2,899 research outputs found

    Exponential Krylov time integration for modeling multi-frequency optical response with monochromatic sources

    Get PDF
    Light incident on a layer of scattering material such as a piece of sugar or white paper forms a characteristic speckle pattern in transmission and reflection. The information hidden in the correlations of the speckle pattern with varying frequency, polarization and angle of the incident light can be exploited for applications such as biomedical imaging and high-resolution microscopy. Conventional computational models for multi-frequency optical response involve multiple solution runs of Maxwell's equations with monochromatic sources. Exponential Krylov subspace time solvers are promising candidates for improving efficiency of such models, as single monochromatic solution can be reused for the other frequencies without performing full time-domain computations at each frequency. However, we show that the straightforward implementation appears to have serious limitations. We further propose alternative ways for efficient solution through Krylov subspace methods. Our methods are based on two different splittings of the unknown solution into different parts, each of which can be computed efficiently. Experiments demonstrate a significant gain in computation time with respect to the standard solvers.Comment: 22 pages, 4 figure

    Causality and dispersion relations and the role of the S-matrix in the ongoing research

    Full text link
    The adaptation of the Kramers-Kronig dispersion relations to the causal localization structure of QFT led to an important project in particle physics, the only one with a successful closure. The same cannot be said about the subsequent attempts to formulate particle physics as a pure S-matrix project. The feasibility of a pure S-matrix approach are critically analyzed and their serious shortcomings are highlighted. Whereas the conceptual/mathematical demands of renormalized perturbation theory are modest and misunderstandings could easily be corrected, the correct understanding about the origin of the crossing property requires the use of the mathematical theory of modular localization and its relation to the thermal KMS condition. These new concepts, which combine localization, vacuum polarization and thermal properties under the roof of modular theory, will be explained and their potential use in a new constructive (nonperturbative) approach to QFT will be indicated. The S-matrix still plays a predominant role but, different from Heisenberg's and Mandelstam's proposals, the new project is not a pure S-matrix approach. The S-matrix plays a new role as a "relative modular invariant"..Comment: 47 pages expansion of arguments and addition of references, corrections of misprints and bad formulation

    Shot noise in non-adiabatically driven nanoscale conductors

    Full text link
    We investigate the noise properties of pump currents through molecular wires and coupled quantum dots. As a model we employ a two level system that is connected to electron reservoirs and is non-adiabatically driven. Concerning the electron-electron interaction, we focus on two limits: non-interacting electrons and strong Coulomb repulsion. While the former case is treated within a Floquet scattering formalism, we derive for the latter case a master equation formalism for the computation of the current and the zero-frequency noise. For a pump operated close to internal resonances, the differences between the non-interacting and the strongly interacting limit turn out to be surprisingly small.Comment: 17 pages, 2 figure

    Thermoelectric efficiency has three Degrees of Freedom

    Full text link
    Thermal energy can be directly converted to electrical energy as a result of thermoelectric effects. Because this conversion realises clean energy technology, such as waste heat recovery and energy harvesting, substantial efforts have been made to search for thermoelectric materials. Under the belief that the material figure of merit zTzT represents the energy conversion efficiencies of thermoelectric devices, various high peak-zTzT materials have been explored for half a century. However, thermoelectric properties vary greatly with temperature TT, so the single value zTzT does not represent device efficiency accurately. Here we show that the efficiency of thermoelectric conversion is completely determined by \emph{three} parameters ZgenZ_{\mathrm{gen}}, τ\tau, and β\beta, which we call the \emph{thermoelectric degrees of freedom}. The ZgenZ_{\mathrm{gen}}, which is an average of material properties, is a generalisation of the traditional figure of merit. The τ\tau and β\beta, which reflect the gradients of the material properties, are proportional to escaped heat caused by the Thomson effect and asymmetric Joule heat, respectively. Our finding proposes new directions for achieving high thermoelectric efficiency; increasing one of the thermoelectric degrees of freedom results in higher efficiency. For example, thermoelectric efficiency can be enhanced up to 176\% by tuning the thermoelectric degrees of freedom in segmented legs, compared to the best efficiency of single-material legs.Comment: main articles with 9 pages, 4 figures, supplementary information with 35 pages, 9 figures, 6 table

    Full Counting Statistics and Field Theory

    Full text link
    We review the relations between the full counting statistics and the field theory of electric circuits. We demonstrate that for large conductances the counting statistics is determined by non-trivial saddle-point of the field. Coulomb effects in this limit are presented as quantum corrections that can stongly renormalize the action at low energies.Comment: microreview, 15 pages, accepted to Ann. Phys. (Leipzig

    Effect of resonant magnetic perturbations on low collisionality discharges in MAST and a comparison with ASDEX Upgrade

    Get PDF
    Sustained ELM mitigation has been achieved on MAST and AUG using RMPs with a range of toroidal mode numbers over a wide region of low to medium collisionality discharges. The ELM energy loss and peak heat loads at the divertor targets have been reduced. The ELM mitigation phase is typically associated with a drop in plasma density and overall stored energy. In one particular scenario on MAST, by carefully adjusting the fuelling it has been possible to counteract the drop in density and to produce plasmas with mitigated ELMs, reduced peak divertor heat flux and with minimal degradation in pedestal height and confined energy. While the applied resonant magnetic perturbation field can be a good indicator for the onset of ELM mitigation on MAST and AUG there are some cases where this is not the case and which clearly emphasise the need to take into account the plasma response to the applied perturbations. The plasma response calculations show that the increase in ELM frequency is correlated with the size of the edge peeling-tearing like response of the plasma and the distortions of the plasma boundary in the X-point region.Comment: 31 pages, 28 figures. This is an author-created, un-copyedited version of an article submitted for publication in Nuclear Fusion. IoP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from i
    • …
    corecore