the basis of the evidence in our
possession. It is equally reasonable to assume, however, that the number of those that
remain, in that they receive some positive probability, will be nowhere near the order of three
or four. We continue the work begun in Rott [2017] by asking the question he asked, but
now also considering probability models encompassing up to hundreds and even thousands
of possible worlds.

Before we get started, some words about threshold values. Most who have considered
the question of how beliefs and probabilities hang together agree that the threshold must be
at least as high as .5, while for the reason mentioned, a threshold of 1 is generally regarded
as being too demanding. Throughout the following, we will consider a number of different
threshold values in the range from .5 to 1. Although we want to remain largely noncommittal
on where exactly in that range the threshold should be located, we do note that, according to
many authors, the threshold for rational belief is a good deal higher than .5. Some authors
advocate very specific numbers, for a priori reasons. For example, Shear and Fitelson [2018]
argue that the Lockean threshold should be at least the inverse of the golden ratio, that is,
√

5−1/2 = .6180. Easwaran [2016] gives reasons why an agent should believe all propositions
A such that Pr(A) > ω/ρ+ω and should believe no proposition B such that Pr(B) < ω/ρ+ω,
where ρ is a (constant) bonus for every true belief andω is a (constant) penalty for every false
belief she holds. If we combine Easwaran’s idea with Pruss’ [2012] argument that ω should
equal ρ/ln(4)−1, then we obtain that the Lockean threshold should be at least 1/ln(4) = .7213.
Kaplan [1981, 308], Moser and Tlumak [1985, 128], and Kyburg [1990, 64] assume a threshold
of .9, while Foley [1992a, 113] goes further still by postulating .99 as a reasonable value.
Interestingly, .9 has been recommended by legal scholars (e.g., Kagehiro and Stanton [1985])

2We have more to say on the number of possibilities in Section 6.1.
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as an explication of the notion of being beyond reasonable doubt, which is supposed to be a
criterion for a conviction in the practice of criminal law.3

In Section 2, we state the various theses of interest in a formally precise way, and we
summarize what these theses are already known to imply concerning skepticism. In the
same section, we also explain the main mathematical technique we shall use for investigating
possible skeptical implications in probability models much larger than the three-world and
four-world models considered by previous authors. Sections 3–5 then present our formal
results concerning the Lockean thesis, Lin and Kelly’s proposal, and Leitgeb’s proposal,
respectively. Section 6 addresses two objections that some may want to level against our
comparison of these three accounts.

2. Setting the stage: Belief rules and Monte Carlo integration. Let W = {w1, . . . , wn} be a
finite set of mutually exclusive and jointly exhaustive possibilities (or possible worlds), and
let p = (p1, . . . , pn) be a probability distribution on W such that pi is the probability of wi .
A subset A of W is called a proposition (over W ), and for any such proposition we define
Pr(A) =

∑
{pi : wi ∈ A} (using the convention

∑
∅ = 0). Finally, let θ be the belief threshold,

where it is presupposed that .5 6 θ < 1. We are now going to introduce three belief rules
and ask under what conditions each of these rules yields an informative belief set, by which
we mean a belief set that contains at least one proposition with imperfect probability (i.e.,
with probability less than 1).

The most simple and natural belief rule for the threshold θ is the one already mentioned
above:

Lockean Thesis (LT): The rational set of beliefs with respect to a probability function Pr
and a threshold θ is Bel = {A : Pr(A) > θ}.

Thus, on LT, p gives rise to an informative belief set just in case there is a proposition with a
probability strictly between θ and 1, which is true just in case

∃i : 0 < pi < 1− θ. (L)

In LT, absolute probabilities matter. In contrast, the belief rule proposed by Lin and Kelly—the
so-called odds-threshold rule—eliminates a certain set of relatively improbable possibilities:

Odds-threshold Rule (OR): The rational set of beliefs with respect to a probability function
Pr and a threshold θ is Bel = {A : Xθ ⊆ A}, where

Xθ =
{
wi ∈ W :

pi
max({pj : wj ∈ W})

>
1− θ
θ

}
.

This formulation of OR is not quite the same as that in Lin and Kelly [2012a, 537], where
a threshold term of the form “1 − θ” is used, or that in Lin and Kelly [2012b, 970–971],
where the form “1/θ” is used. Our presentation here involves a natural transformation of the
threshold parameter that keeps θ between .5 and 1 and permits a perfect comparability with
the rules of Locke and Leitgeb.4

On OR, p generates an informative belief set just in case

∃i : 0 < pi <
1− θ
θ

·max
(
{pj : wj ∈ W}

)
. (O)

3However, Magnussen et al. [2014] report that in actuality judges tend to convict a defendant as soon as they
are around 80 percent certain of the defendant’s guilt.

4For details, see Rott [2017, Sect. 4]. It will turn out that the precise specification of the threshold value in OR
loses much of its importance as the number of possibilities grows. See Table 3 below.
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Finally, here is the belief rule that Leitgeb, in his stability account of rational belief, dubs
“the Humean thesis” for the threshold θ:5

Humean Thesis (HT): The rational set of beliefs with respect to a probability function Pr
and a threshold θ is Bel = {A : Pr(A |B) > θ for all propositions B such that ¬B ∉ Bel
and Pr(B) 6= 0}.6

In this version of HT, just as in the above version of LT, only thresholds less than 1 make
sense. Leitgeb [2013, 1363] has shown that on HT, Pr (or in our context equivalently, p) gives
rise to an informative belief set just in case Pr satisfies the following criterion:

∃ non-empty S ⊂ W : 0 < Pr(W \ S) < 1− θ
θ

·min
(
{pi : wi ∈ S}

)
. (H)

A proposition S satisfying H is called θ-stable (or simply stable, when θ is given) with respect
to Pr; if in addition Pr(S) < 1, it is called informatively (θ-)stable.

We will use the same values for the parameter θ in L and H. One justification for
this is that the considerations bearing on the specific value of the threshold, given in the
introduction, seem to pertain to the Lockean and the Humean threshold equally.7 Given
these identifications, it is easy to verify that H implies O, which in turn implies L, and
that the converse implications do not hold. To see that H implies O, suppose S ⊂ W
satisfies H and let p(1) be the probability assigned to a least probable world in W \ S. Then
p(1) < (1−θ)/θ ·min

(
{pi : wi ∈ S}

)
and so, because min

(
{pi : wi ∈ S}

)
6 max

(
{pi : wi ∈ W}

)
,

also p(1) < (1−θ)/θ ·max
(
{pi : wi ∈ W}

)
, thereby satisfying O. To see that O implies L, assume

a non-decreasing ordering of the pi ’s and suppose for reductio that there is a j < n such that
0 < pj < (1−θ)/θ ·pn but not pj < 1−θ. From this it follows that 1−θ < (1−θ)/θ ·pn, and thus
θ < pn. On the other hand, since 1−θ 6 pj and pj 6 1−pn (notice that j 6= n and the pi ’s sum
to 1), it follows that pn 6 θ, and we have a contradiction. That the converse implications do
not hold can be seen already for n = 3 and, for example, θ = .8 : the probability distribution
p = (1/9, 3/9, 5/9) satisfies O but not H, while the probability distribution p = (1/6, 2/6, 3/6)
satisfies L but not O.

To illustrate the above belief rules, we first note that vectors in the standard unit simplex
(or probability simplex) of dimensionality n−1 can be interpreted as probability distributions
on a set W of n possibilities, with the i-th vector component representing the probability
of the i-th possibility (de Finetti [1962]). Thus, in particular, a probability distribution on
W = {w1, w2, w3} can be represented by a point in the so-called unit 2-simplex, that is, the
two-dimensional simplex whose edges all have length 1. For any given combination of a belief
rule and a value of θ, we can then ask which regions in that simplex represent probability
distributions giving rise to informative belief sets. Figure 1 answers that question for all
three rules, assuming θ = .8 in each case.

Given that we are interested in measuring the degree to which LT, OR, and HT improve
upon the skeptical solution, by countenancing belief in propositions whose probability is less
than 1, all three rules can actually be simplified. This is because worlds with probability 0
can be ignored. To see why, note that given a probability distribution p = (p1, . . . , pn)
on W , if W ′ = {wi ∈ W : pi > 0} and |W ′| = m < n = |W |, then p represents a point in
the unit (m − 1)-simplex spanned by the worlds in W ′, which is a proper subspace of the
unit (n − 1)-simplex. The process of determining whether p gives rise to any non-certain

5See Leitgeb [2015, 152, 163; 2017, 76, 86–87]; notation adapted for uniformity of reading.
6Leitgeb points out that his formulation of the Humean thesis specifies sufficient and necessary conditions for

the rationality of a belief set, but does not define a unique rational belief set for a given probability function Pr.
Uniqueness is guaranteed, however, if the threshold value θ is given as well, and our formulation of HT fixes the
threshold.

7Here we follow Rott [2017] again. In forthcoming work, we discuss the identification of the Lockean and
Humean thresholds more extensively. Concerning the threshold value in O, see again note 4.
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Figure 1: Points in the big triangle (the unit 2-simplex) represent probability distributions on W =
{w1, w2, w3}. Assuming θ = .8, probability distributions giving rise to informative belief sets according
to each of LT, OR, and HT fall in the dark gray region; those that give rise to informative belief sets
according to LT and OR, but not according to HT, fall in the medium gray region; and those giving
rise to informative belief sets according to LT but not according to the other rules fall in the light
gray region. Probability distributions that do not give rise to informative belief sets on any rule fall in
the white region.

beliefs is then strictly to be carried out in that subspace. Suppose, for example, that an
agent is able to rule out with certainty all but three possible worlds. Then she believes with
certainty the proposition consisting of those three worlds. Whether she holds any beliefs
with non-certainty, according to one or the other belief rule, is now entirely a matter of
into which region of the unit 2-simplex spanned by the three remaining worlds the point
representing her probabilities falls.

Given a probability distribution p = (p1, p2, . . . , pn), let (p(1), p(2), . . . , p(n)) be an ordering
of the probabilities in p such that p(1) 6 p(2) 6 · · · 6 p(n). In view of the foregoing
observation, we can cut off from this ordering the probability 0 worlds and keep just the
vector (p(k), p(k+1), . . . , p(n)), where 1 6 k 6 n, p(i) = 0 for i = 1, . . . , k− 1, and p(i) > 0 for
i = k, . . . , n. This allows us to restate the criteria L, O, and H more simply as the following
conditions on probability distributions:

p(k) < 1− θ;
1− θ
θ

(L*)

p(k) <
1− θ
θ

· p(n); (O*)

∃ik6i<n : p(k) + · · · + p(i) <
1− θ
θ

· p(i+1).XXXXXXXXx (H*)

If and only if a probability distribution satisfies one of these conditions, then it gives rise to
an informative belief set according to the corresponding rule.

The question that Rott [2017] asked, and that we will ask again, is how likely it is, on
the above rules, to find a probability distribution that gives rise to an informative belief set.
Unsurprisingly, and as Rott also shows, the answer is going to depend both on the value of θ
and on the size of the support of the distribution (the number of possibilities with non-zero
probability). We understand this question to be asking how likely it is, given a support of
size n, that an arbitrarily chosen distribution p on this support gives rise to an informative
belief set, where p being arbitrary is construed as p being drawn randomly from a Dirichlet
distribution Dir(1), with 1 a vector of n 1s. To clarify: a Dirichlet distribution is a probability
distribution over probability distributions, or, as we shall say, a likelihood distribution over

5



Table 1: Likelihood of a probability distribution giving rise to an informative belief set for the belief
rules at issue and for various values of θ, for the cases of three and four worlds (from Rott [2017],
precisified).

θ

no. of worlds rule .6 .7 .8 .9 .95 .99

3 LT 1 .9900 .8400 .5100 .2775 .0591
OR .9643 .8552 .6667 .3876 .2088 .0443
HT .8460 .6374 .4053 .1819 .0837 .0154

4 LT 1 1 .9920 .7840 .4880 .1153
OR .9939 .9500 .8220 .5429 .3144 .0711
HT .8417 .6139 .3712 .1594 .0730 .0136

probability distributions. The intuitive way to think of a uniform such distribution is that all
points in the unit (n − 1)-simplex have the same likelihood of being drawn in a sampling
from that simplex. The uniformity assumption is justified to the extent that, a priori, it is no
more likely that a rational person’s probabilities are represented by a point in one particular
region of a simplex of the right dimension rather than by a point in a different region of that
simplex.

Rott [2017] answers the foregoing question for the cases of three and four worlds; the
results are given in Table 1. The likelihoods in the table are calculated by determining those
regions in the unit 2- and unit 3-simplex, respectively, which represent distributions that
satisfy the condition imposed by the given rule, for the various values of θ: the likelihoods
in the table correspond to the normalized Lebesgue measures of those regions (area relative
to total area in the three-world case, volume relative to total volume in the four-world case).8

However, once we go beyond the 3-simplex, the regions over which we must integrate to find
the likelihoods corresponding to those in Table 1 quickly become very complicated, and their
measures can no longer be analytically calculated. They can still be reliably approximated,
however.

While working on the development of nuclear weapons at Los Alamos Scientific Labora-
tory in the 1940s, the physicist Enrico Fermi and the mathematicians Nicholas Metropolis,
Stanisław Ulam, and John von Neumann invented the technique of Monte Carlo sampling,
primarily for investigating the properties of elementary particles, but realizing that the
technique could also be used for evaluating complicated and multidimensional integrals
(Metropolis and Ulam [1949]). Meanwhile, Monte Carlo integration has become popular in
many areas of science as a method of approximating the values of integrals that are difficult
or even impossible to work out analytically.

In this paper, the technique will be used to approximate the likelihood that an arbitrary
probability distribution gives rise to an informative belief set for models with many more
worlds than four. This is not to say that Monte Carlo integration will allow us to (approxi-
mately) obtain the said likelihood for any model, no matter how large: the technique comes
with a computational cost, which can become very steep. There is also the problem known
as “the curse of dimensionality” (Bellman [1957]), which in our case is the problem that as
the dimensionality of the simplexes grows, one has to increase the sample of probability
distributions (the points sampled from the simplex) in order to maintain numerical stability
of the integration, adding to the computational costs. Nevertheless, building on the technique

8If θ = .5, then, as one easily verifies, the likelihood of finding a probability distribution that gives rise to an
informative belief set equals 1 for each of LT, OR, and HT, however many worlds are considered. This does not
mean that every distribution gives rise to a such a belief set: for instance, the flat distribution does not.
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Figure 2: Three attempts to approximate the value of π , one by throwing 100 pebbles into a square
(left panel), one by throwing 500 pebbles into the square (middle panel), and one by throwing 1,000
pebbles into the square (right panel). Hits are shown in black, misses in gray.

of Monte Carlo integration, we will be able to obtain estimates for fairly large numbers of
worlds.

Because the technique will be so important in the following, and because not all readers
will be familiar with it, we give a brief explanation, by means of an example that is frequently
used to introduce Monte Carlo integration (see, e.g., Krauth [2006, Ch. 1]). Suppose we knew
that the area of a circle is given by πr2 but did not know the value of π . Here is how we
could estimate the latter: draw a 1× 1 square in the sand, draw the square’s incircle, and
start throwing pebbles into the square randomly (meaning that, for a pebble, any point in the
square is as likely to be its landing place as any other). Now count all pebbles that landed in
the circle (the hits) and divide their number by the total number of pebbles that were thrown
(hits plus misses). Given that r = 0.5 and so r2 = 0.25, we have to multiply the result by 4 to
obtain the desired estimate.

Figure 2 illustrates the idea, the panels showing, from left to right, the results of, respec-
tively, 100, 500, and 1,000 pebbles having been thrown into the square (in reality, this was
of course simulated by means of our computer’s built-in random number generator). Using
the aforementioned procedure, we find an approximate value of π of 3.28 in the first case,
of 3.21 in the second, and of 3.16 in the third. To obtain a still better estimate of π (≈ 3.14),
we must either find more pebbles to throw or repeat the foregoing procedure a number of
times and average the results.

In the following, we use essentially the same method to calculate the likelihoods of
obtaining informative belief sets, for each of LT, OR, and HT, and given various values for the
threshold. In each case this amounts to approximating the normalized Lebesgue measure of
certain regions in probability simplexes.

3. The Lockean belief rule. To show in some detail how Monte Carlo integration can help
to approximate the likelihood that an arbitrary probability distribution gives rise to an
informative belief set, assuming LT, and later also OR and HT, it is easiest to first consider
the cases of three and four possibilities, respectively, which can still be visualized. Just as we
did with the square and the circle above, we now throw pebbles into the unit 2-simplex, let
the computer check which of those lie in the region corresponding to satisfying condition L*
for a given value of θ (see again Figure 1), and color black those pebbles that do (the hits)
and gray those that do not (the misses). The left and middle panel of Figure 3 depict the
results for θ = .8 and θ = .9, respectively. We do the same for the unit 3-simplex. The
right panel gives an impression of the results for θ = .9 in that space. (Obviously, in this
case the pebbles-throwing metaphor no longer makes sense, as all pebbles would end up
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Figure 3: Left and middle panel showing hits (black) and misses (gray) among 10,000 probability
distributions randomly sampled from a uniform Dirichlet distribution on the unit 2-simplex, for
threshold values .8 and .9, respectively, with hits and misses defined according to LT. Right panel
showing two arbitrary slices of plot showing hits (in black) among 100,000 probability distributions
randomly sampled from a uniform Dirichlet distribution on the unit 3-simplex, assuming θ = .9. (It is
only by showing slices that one can give an impression of the hit and miss regions, and in particular
of the fact that much of the interior does not belong to the hit region; misses are not colored, to
further enhance visibility of the structure.)

lying on the bottom facet of the simplex.) The likelihoods for these cases are now simply
found by dividing the number of hits (an approximation of the Lebesgue measure of the
region in which the probability distributions satisfying L* are to be found) by the totality of
pebbles, that is, the sum of hits and misses (an approximation of the Lebesgue measure of
the simplex as a whole).

More generally, assume that we have n possibilities (which, recall, can all be taken to
have positive probability, for the reason mentioned above), where ∆n is the unit n-simplex,

Table 2: Likelihood of a distribution giving rise to an informative belief set for various values of θ,
determined via Monte Carlo integration, applying the Lockean thesis LT.

θ

no. of worlds .6 .7 .8 .9 .95 .99

3 1 .9902 .8401 .5102 .2773 .0593
4 1 1 .9920 .7845 .4874 .1152
5 1 1 1 .9376 .6843 .1860
6 1 1 1 .9899 .8313 .2659
7 1 1 1 .9993 .9241 .3536
8 1 1 1 1 .9721 .4418
9 1 1 1 1 .9916 .5303
10 1 1 1 1 .9980 .6124
12 1 1 1 1 1 .7542
14 1 1 1 1 1 .8592
16 1 1 1 1 1 .9269
18 1 1 1 1 1 .9658
20 1 1 1 1 1 .9855
25 1 1 1 1 1 .9990
30 1 1 1 1 1 1
50 1 1 1 1 1 1
100 1 1 1 1 1 1
250 1 1 1 1 1 1
500 1 1 1 1 1 1
1000 1 1 1 1 1 1
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and where Lnθ is the region in ∆n satisfying L* on the assumption that the threshold value
is θ. Then the above procedure helps to approximate the likelihood that a probability
distribution gives rise to an informative belief set, applying LT with threshold θ, via the
following approximate equation:∫

···
∫
Ln−1
θ

dV∫
···

∫
∆n−1 dV

≈ # of hits
# of hits + # of misses

. (AEQ)

As explained before, hits and misses refer to probability distributions p randomly drawn
from the Dir(1) distribution, with 1 being the vector of 1’s of length n, and with hits being
defined as the p with p ∈ Ln−1

θ and misses as the p with p 6∈ Ln−1
θ . As also explained, the

approximation is expected to be the better the more probability distributions we sample,
though obviously there is the issue of computational costs to be considered.

The algorithm for carrying out the Monte Carlo integration for LT was written in the Julia
Language (Bezanson et al. [2017]). Table 2 reports values for the various thresholds that
were obtained using this algorithm. Here, as well as in the Monte Carlo procedures carried
out for OR (see Section 4), computations were always based on a sampling of 1,000,000
probability distributions. Comparison of the values for the n = 3 and n = 4 cases with the
corresponding analytically determined values in Table 1 gives reason to believe that the
approximations are within reasonable bounds. We are reporting likelihoods for up to 1,000
worlds, but we could easily go on for a while, for the computational cost for LT turns out to
be quite low. However, given that the trend is so clear already from the shown outcomes,
there would be no point in continuing.

A still more compelling reason for not carrying the Monte Carlo method any further for
LT is that it can be seen quite simply that the likelihood of finding an informative belief
set, given LT with any admissible value of θ, is bound to be 1 for large enough models. For
observe that, whatever the exact value of θ, there will be a number n of doxastically possible
worlds such that 1/n < 1−θ, and given this or any larger number of worlds, there must be at
least one world with probability less than 1− θ.

4. The odds-threshold rule. To obtain the likelihoods of finding an informative belief set
when applying Lin and Kelly’s rule OR, we proceed in the same way as in the case of LT.
Specifically, we again use the approximate equation (AEQ), although now of course with the
integral in the numerator ranging over the region defined by the condition imposed by O*.
Figure 4 visualizes the results for ∆2 and ∆3.

The computational costs are higher than for calculating the likelihoods for LT—for OR,
the maximum of each sampled distribution has to be selected, and also has to be scaled—but
only slightly so, and here we went on to calculate likelihoods for cases all the way up to
25,000 possibilities. Table 3 only reports likelihoods for up to the case of 1,000 possibilities,
which suffices to make manifest the general pattern we found: the likelihoods quickly reach
the value of 1, for all threshold values, and then remain there. It may be noted that the
likelihoods do not go to 1 quite as fast as in the case of LT, but that is immaterial, given that,
even with 1,000 possibilities, we are still not anywhere near a realistic number of possibilities
(and the rationale behind the current endeavor is the idea that how the rules differ in toy
models is of little interest). Note, incidentally, that comparing the results for n = 3 and n = 4
with the corresponding likelihoods in Table 1 again shows that the Monte Carlo integration
yields excellent approximations.9

9We also ran simulations for a combination of the odds-threshold rule OR with a high-probability requirement
in the manner of Locke, or more precisely, for the rule that puts Bel =

{
A : Xθ ⊆ A

}
if Pr

(
Xθ
)
> θ, and Bel = {W}

otherwise. (Thanks to Gerhard Schurz for bringing up this idea.) This rule behaves oddly and is in general much
too skeptical. It is particularly skeptical for comparatively low values of θ. For such values, OR excludes so many
worlds from the set Xθ that Xθ mostly ends up having a rather low probability—one that does not surpass θ.
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Figure 4: Same results as shown in Figure 3, but now for OR. (For explanation, see the caption of
Figure 3.)

We had a quick way of seeing why, for large numbers of worlds, the likelihood of finding
an informative belief set when applying LT had to be 1 for all reasonable values of θ. To our
knowledge, no similarly easy argument is available in the case of OR. We can nevertheless
gain some understanding of why the likelihoods develop as suggested by the integration
results reported here, by using (i) information about the uniform Dirichlet distribution, which
we are assuming in all our Monte Carlo integrations; (ii) insights from order statistics; and
(iii) techniques for transforming probability distributions.

It is known that if p = (p1, . . . , pn) ∼ Dir(1), then pi ∼ Beta(1, n − 1), for all i, where
Beta(1, n− 1) is the beta distribution with parameters 1 and n− 1.10

Table 3: Likelihood of a distribution giving rise to an informative belief set for various values of θ,
determined via Monte Carlo integration, applying the odds-threshold rule OR.

θ

no. of worlds .6 .7 .8 .9 .95 .99

3 .9641 .8554 .6662 .3868 .2087 .0440
4 .9939 .9498 .8216 .5428 .3140 .0710
5 .9990 .9830 .9070 .6644 .4120 .0990
6 .9998 .9943 .9524 .7554 .4995 .1279
7 1 .9983 .9760 .8245 .5752 .1567
8 1 .9994 .9879 .8749 .6422 .1870
9 1 .9998 .9939 .9110 .7001 .2169
10 1 .9999 .9970 .9374 .7493 .2447
12 1 1 .9992 .9694 .8259 .3024
14 1 1 .9998 .9849 .8803 .3553
16 1 1 1 .9926 .9182 .4068
18 1 1 1 .9965 .9442 .4555
20 1 1 1 .9982 .9620 .4993
25 1 1 1 .9998 .9862 .5993
30 1 1 1 1 .9949 .6823
50 1 1 1 1 .9999 .8785
100 1 1 1 1 1 .9910
250 1 1 1 1 1 1
500 1 1 1 1 1 1
1000 1 1 1 1 1 1

10See Kotz, Balakrishnan, and Johnson [2000, Ch. 49] on Dirichlet distributions and Johnson, Kotz, and
Balakrishnan [1995, Ch. 25] on beta distributions. The formulas for the probability density function (pdf) and the
cumulative distribution function (cdf) of a Beta(1, n− 1) distribution are given in the Appendix; the details do
not matter here.
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n = 3 n = 5 n = 10

n = 25 n = 50 n = 100

Figure 5: For various values of n, plots of the joint pdfs of the minimum and the scaled maximum
of n independent and identically distributed random variables all following a beta distribution with
parameters 1 and n− 1. In gray, the part of the distributions lying in the region of the domain where
the minimum is smaller than the scaled maximum. (The scaling of the maximum is for θ = .8.)

Order statistics is the branch of statistics which studies the distributions of least elements,
second least elements, and so on, of statistical samples. Results in this area almost exclusively
concern samples of random variables that are independent and identically distributed (David
and Nagaraja [2003]). While in our case the random variables (the pi ’s) are identically
distributed—they all come from the same beta distribution, as said—they are obviously
not independent, given that they must sum to 1: if the values of n − 1 elements of p =
(p1, . . . , pn) ∼ Dir(1) are known, then so is the value of the remaining one. But we can still
approximate the distribution of the various order statistics—the minimum, the maximum,
their joint distribution, and so on—by assuming independence, given that the pi ’s are “quasi-
independent,” in that each pi is independent of the normalized vector of the pj ’s with j ≠ i.11

Intuitively, to be informed about the value of one element of p = (p1, . . . , pn) tells us near to
nothing about any of the remaining values if n is sufficiently large. Where X = (X1, . . . , Xn)
with the Xi independent and identically distributed with cumulative distribution function
(cdf) F(x) and probability density function (pdf) f (x), order statistics gives us the pdf of the
j-th order statistic X(j), for any j , and also the joint pdf of X(j) and X(k), for any j and k
(see Arnold, Balakrishnan, and Nagaraja [2008, 10] and also the Appendix). In particular, it
gives the joint distribution of the minimum, X(1), and maximum, X(n), of X.

Finally, given the joint pdf of the minimum and the maximum, we can find the transformed
joint distribution that scales the maximum by a given constant, using standard techniques
as for instance described in Rice [2007, Ch. 3.6].

With this machinery in place, the joint pdf of the two random variables that matter to
the evaluation of OR, to wit, the minimum of p = (p1, . . . , pn) ∼ Dir(1) and the maximum of

11In the statistical literature, this property of quasi-independence is commonly referred to as neutrality ; see
Connor and Mosimann [1969].
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that distribution scaled by rθ := (1−θ)/θ, can be calculated to be

n
rθ
· (n− 1)3

(
(1− x)n−1 −

(
1− y

rθ

)n−1 )n−2

(1− x)n−2
(

1− y
rθ

)n−2

.

Figure 5 plots the above as a function of x and y , for various values of n ranging from
3 to 100, and assuming θ = .8. From this figure, we immediately understand the pattern
observed in Table 3. In the plots, the probability mass lying on the region in which the
minimum is smaller than the scaled maximum is shown in gray. We see that, as n gets larger,
more and more of the probability mass gets shifted to that region. From n = 10 onwards,
basically no probability mass is to be found outside that region, corresponding to the fact
that when applying OR, the likelihood of finding an informative belief set is basically 1 for
n > 10, as can be seen in Table 3. One gets the same pattern for other values of θ.

5. The stability account. As we did for LT and OR, we use the approximate equation (AEQ)
and the technique of Monte Carlo integration to determine the likelihoods of finding an
informative belief set when applying HT. A visualization of the results for the three-world
and four-world cases is given in Figure 6. Computational costs are considerably higher than
in the cases of LT and OR. This does not come as a big surprise. In the case of LT, we
just have to check, for each distribution, whether its minimum is larger than 1 − θ. For
OR, there is a little more work to be done—scale the maximum, then compare the result
with the minimum—but that is still no impediment to obtaining Monte Carlo results for up
to thousands of possibilities. For HT, the situation is very different. Given a distribution
p = (p1, . . . , pn) with pi > 0 for all i, the fastest algorithm we can come up with to determine
whether p gives rise to an informative belief set in the sense of HT first checks whether
the smallest probability, p(1), is smaller than (1−θ)/θ · p(2), then whether the sum of p(1)
and p(2) is smaller than (1−θ)/θ · p(3), and so on. Naturally, once the algorithm finds that∑
i p(i) < (1−θ)/θ · p(i+1) for some i < n− 1, it can terminate. But, as will be seen, often there

is no such stopping point.
We can still calculate values for up to 1,000 worlds; see Table 4. For up to n = 50, values

are again based on a sampling of 1,000,000 probability distributions; in view of the curse of
dimensionality, values for n ∈ {100,250,500} are based on a sampling of 5,000,000 proba-
bility distributions, and for n = 1,000 even 10,000,000 distributions were used. Comparing
the results for the three-world and four-world cases with the analytical results for those
cases reported in Table 1 shows that here, too, we obtain excellent approximations. Even
with 1,000 worlds, we may be far removed from the number of worlds that, realistically
speaking, is required to represent people’s doxastic states. But at least we can discern a

Figure 6: Same as Figures 3 and 4 but now applying the Humean thesis HT. (For explanation, see the
caption of Figure 3.)
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Table 4: Likelihood of a distribution giving rise to an informative belief set for various values of θ,
determined via Monte Carlo integration, applying the Humean thesis HT.

θ

no. of worlds .6 .7 .8 .9 .95 .99

3 .8457 .6368 .4050 .1823 .0838 .0153
4 .8418 .6143 .3709 .1593 .0730 .0137
5 .8250 .5820 .3419 .1468 .0679 .0125
6 .8059 .5559 .3248 .1404 .0650 .0122
7 .7884 .5378 .3143 .1359 .0632 .0120
8 .7766 .5256 .3074 .1328 .0617 .0118
9 .7673 .5170 .3017 .1309 .0609 .0112
10 .7603 .5117 .2989 .1295 .0601 .0113
12 .7528 .5033 .2932 .1277 .0585 .0112
14 .7471 .4986 .2891 .1252 .0576 .0109
16 .7434 .4951 .2871 .1240 .0575 .0109
18 .7404 .4915 .2848 .1226 .0569 .0107
20 .7387 .4894 .2835 .1223 .0565 .0107
25 .7350 .4855 .2808 .1213 .0562 .0105
30 .7322 .4827 .2793 .1200 .0555 .0104
50 .7269 .4787 .2763 .1191 .0549 .0103
100 .7241 .4742 .2727 .1173 .0544 .0103
250 .7215 .4723 .2713 .1166 .0541 .0102
500 .7214 .4715 .2709 .1165 .0540 .0102
1000 .7207 .4711 .2707 .1164 .0538 .0102

(1−θ)/θ .6667 .4286 .2500 .1111 .0526 .0101

pattern now, and this may allow us to make a reliable guess as to what we can expect to
see when more worlds are taken into account. Most significantly, we see that, in contrast to
what was the case for LT and OR, the likelihoods are going down as more worlds are taken
into consideration.12 A pressing question then is whether they go down all the way to 0,
effectively making HT, at least when we leave the toy models behind, a skeptical proposal.

That this is not the case follows from the following

Theorem: Given HT with threshold θ, where p = (p1, . . . , pn) ∼ Dir(1) such that pi > 0 for
all i, (1−θ)/θ is an approximate lower bound on the likelihood that p gives rise to an informative
belief set.

A proof is given in the Appendix.
If (1−θ)/θ is an approximate lower bound on the likelihood of finding an informative belief

set, given HT with threshold θ, might it also be an approximate upper bound? The question
is justified in view of the fact that, as seen in Table 4, at least for the higher threshold values,
the likelihoods for n = 1,000 are already very close to (1−θ)/θ.

To investigate this question, we register, for various values of n, what percentage of
distributions that were “hits” qualify as such due to the smallest probability being smaller
than (1−θ)/θ times the second smallest probability—distributions with informatively stable
sets (i.e., propositions) of size n−1 —what percentage were due to the sum of the smallest and
second smallest probability being smaller than (1−θ)/θ times the third smallest probability—
distributions with informatively stable sets of size n−2 —and so on. It turns out that, once
the informatively stable sets of size n−1 have been taken into account, then the informatively
stable sets of size n−2 have only very little to add to the overall score, and once the

12This is not true for θ = .5, where the likelihood remains at 1, just as for LT and OR.
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Table 5: Percentage of contribution to overall score from distributions with informatively stable sets
of size n−1 / n−2 / n−3.

θ

no. of worlds .6 .7 .8 .9 .95 .99

10 91/7/2 89/9/2 91/8/1 94/5/1 97/3/0 99/1/0
25 92/6/2 90/8/2 92/7/1 96/4/0 98/2/0 99/1/0
50 92/6/2 91/8/1 92/7/1 95/4/1 98/2/0 99/1/0
100 92/6/2 91/8/1 93/7/0 95/4/1 98/2/0 99/1/0
250 91/7/2 91/8/1 92/7/1 96/4/0 98/2/0 99/1/0
500 93/6/1 91/8/1 92/7/1 95/4/1 97/2/1 99/1/0
1000 93/6/1 91/8/1 93/7/0 96/4/0 98/2/0 99/1/0

informatively stable sets of size n−1 and n−2 have been taken into account, the contribution
of the informatively stable sets of size n−i, for all i > 2, is negligible or even nil. We find this
result to hold across the various values of θ and to be virtually independent of the size of
the support of the distributions (see Table 5 for the exact outcomes). Precisely because the
percentages of contribution appear to hardly depend on the size of the support, a reasonable
estimate of an upper bound on the likelihood of finding an informative belief set given,
for instance, θ = .8 is (100/93)(.25) ≈ .2688, and for θ = .99, it is (100/99)(.0101) ≈ .0102;
similarly for the other values of θ.

Based on his results for the three-world and four-world cases, Rott [2017] already ventured
that the stability account leads to an unacceptable skepticism.13 We now see more exactly
how skeptical the resulting position is. Assuming θ = .9—an assumption that, as we pointed
out above, many find reasonable—the chance of finding an informative belief set is barely
above 10 percent.

It further follows from the above results that, for all practical purposes, the stability
account boils down to a condition on the three, at most four, least probable worlds, however
many worlds we are taking into account.14 Check whether the least probable world is at least
θ/(1−θ) times less probable than the second least probable world, and if not, check whether
the sum of the probabilities of the two least probable worlds is at least θ/(1−θ) times smaller
than the probability of the third least probable world. If both queries come back negative
and you are the fussy type, you may still want to check whether the sum of the probabilities
of the three least probable worlds is at least θ/(1−θ) times smaller than the probability of the
fourth least probable world. But then you are really done. It was mentioned at the outset
that, by focusing on toy models, we run the risk of missing some real-world complexity; in
the present case, focus on the toy models rather seems to have hidden simplicity.

Note that this finding has a silver lining. We saw that, computationally, it is much less
costly to determine whether L* or O* is satisfied than to determine whether H* is satisfied.
For L* and O*, we have to inspect only one world, or respectively two worlds. For H*, however,
we have to check whether there is some world that is θ/(1−θ) times more probable than all
less probable worlds taken together. This would seem to imply that we may have to check
many worlds and compare their probabilities with the sum of the probabilities of the less
probable worlds (which we would have to calculate each time); and for any realistic number
of worlds, that seems to be impossible for beings like us. As we saw, however, that is not
really necessary. The number of comparisons HT requires one to make is, in effect, hardly
greater than the number of comparisons the other two belief rules require.

13Makinson [2015] had already voiced a similar concern.
14Recall that we are ignoring probability 0 worlds, so that “least probable” means “least probable among the

worlds that receive positive probability.”
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It is worth comparing our results concerning the stability account with the recent results
of Schurz [2017]. Schurz maintains that “an ‘ideal match’ between qualitative and quantitative
belief systems . . . is possible only for very small belief systems over very coarse-grained
conceptual spaces.” This seems to be at odds with our finding that there are—however
few—stable belief systems of ever larger cardinality. A closer look reveals that the conflict is
apparent only. First, Schurz is primarily concerned with the Lockean thesis and conjunctive
closure (which in effect amounts to the Humean thesis for θ = .5), while we focus on the
more recent work of Leitgeb in which he advocates the Humean thesis with thresholds
between .5 and 1. Second, Schurz is interested in Lockean thresholds (for which there
are lower bounds), while we are interested in Humean thresholds (that do not have lower
bounds). These differences, however, are of minor relevance. The most important difference
between Schurz’s approach and the present one is a difference in perspective: Schurz takes
some Lockean threshold θ as given and then goes on to show that stability entails that the
number of “doxastic possibilities” must be low (below 1/1−θ). In contrast, we have studied
what happens when a (comparatively large) number n of possibilities in W is given. Table 5
makes clear that the informative stable sets of doxastic possibilities that exist have almost
as many elements (mostly n−1 elements, in fact). Thus, they satisfy what Schurz calls
“open-mindedness.” It is clear, however, that such sets have very high probabilities, and they
can only be marked off by very high Lockean thresholds. It hence transpires that Schurz’ and
our results confirm rather than contradict each other: one cannot have a reasonably high
number of possibilities and a reasonably low threshold value for belief at the same time.

Taking stock, we have seen that LT and OR improve greatly on the skeptical proposal that
nothing short of a probability of 1 suffices for belief, by raising very quickly the likelihood
of finding an informative belief set to essentially 1.15 In contrast, HT raises that likelihood
just slightly, from 0 to around 10 or maybe 20 percent (assuming one of the more common
values for θ). For instance, HT is about nine times more skeptical than either LT or OR if we
assume θ = .9, and even more than 99 times more skeptical if we assume θ = .99.

6. Anticipated objections. We have looked at how three belief rules fare with respect to their
ability to offer a non-skeptical account of the relationship between graded and categorical
beliefs. We saw that LT and OR do much better in this respect than does HT. Now we discuss
two possible objections that advocates of HT might want to level at our comparison.

6.1. The insistence on large numbers of worlds. Leitgeb, Lin and Kelly, and Rott use only
very small numbers of possible worlds in their examples. We argued that this was a serious
limitation, which hid from view the extent to which both LT and OR differ from HT in their
potential to avoid skepticism. But advocates of HT might try to argue that restricting the
discussion to a limited number of possible worlds—the kind of case for which the likelihoods
reported in Tables 2–4 are still relatively close—is actually justified.

Leitgeb [2014, 152–160; 2017, 33–41, 137–147] is in fact explicit that he views possible
worlds not as maximally specific worlds, but rather as cells in a partition of the space of
all possibilities, made according to the questions that one is interested in, or that one’s
attention is directed to, at a particular moment. Such partitions may change from one instant
to another, or more generally from one context to another. As Leitgeb puts it:

15It might be thought that a downside of LT and OR is that, by guaranteeing that there will be informative
belief sets, these rules effectively preclude radical agnosticism; and although perhaps not an attitude many have,
it would seem wrong to rule it out a priori. The thought is mistaken, however, since agnosticism is not really
ruled out. As mentioned in note 8, the flat probability distribution does not give rise to an informative belief set,
and its existence is consistent with the claim that the likelihood of having an informative belief set, when LT and
OR are applied, is essentially 1.
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The context must include or determine a partition of the underlying set of presumably
very fine-grained worlds into more or less coarse-grained partition cells that figure as
“pseudo-worlds” in the subsequent reasoning processes. ([2014, 159 f])

[I]n typical everyday contexts, we might reason relative to some contextually determined
partition of salient and sufficiently likely alternatives. Say, for some reason in some
context we are interested only whether the three propositions A, B, C are the case or not.
([2014, 133])

To model a situation in which we are interested in only three propositions, we need no more
than eight worlds. Leaving aside the fact that already for eight worlds HT is considerably
more skeptical than OR, let alone LT, it should be noted that if HT is to attain any level of
generality, then this argument succeeds as a justification of limiting the discussion to small
numbers of worlds only if we in general consider only small numbers of propositions—and
that is patently false.16

Independently, Leitgeb’s interpretation of “possible worlds” might be fine if all that
mattered to rational belief is what we are currently focusing on, or what is present in our
working memory. But there are arguably many things stored in our retentive memory that
are always relevant to what beliefs we can adopt. It would seem absurd to say that it is fine
for a person to believe things that are inconsistent with some of her firmly held beliefs, as
long as the latter are only in the back of her head, slumbering in retentive memory.

Hence, we reject the suggested interpretation because we believe that persons like to be
consistent across varying contexts. In fact, we would deem anyone spineless who tried to
excuse herself upon being caught to have contradicted what she asserted earlier merely by
pointing out that her contradictory statements were made in different contexts. Everybody
has some firmly held convictions that she takes to partly “define” her as a person, even though
these convictions will often not be in the front of her mind. It is necessary to distinguish
between a person’s explicit beliefs and her implicit beliefs, and any representation of a belief
state that leaves out implicit beliefs must be considered seriously incomplete.

In line with these intuitions, we prefer to conceive of belief-sets-cum-probabilities as
holistic representations of fully-fledged belief states which change only as a result of some
sort of doxastic revision. Of course, one’s receiving new evidence may well be a perfect
reason for contradicting a statement made on a previous occasion. While clearly subject to
motivated changes, belief states—of which probabilities are parts—should be conceived as
anchored in long-term memory and thus as less ephemeral entities than those envisioned
by Leitgeb. Belief states are not only concerned with the specific question that a reasoner
happens to be interested in at a particular point of time or in a particular context; this would
make belief states blow with the wind.

6.2. The Lottery Paradox and other dimensions of comparison. Our main focus in this paper
has been the question of skepticism, specifically, of how LT, OR, and HT improve upon the
skeptical probability 1 requirement on categorical belief. Arguably, however, skepticism
is not the only dimension along which LT, OR, and HT are to be assessed. It was already
mentioned in the introduction that, in contrast to OR and HT, LT clashes with the thought that
our beliefs ought to be closed under logical derivability. That may constitute an important
reason for preferring OR and HT over LT.

The failure of LT to respect closure is usually brought into relief by means of Kyburg’s
[1961] Lottery Paradox. For any admissible threshold value θ, we can think of a fair lottery so

16If this needs an argument, consider a real example: Hessler et al. [2016] tried to predict dementia risk on the
basis of six factors (including smoking and physical activity), where each factor had three levels (ideal/moderate/
poor). To represent semantically all combinations of factor levels that might be associated with an increased risk
of dementia, together with the two levels of the dependent variable (dementia/no dementia), takes 2×36 = 1,458
possible worlds. And six predictors is an extremely modest number in the age of Big Data (Efron and Hastie
[2016]).
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large that, for every ticket in the lottery, the probability that it will lose exceeds θ. Applying
LT, we would thereby believe of each ticket that it will lose, and that is so even if at the same
time we know that the lottery will have a winner.

It merits emphasis that it is not generally agreed that the Lottery Paradox dooms LT.
Kyburg and others were prepared to abandon the closure of belief under logical derivability.17

On the other hand, it is fair to say that nowadays a majority of philosophers reject this
solution to the paradox. Many of them have tried to solve the paradox by attaching some sort
of disclaimer to LT meant to prevent so-called lottery propositions—propositions stating
that a given ticket in a fair and large enough lottery will lose—from qualifying as rationally
believable (e.g., Pollock [1990], Ryan [1996], Nelkin [2000], Douven [2002]), but so far such
attempts have been largely unsuccessful (Douven and Williamson [2006]). Lin and Kelly as
well as Leitgeb propose to solve the Lottery Paradox in a different manner. We already saw
that in Leitgeb’s theory, context plays a key role, and the same is true for Lin and Kelly’s
theory (see Lin and Kelly [2012a, 567–572]). Their contextualism allows these authors to
circumvent the Lottery Paradox by holding that, in some contexts, one can rationally believe
of a given ticket that it will lose, while in others, one cannot believe so—all depending on
which space of propositions one attends to.

Above, we expressed our concerns about the contextualism that Leitgeb endorses, and
these concerns extend to Lin and Kelly’s similar proposal. Nonetheless, it might be that
contextualism is the price we must pay for solving the Lottery Paradox while maintaining
logical closure. If so, it is to be noted that with OR we get much better value for our money
than with HT, given that the latter is only slightly less skeptical than the probability 1
requirement, which blocks the Lottery Paradox at no extra cost at all.

Advocates of HT might respond that, in contrast to OR, (i) HT solves the Preface Paradox
(Makinson [1965]), and (ii) it satisfies the monotonicity principle stating that if a proposition A
is believed and another proposition B is at least as probable as A, then B is believed as well
(Leitgeb [2017, 120]). As to (i), while OR does not solve the Preface Paradox on its own, there
are many solutions to that paradox on the market which Lin and Kelly could appropriate.18

As to (ii), many may regard the monotonicity principle as a bug of the stability account rather
than a selling point. That will be true of all those who have responded to the Lottery Paradox
by adding a disclaimer to LT. For example, Nelkin [2000] argues that lottery propositions are
special in that the support we have for them is of an exclusively statistical nature and that
therefore they cannot be rationally believed.19 This is so even if the relevant lottery is so
large that the lottery propositions it gives rise to are more probable than any contingent
non-lottery proposition we happen to believe.

7. Conclusion. We have looked at three proposals for how to conceive of the connection
between (categorical) beliefs and probabilities, focusing on how well they do with respect to
avoiding the kind of skepticism associated with the most straightforward connection, which
makes probability 1 a requirement for belief. We compared two recent proposals with one
another and also with the older Lockean thesis, which uses high but non-maximal probability
as a criterion for belief. This was a continuation of work begun in Rott [2017], which however
compared the accounts in the context of toy models of rational belief featuring only three or
four possible worlds. We have argued that this is not sufficient for saying with any confidence

17See, e.g., Klein [1985], Foley [1992a], Christensen [2004], and Kroedel [2012].
18For instance, Kaplan [1995], Douven and Uffink [2003], Cevolani and Schurz [2017], and Kim and Vasudevan

[2017, Sect. 5]. D’Alfonso [to appear] shows how Cevolani and Schurz’s solution to the Preface Paradox can be
extended to obtain a solution to the Lottery Paradox.

19See Douven [2003] for critical discussion of Nelkin’s argument, which however does not invalidate the intuition
that evidence of a strictly statistical nature is insufficient to warrant belief.
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how we may expect the accounts to fare in more realistic settings, when many more possible
worlds are taken into consideration.

We showed that the two new accounts, which might easily look like minor variants of
one another, in fact differ quite dramatically. Specifically, it has turned out that Lin and
Kelly’s account improves greatly over the skepticism of the probability 1 requirement, and
the same is true of the more traditional Lockean thesis. Depending on whether one thinks
context-sensitivity (manifest as partition-sensitivity) is a price worth paying for the logical
closure of categorical beliefs, one may then prefer one or the other. The prospects for
Leitgeb’s stability account were seen to be bleaker. Supposing the threshold for belief is
considerably higher than .5—as many have argued it should be—the chances that an agent
believes categorically any proposition beyond those that she believes with probability 1
are disappointingly low. Those chances are not nil, but it is doubtful whether the small
improvement over the skeptical account outweighs the greater complexity of the stability
account, or the contextualism that comes with it.20

Appendix

In this appendix, we prove the theorem, stated in Section 5, about the likelihood of finding
an informative belief set having (1−θ)/θ as an approximate lower bound, applying HT with
threshold θ. The proof uses insights from order statistics, which also surfaced in Section 4.
As mentioned there, virtually all results from order statistics concern independent and
identically distributed samples of random variables. We could still make use of order
statistics in that section, given that, while p = (p1, . . . , pn) ∼ Dir(1) is not exactly modeled
by p∗ = (p∗1 , . . . , p∗n ) with p∗i ∼ Beta(1, n − 1), the latter can still be regarded as offering
a good approximation of the former. Importantly for the proof to come, however, in the
limit of n going to infinity, p∗ = (p∗1 , . . . , p∗n ) with p∗i ∼ Beta(1, n − 1) does exactly model
p = (p1, . . . , pn) ∼ Dir(1).

To see this, note that the only difference between p and p∗, given finite n, is that the former
adds up to 1 while the latter does not necessarily do so. But in the limit this difference does
not exist. Where X1, . . . , Xn are drawn from a random variable with mean µX and standard
deviation σX , it follows by the Central Limit Theorem that

∑n
i=1Xi ∼N (n · µX ,

√
n · σX) as

n goes to infinity. For X ∼ Beta(1, n− 1), it is known that

µX =
1
n

and σX =
√

n− 1
n2(n+ 1)

.

Hence, where pi ∼ Beta(1, n− 1), we have that, for n →∞,

n∑
i=1

pi ∼ N

n · 1
n
,
√
n ·

√
n− 1

n2(n+ 1)

 =

Because

lim
n→∞

√ n− 1
n(n+ 1)

 = 0,

we find that in the limit of n going to infinity, p∗ does sum to 1, just like p does.

20We are grateful to Patricia Mirabile, Gerhard Schurz, Stefan Solbrig, Christopher von Bülow, Sylvia Wenmackers,
and three referees of this journal for valuable comments on previous versions of this paper. We also thank
audiences at the University of Leuven and TU Dortmund for stimulating questions and comments.
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In preparation for the proof, we record the following further facts: First, where X is a random
variable with pdf f (x) and cdf F(x), and where X = (X1, . . . , Xn) is any random sample from
any distribution of X, X(i) denotes the i-th order statistic of X, that is, the i-th smallest value
of X. Given i < j , the joint pdf for X(i) and X(j) is

fi,j(x, y) =
n!

(i−1)!(j−i−1)!(n−j)! F(x)
i−1(F(y)− F(x))j−i−1(

1− F(y)
)n−jf (x)f (y), (1)

with x, y ∈ R and x < y (Arnold, Balakrishnan, and Nagaraja [2008, 16]). Second, supposing
X ∼ Beta(1, n− 1) and noting that B(1, n− 1) = 1/(n−1), we get that

f (x) = (1− x)n−2

B(1, n− 1)
= (n− 1)(1− x)n−2 and F(x) = 1− (1− x)n−1. (2)

Finally, for convenience of notation, we define rθ := (1−θ)/θ. We are now ready to prove

Theorem: Given HT with threshold θ, where p = (p1, . . . , pn) ∼ Dir(1) such that pi > 0 for
all i, rθ is an approximate lower bound on the likelihood that p gives rise to an informative
belief set.

Proof: The proof is in two parts. First we show that, applying HT with threshold θ, the
likelihood of finding an informative belief set converges to a limit that is greater than or
equal to rθ , and then we show that this convergence is at least approximately monotonic.

1. Given H*, the likelihood that p gives rise to an informative belief set is at least as great as
the likelihood that p(1) < rθ · p(2). We prove that the latter likelihood goes to rθ as n →∞.
From (1) we derive that, for any given random variable X, the joint pdf of the two smallest
order statistics, X(1) and X(2), is given by

f1,2(x, y) =
n!

(n− 2)!
f (x)f (y)

(
1− F(y)

)n−2. (3)

Given that pi ∼ Beta(1, n− 1), we further derive from (2) that the joint pdf of p(1) and p(2) is

g1,2(x, y) = n(n− 1)3(1− x)n−2(1− y)n2−2n. (4)

We want to determine the likelihood that p(1) < rθ · p(2), so instead of (4) we must consider
the following transformed joint pdf of the two smallest order statistics, where the second
order statistic is scaled by rθ (see Rice [2007, Ch. 3.6] on how to work out the transformation):

h(x, y) = n
rθ
(n− 1)3 (1− x)n−2

(
1− y

rθ

)n2−2n
,

where now y ∈ (0, rθ). To determine the likelihood we are after, we must integrate h
over the region of the domain of integration where x < y , which is the region defined by{
(x, y) : 0 6 x < y < rθ

}
. To facilitate the integration, we first pull out

n
rθ
(n− 1)3, (5)

which is a constant as far as the integration is concerned. Then we evaluate

∫ rθ
0

∫ rθ
x
(1− x)n−2

(
1− y

rθ

)n2−2n
dy dx . (6)
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Using substitution, we find that

∫
(1− x)n−2

(
1− y

rθ

)n2−2n
dy = −

rθ(1− x)n−2
(
1− y

rθ

)(n−1)2

(1− n)2 .

The resulting expression vanishes for y = rθ , so the inner integral in (6) evaluates to

rθ(1− x)n−2
(
1− x

rθ

)(n−1)2

(1− n)2 .

This expression has a power series representation, which is known in virtue of a result due
to Euler (Andrews, Askey, and Roy [1999, Thm. 2.2.1]). After first pulling out the constant

rθ
(1− n)2 , (7)

we leave the exact calculation to Mathematica, which yields

∫ rθ
0
(1− x)n−2

(
1− x

rθ

)(n−1)2

dx = rθ
(

2F1(1,2− n;n2 − 2n+ 3; rθ)
)

n2 − 2n+ 2
,

where 2F1 is the Gaussian hypergeometric function, which is defined as

2F1(a, b; c;z) :=
∞∑
n=0

(a)n(b)n
(c)n

zn

n!
,

with (s)n =
∏n−1
k=0(s + k) for n > 0 and (s)n = 1 for n = 0. The product of the constants

(5) and (7) that were pulled out in previous steps simplifies to n2 − n. Thus, where n is the
number of worlds, the likelihood that the least probable world has a probability less than rθ
times the probability of the second least probable world is given by the following expression:

rθ(n2 − n)
(

2F1(1,2− n;n2 − 2n+ 3; rθ)
)

n2 − 2n+ 2
. (8)

Our goal is to show that this expression approaches rθ as n gets larger and larger. We first
observe that the limit we want to determine can be written as

rθ lim
n→∞

(
n2 − n

n2 − 2n+ 2

)
lim
n→∞

(
2F1(1,2− n;n2 − 2n+ 3; rθ)

)
.

It is easily seen that

lim
n→∞

(
n2 − n

n2 − 2n+ 2

)
= 1.

As for the limit of the remaining expression, note that the beginning of the series expansion
of 2F1(1,2− n;n2 − 2n+ 3; rθ) looks as follows:

1 − (n− 2)rθ
n2 − 2n+ 3

+ (n− 2)(n− 3)rθ2

(n2 − 2n+ 3)(n2 − 2n+ 4)
−

(n− 2)(n− 3)(n− 4)rθ3

(n2 − 2n+ 3)(n2 − 2n+ 4)(n2 − 2n+ 5)
+ (n− 2) · · · (n− 5)rθ4

(n2 − 2n+ 3) · · · (n2 − 2n+ 6)
− · · ·

The limits of the i-th fraction appearing in this series have the schematic form

rθi · lim
n→∞

( ∏i
k=1(n− k− 1)∏i

k=1(n2 − 2n+ k+ 2)

)
.
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To see that this expression evaluates to 0, note that, first, (n−k−1) < n and n2−2n+k+2 >
n2 − 2n and thus( ∏i

k=1(n− k− 1)∏i
k=1(n2 − 2n+ k+ 2)

)
<

(
n

n2 − 2n

)i
=

(
1

n− 2

)i
,

and second, (1/n−2)i goes to 0 as n goes to infinity. As a result, the limit of 2F1(1,2− n;n2 −
2n+ 3; rθ) as n →∞ equals 1, and so

rθ lim
n→∞

(
n2 − n

n2 − 2n+ 2

)
lim
n→∞

(
2F1(1,2− n;n2 − 2n+ 3; rθ)

)
= rθ · 1 · 1 = rθ.

This means that, as more and more worlds are considered, the likelihood that the least
probable world is smaller than rθ times the probability of the second least probable world
goes to rθ .

2. The result established so far is consistent with the likelihood of finding an informative
belief set, given HT with threshold θ, dipping below rθ for specific values of n. To show
that rθ is a lower bound on that likelihood, it must be shown that (8) is monotonically
decreasing. A standard approach here would be to show that its first derivative is always
negative, or else to show that the ratio of successive terms is never greater than 1. But
taking the derivative with respect to n involves taking partial derivatives of the second and
third parameter of the hypergeometric function in the numerator of (8), and while in recent
years progress has been made on differentiating the hypergeometric function (Ancarani
and Gasaneo [2009]) and Mathematica can even find the first derivative of (8), the resulting
expression is so complicated that we are unable to determine its sign. (Of course we can
determine its sign for any particular combination of values for n and rθ , but that is not giving
us a proof.) For the ratio test, basically the same problem arises. Thus, rather than showing
that (8) is monotonically decreasing, we show that a function closely approximating (8) is
monotonically decreasing—which is why we are only able to claim that rθ is an approximate
lower bound on the likelihood of finding an informative belief set.

First note that (8) can be given the following series representation:

(n2 − n)rθ
n2 − 2n+ 2

− (n− 2)(n2 − n)rθ2

(n2 − 2n+ 2)(n2 − 2n+ 3)
+

(n− 3)(n− 2)(n2 − n)rθ3

(n2 − 2n+ 2)(n2 − 2n+ 3)(n2 − 2n+ 4)
−

(n− 4)(n− 3)(n− 2)(n2 − n)rθ4

(n2 − 2n+ 2)(n2 − 2n+ 3)(n2 − 2n+ 4)(n2 − 2n+ 5)
+ · · · (9)

This is an alternating series, and one readily verifies that it satisfies the conditions of the
Alternating Series Estimation Theorem (see, e.g., Stewart [2012, 754]). From this theorem it
follows that the bound on the truncation error of the partial sum of the first k terms of (9) is
given by the (k+ 1)-st term. In particular, if we add up only the first two terms of (9), then
the bound on the truncation error is given by this expression:

(n− 3)(n− 2)(n2 − n)rθ3

(n2 − 2n+ 2)(n2 − 2n+ 3)(n2 − 2n+ 4)
.

As n goes to infinity, this expression goes to 0, but already for n > 1000 the truncation
error is essentially 0, for any of the values of θ considered in the paper. (Notice that we
are interested in large values of n; for n up to 1000, we already know, from the numerical
integration results, that (8) is monotonically decreasing, for all values of θ.) Hence, the
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function

fθ(n) := (n2 − n)rθ
n2 − 2n+ 2

− (n− 2)(n2 − n)rθ2

(n2 − 2n+ 2)(n2 − 2n+ 3)
(10)

closely approximates (8) for large n and for all relevant values of θ.

To show that fθ is monotonically decreasing for those values of θ, we show that fθ(n− 1)−
fθ(n) > 0, for all n. Writing out fθ(n− 1)− fθ(n), we get(

(n2 − n)rθ
n2 − 2n+ 2

− (n− 2)(n2 − n)rθ2

(n2 − 2n+ 2)(n2 − 2n+ 3)

)
−
(
(n2 + n)r
n2 + 1

− (n− 1)(n2 + n)rθ2

(n2 + 1)(n2 + 2)

)
, (11)

which after some algebraic manipulation reduces to

nrθ
(
n5(1− rθ)+ n4(3rθ − 5)+ n3(3rθ + 11)− n2(11rθ + 19)+ 2n(8rθ + 9)− 2(5rθ + 9)

)
(n2 + 1) (n2 + 2) (n2 − 2n+ 2) (n2 − 2n+ 3)

.

Note that the denominator is positive for all relevant values of n, so the sign of the expression
as a whole depends on the sign of the numerator. Expanding all the terms in the numerator
yields

n6rθ − n6rθ2 + 3n5rθ2 − 5n5rθ + 3n4rθ2 + 11n4rθ − 11n3rθ2−
19n3rθ + 16n2rθ2 + 18n2r − 10nrθ2 − 18nrθ.

To show that this expression is greater than 0 for all relevant values of rθ , we set it equal
to 0 and solve for rθ in terms of n:

n6rθ − n6rθ2 + 3n5rθ2 − 5n5rθ + 3n4rθ2 + 11n4rθ − 11n3rθ2−
19n3rθ + 16n2rθ2 + 18n2r − 10nrθ2 − 18nrθ = 0

if and only if (dividing by nrθ and rearranging terms)

n5 − 5n4 + 11n3 − 19n2 + 18n− 18 = n5rθ − 3n4rθ − 3n3rθ + 11n2rθ − 16nrθ + 10rθ

if and only if (pulling out rθ from the right-hand side and dividing the left-hand side by the
remaining factor)

rθ = n5 − 5n4 + 11n3 − 19n2 + 18n− 18
n5 − 3n4 − 3n3 + 11n2 − 16n+ 10

. (12)

We now find that (11) is smaller than 0 precisely if rθ is greater than the right-hand side
of (12). Already for n = 1000, the right-hand side equals .998, and rθ > .998 corresponds
to θ < .500498. Hence, assuming any of the thresholds considered in this paper, fθ(n− 1) >
fθ(n) for all n > 1000. (As stated earlier, for values of n up to 1000 we already know that
(8) is monotonically decreasing.) And given that, for any relevant θ, the function fθ closely
approximates (8), it follows that the latter is approximately monotonically decreasing as
well.

Combining this with the result from the first part of the proof yields the conclusion that rθ
is an approximate lower bound on the likelihood of finding an informative belief set, given
HT with threshold θ. �
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