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a b s t r a c t

Light incident on a layer of scatteringmaterial such as a piece of sugar orwhite paper forms
a characteristic speckle pattern in transmission and reflection. The information hidden in
the correlations of the speckle pattern with varying frequency, polarization and angle of
the incident light can be exploited for applications such as biomedical imaging and high-
resolution microscopy. Conventional computational models for multi-frequency optical
response involve multiple solution runs of Maxwell’s equations with monochromatic
sources. Exponential Krylov subspace time solvers are promising candidates for improving
efficiency of suchmodels, as singlemonochromatic solution can be reused for the other fre-
quencies without performing full time-domain computations at each frequency. However,
we show that the straightforward implementation appears to have serious limitations. We
further propose alternative ways for efficient solution through Krylov subspace methods.
Our methods are based on two different splittings of the unknown solution into different
parts, each of which can be computed efficiently. Experiments demonstrate a significant
gain in computation time with respect to the standard solvers.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Modeling of light propagation is an important and ever-growing research area [1,2]. Understanding the propagation of
light in a scattering medium has widespread applications such as real-time medical imaging, spectrometry, and quantum
security [3–7]. A complex scattering medium comprises of a regular or an irregular spatial arrangement of inhomogeneities
in refractive index. While the former are complex fabricated structures known as photonic crystals, we experience the latter
in common materials such as skin, sugar, and white paint. Light propagating through a layer of such random scattering
media undergoes multiple scattering off the inhomogeneities resulting in a complex interference pattern, called the speckle
pattern [8]. The seemingly random speckle patterns possess rich correlations which depend on parameters such as the
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frequency, angle of incidence and spectral content of the propagating light [9–12]. These correlations help in revealing
fundamental light transport properties of the medium which are instrumental for different applications.

An importantmodeling approach to analyze frequency correlations of speckle pattern is through the so-called broadband
pulse excitation (BPE). Mathematically, thismodeling approach solves the time-dependentMaxwell equationswith a source
function (representing the incident light) taken as a short Gaussian pulse in time. The frequency bandwidth of the pulse is
inversely related to the temporal width of the pulse, therefore shorter the pulse, broader the frequency bandwidth. The
speckle patterns at different frequencies can then be obtained by taking a Fourier-transform of the optical response (which
is the resulting electromagnetic field after time T of computation when the incident pulse has decayed). A drawback of
the BPE approach is that the accuracy of the results is subject to the time-window of computation, which is necessarily
short for broadband light. The separation of single frequency response from the total response will be compromised by the
frequency resolution of Fourier-transformed fields. In fact, the BPE can be seen a compromise between accuracy (increasing
if the frequency bandwidth gets narrower) and efficiency (increasing if the frequency bandwidth gets broader). To avoid this
potential loss in accuracy in BPE simulations or to verify the BPE results, time-domain computations with pulses of a single
frequency have to be carried out.

This paper explores a way to utilize the single frequency time-domain computations for efficiently computing the multi-
frequency response with the help of the Krylov subspace exponential time integration. These methods are based on a
projection (onto the Krylov subspace) which is carried out independently of the frequency in the source term. Hence, the
same projection is used to obtain a small-dimensional projected problem for optical response at a different frequency.
Therefore, the Krylov subspace methods should be computationally more efficient in comparison to multiple single
frequency computations. Moreover, the projection methods achieve the computational efficiency without compromising
the accuracy unlike BPE.

Exponential time integration has received much attention in the recent decades. These methods involve actions of
the matrix functions, such as matrix exponential and matrix cosine. The efficiency of the methods depends on their
implementation. For large matrices, methods to compute matrix function actions on a vector include Krylov subspace
methods (based on Lanczos or Arnoldi processes), Chebyshev polynomials (primarily for Hermitian matrices), and scaling
and squaring with Padé or Taylor approximations and some other methods [13–17]. In this paper we use Krylov subspace
methods for computing the matrix exponential actions on vectors; these methods are suitable for non-Hermitian matrices,
have been significantly improved recently [18–21] and successfully applied to solving time-dependent Maxwell and wave
equations [22–25].

Wediscuss implementation of our Krylov subspace exponential integrationmethod in detail in Section 3.2. Unfortunately,
this approach appears to have its limitations. To circumvent the limitations, we also design other solution strategies with
the Krylov subspace exponential time integration. A key idea which leads to a very competitive method is to utilize the time
asymptotic behavior of the solution in the Krylov subspace framework. Another approach we develop is based on a splitting
of the problem into a number of easier to solve homogeneous problems and nonhomogeneous problems which appear to
be identical due to the periodicity of the source term.

The rest of this article is organized as follows. A precise formulation of the problem is discussed in Section 2. The existing
and proposed solutionmethods are presented in Section 3.We discuss numerical experiments in Section 4,which is followed
by conclusions.

2. Problem formulation and current solution methods

2.1. Modeling multi-frequency optical response in scattering medium

We consider the scattering material to compose of infinitely long cylinders of radius r which are randomly spaced with
the minimum distance d = 2r . The symmetry of the scattering medium along z-axis (i.e., along the longitudinal axis of
the cylinders) can be used to solve a two-dimensional computational model. The scattering material extends from x = ax
to x = bx with perfect electric conductors at y = ay to y = by. The incident light originates from a point electric dipole. The
propagation of light ismodeled by solving time-dependentMaxwell equations using finite-difference time-domainmethods.
After a relatively long time, the light transmits through the scattering layer, where its intensity eventually approaches a time
asymptotic regime, i.e., becomes a time periodic function. The result of the computations is the intensity speckle pattern
formed in the transmission of the scattering layer. The aim of the modeling is to study correlations of the speckle patterns
depending on the frequency ω (to be precisely defined later in this section) of the incident light.

To numerically solve the Maxwell equations, we first make the equations dimensionless. We follow the standard
dimensionless procedure as described, e.g., in [25]. In the two-dimensional computational model, the unknown field
components are Hx(x, y), Hy(x, y) (magnetic field) and Ez(x, y) (electric field) as the incident light originates from a point
electric dipole. Although the problem is two-dimensional, the size of the discretized problem has to be large (in this paper
up to ≈ 5 · 106 degrees of freedom) to resolve the inhomogeneities in the scattering medium. More precisely, we solve the
two-dimensional Maxwell equations in a domain (x, y) ∈ [ax, by] × [ay, by] with perfectly electric conducting boundary
conditions (Ez = 0) at the y-boundaries and nonreflecting boundary conditions at the x-boundaries. The nonreflecting
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boundary conditions are implemented as the perfectly matched layers (PMLs) and the resulting dimensionless Maxwell
equations read:

∂Hx

∂t
= −

1
µr

∂Ez
∂y

,

∂Hy

∂t
=

1
µr

∂Ez
∂x

− σxHy,

∂Ez
∂t

=
1
ϵr

(
∂Hy

∂x
−

∂Hx

∂y
− Jz

)
− σxEz + P,

∂P
∂t

= −
σx

ϵr

∂Hx

∂y
,

(1)

where Hx, Hy, Ez are the unknown field components, µr and ϵr are the relative permeability and relative permittivity,
respectively, and P = P(x, y, t) is an auxiliary PML variable. The details of the derivation of the PML boundary conditions
can be found in [26,27]. In our case µr ≡ 1 throughout the domain of interest and ϵr (x, y) is a piecewise constant function
representing the inhomogeneities in the scattering medium. Furthermore, the damping terms σxHy (which is nonphysical)
and σxEz are due to the PML boundary conditions. σx is nonzero only in the so-called PML regions (situated just outside of
the domain [ax, bx] × [ay, by] along the x-boundaries, where the field is damped). Finally,

Jz(x, y, t) = α(t)J(x, y), α(t) = sin(2πωt) (2)

is the source term, where J(x, y) is nonzero only at the boundary x = ax. At the initial time t = 0 initial conditions

Hx = 0, Hy = 0, Ez = 0, P = 0 (3)

are imposed.
To solve (1) with additional PML equations numerically, we follow the method of lines approach, i.e., we first discretize

the equations in space. In this paper, we use the standard finite-difference Yee space discretization, where the electric field
values are situated at the grid vortices and the magnetic field values at the centers of the grid edges. Alternatively, any
other suitable space discretization can be used for this problem, for instance, vector Nédélec finite elements (see e.g. [28]) or
discontinuousGalerkin finite elements (see e.g. [29]). The space discretization then results in a systemof ordinary differential
equations (ODEs)

{
y′(t) = −Ay(t) + α(t)g,

y(0) = v,
y =

⎡⎢⎢⎣
H̄x

H̄y

Ēz
P̄

⎤⎥⎥⎦ , A =

[
Â BT

1
−B2 0

]
, 0 < t < T , (4)

where H̄x, H̄y, Ēz , P̄ are the grid values of the unknown fields and the auxiliary PML variable and Â is the Maxwell operator
matrix corresponding to the space discretized Eqs. (1),

Â =

[
M−1

µ 0
0 M−1

ϵ

][
Mσx K
−K T Mσx

]
.

HereMϵ,µ,σx are diagonal matrices containing the grid values of ϵ,µ, σx, respectively, and K is a discretized two-dimensional
curl operator. In our problem, due to (3), the initial value v is zero but, for the purpose of presentation, we prefer to write v
there instead of a zero vector.

In the remainder of the paper we denote the total dimension of the problem (4) by n, i.e., A ∈ Rn×n. It can be shown
that the eigenvalues of Â have nonnegative real part, see e.g. [28]. We assume that the property holds for the matrix A, as is
shown numerically in [25].

3. Solution methods

3.1. Standard finite difference time domain methods (FDTD)

A well established and widely used class of methods to model electromagnetic scattering (4) is the finite-difference
time-domain methods [2]. In the framework of the method of lines, these methods essentially imply a finite difference
approximation in space (often employing the Yee cell [30]) and a subsequent application of a time integration method. The
celebrated Yee scheme is an example of this approach, where the time discretization is based on a second order symplectic
composition scheme [28]. This compact, energy preserving time integration scheme can be viewed as a combination of the
staggered leap-frog scheme for the wave terms (represented by the matrices K and K T in (4)) and the implicit trapezoidal
scheme (ITR) for the damping termsMσx . However,when applied to the problemswith PMLboundary conditions, themethod
loses its clarity and represents essentially an ad-hoc splitting implicit–explicit schemewhere the stiff PML terms are treated
implicitly.
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Our problem is two-dimensional and, hence, although large, can be efficiently treated by fully implicit FDTD schemes.
The arising linear systems can then be solved by sparse direct solvers, which have been significantly improved last decades
[31–33]. In addition, an employment of an implicit scheme is simple and removes the necessity to handle the PML terms
in a special way. An implicit scheme which is very suitable for the Maxwell equations is the classical ITR (also known as
the Crank–Nicolson scheme). The scheme is second-order accurate, does not introduce artificial damping and preserves
energy [34]. Therefore, in this paper we choose ITR to be the reference FDTD method. For our problem (4) it reads

yk+1
− yk

τ
= −

1
2
Ayk −

1
2
Ayk+1

+
1
2
αkg +

1
2
αk+1g,

where τ > 0 is the time step size and the superindex k indicates the time step number. At every time step a linear system
with a matrix I +

1
2τA has to be solved.

3.2. Krylov subspace methods, basic facts

Let y0(t) be an approximation (initial guess) to the solution y(t) of (4). Let us define the error (unknown in practice) and
the residual of y0(t) as (cf. [35–37])

ε0(t) := y(t) − y0(t),
r0(t) := −Ay0(t) − y′

0(t) + α(t)g.
(5)

We assume that the residual r0(t) of the initial guess y0(t) is known. This can be achieved, for instance, by taking y0(t) to be
a constant function equal to the initial value v:

r0(t) = −Av + α(t)g = α(t)g, (6)

where the last step obviously holds only if v = 0. Note that the initial residual turns out to be a time dependent scalar
function times a constant vector. Furthermore, if y0(t) satisfies the initial condition y0(0) = v, we have

ε′

0(t) = −Aε0 + r0(t), ε0(0) = 0. (7)

Starting with y0(t), Krylov subspace methods obtain a better solution ym(t) by solving (7) approximately:

ym(t) = y0(t) + ε̃0(t). (8)

Here ε̃0(t) ≈ ε0(t) is the approximate solution of (7) obtained by m Krylov steps. In this paper we use a regular Krylov
subspace method [38,39] as well as a rational shift-and-invert (SaI) Krylov subspace method [19,20]. The two methods
employ the Arnoldi process to produce, afterm steps, upper-Hessenberg matrices Hm, H̃m, respectively, and an n×mmatrix

Vm =
[
v1 . . . vm

]
∈ Rn×m,

such that V ∗
mVm is them × m identity matrix and

either AVm = Vm+1Hm (for regular Krylov method),

or (I + γA)−1Vm = Vm+1H̃m (for SaI Krylov method).
(9)

Here γ > 0 is a parameterwhose choice is discussed later. Note that for simplicity of presentationwe slightly abuse notation
in these last two relations: the matrix Vm+1 produced by the regular Krylov method and appearing in the former relation is
different from Vm+1 produced by the SaI Krylov method and appearing in the latter relation. Precise definition of the Arnoldi
process is not given here as it can be found in many books, e.g., in [38, Algorithm 6.1] or [39, Figure 3.1].

If the regular Krylov method is used, the columns of the matrix Vm span the Krylov subspaceKm(A, g) ≡ span(g, Ag, A2g,

. . . , Am−1g), i.e.,

span(v1, . . . , vm) = Km(A, g), v1 = g/∥g∥ (10)

with v1 being the normalized stationary part of the initial residual (6). For the SaI method, the relations above hold
with A replaced by (I + γA)−1. The SaI transformation results in a better approximation in the Krylov subspace of the
eigenmodes corresponding to the small in modulus eigenvalues [19,20] and, hence, is favorable for solving the time
dependent problem (7). Indeed, for some classes of the discretized differential operators A, such as the discretizations of
parabolic PDEs with a numerical range along the positive real axis, one can show that the convergence of the SaI methods is
mesh independent [20,40]. Although these results cannot be extended to wave-type equations in a straightforwardmanner,
a mesh independent convergence is observed in practice for the Maxwell equations with damping in [25].

For the SaI Krylov method we define the matrix Hm as the inverse shift-and-invert transformation:

Hm =
1
γ
(H̃−1

m − I). (11)
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The approximate Krylov solution of the correction system (7) can then be written for both Krylov methods as

ε̃0(t) = Vmu(t),
{
u′(t) = −Hmu(t) + α(t)βe1,
u(0) = 0,

(12)

where e1 = [1, 0, . . . , 0]T ∈ Rm, β = ∥g∥ and the ODE system in u(t) is merely a Galerkin projection of (7) onto the Krylov
subspace.

The two relations in (9) are called Arnoldi decompositions. It is convenient to use them after re-writing in an equivalent
form

AVm = VmHm + Rm,

Rm =

⎧⎨⎩
hm+1,mvm+1eTm (for regular Krylov method),

−
hm+1,m

γ
(I + γA)vm+1eTmH̃

−1
m (for SaI Krylov method),

(13)

where em = [0, . . . , 0, 1]T ∈ Rm. This last form of the Arnoldi decompositions emphasizes the fact that the Krylov subspace
can be seen, if Rm is small in norm, as an approximate invariant subspace of A.

In both regular and SaI Krylov subspace methods, we control the number of Krylov iterative steps m (which is also the
dimension of the Krylov subspace) by checking the residual rm(t) = −y′

m(t) − Aym(t) + α(t)g of the approximation ym(t)
in (8). As stated in [35,36,41], the residual rm(t) can easily be computed as follows.

Lemma 1 ([41]). In the regular and SaI Krylov subspace methods (7)–(12) the residual rm(t) = −y′
m(t) − Aym(t) + α(t)g of the

approximate solution ym(t) to system (4) satisfies

rm(t) =

⎧⎨⎩
−hm+1,meTmu(t)vm+1 (for regular Krylov method),
hm+1,m

γ
eTmH̃

−1
m u(t)(I + γA)vm+1 (for SaI Krylov method).

(14)

Proof. For a detailed proof and discussion we refer to [41]. However, the problem considered there is slightly different
than (4); it is of the form (4) with g = 0 and v ̸= 0. Therefore, for completeness of the presentation we give a short proof
of (14) here. Based on (7), (8), we see that

rm(t) = −y′

m(t) − Aym(t) + α(t)g = −ε̃′

0(t) − Aε̃0(t) + r0(t).

Substituting ε̃0 = Vmu(t) into this relation using the Arnoldi decomposition (13), we obtain

rm(t) = Vm(−u′(t) − Hmu(t) + α(t)βe1) + Rmu(t) = Rmu(t). □

The methods presented in this subsection up to this point are well known, see e.g. [35,36,41]. A first, rather simple but,
nevertheless, important conclusion which can be drawn from the presentation is as follows.

Corollary 1. The regular and SaI Krylov subspace methods (7)–(12) for solving the multi-frequency optical response problem (4)
are fully independent of the source time component α(t).

In otherwords, if the problem (4) has to be solved formany different α(t), thematrices Vm and either Hm or H̃m can be computed
once and used for all α(t). Only the small projected problem (12) has to be solved for each new α(t) again.

Proof. It is enough to note that by construction the Krylov subspace matrices Vm, Hm and H̃m do not depend on α(t). □

Corollary 1 allows to significantly save computational work when solving (4) numerically. However, for this problemwe
can expect that the Krylov methods in the current form will not be efficient. This is because the required simulation time
T is very large (typically, several hundred time periods of α(t)), so that the Krylov dimension m can become prohibitively
large in practice. This effect should expected to be more pronounced for the regular Krylov method, as the SaI method is
typically efficient in the sense that the Krylov dimension required for its convergence is often bounded. Nevertheless, the
bad expectations are confirmed in the numerical experiments for both regular and SaI Krylov methods. Therefore, in the
next section we discuss ways to restart the Krylov subspace methods.

3.3. Krylov subspace methods with restarting

A very large Krylov dimension m slows down the Krylov method as m + 1 basis vectors v1, . . . , vm+1 have to be stored
and every new basis vector has to be orthogonalized with respect to all previous vectors. Typical approaches to cope
with the slowing down in time integration problems are restarting in time and restarting in Krylov dimension. In the first
approach, the time interval of interest [0, T ] is divided in a number of shorter time intervals, where the problem (4) is solved
subsequently. This approach is used, for instance, in the elegant EXPOKIT code [42].

If we implement the restarting-in-time approach in our setting with many different α(t), we see that the initial value
vector v is not zero in the second and subsequent time subintervals. For this reason the initial residual is no longer of the form
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Fig. 1. Restarted Krylov subspace method (7)–(12), (15) for solving (4) for different frequencies ω in the source term g = α(t)g . The algorithm is given for
the SaI variant of the method.

scalar function times a constant vector (cf. (6)). Instead, the residual can be shown to be of the form Up(t) where U ∈ Rn×2,
p : R → R2. For such problems, exponential block Krylov methods [43,44] can be applied. With this method, it is also
possible to solve problems (4) simultaneously for different α(t). The idea is then to represent the residuals corresponding to
all differentα(t) in one common expressionUp(t), where the number of columns k inU can be hopefully kept restricted using
the truncated SVD (singular value decomposition). This approach is described in detail in [27]. Numerical results presented
there show this approach inefficient due the growth of k.

Another way to keep the Krylov dimension m restricted is restarting in Krylov dimension. A number of strategies for
Krylov dimension restarting are developed [41,45–49]. Here we consider the residual based restarting [41], which is slightly
different from the approach [48] demonstrated to work successfully for solving Maxwell’s equations [25].

This restarting approach is based on the observation that the residual in the Krylov method preserves the form (6) of the
initial residual r0(t). Indeed, relation (14) shows that rm(t) = α̂(t )̂g with

α̂(t) = −hm+1,meTmu(t), ĝ = vm+1 (for regular Krylov method),

α̂(t) =
hm+1,m

γ
eTmH̃

−1
m u(t), ĝ = (I + γA)vm+1 (for SaI Krylov method).

Hence, to restart after makingm Krylov steps, we carry the update (8), set

y0(t) := ym(t), r0(t) := rm(t) = α̂(t )̂g, (15)

discard the computed matrices Vm+1, Hm (or H̃m) and start the Arnoldi process again, with the first Krylov basis vector
v1 = ĝ/∥̂g∥. The method then proceeds as given by relations (7)–(12), with α(t) and g replaced by α̂(t) and ĝ , respectively.
After making anotherm Krylov steps, we can restart again. The following result holds.

Corollary 2. The restarted regular and SaI Krylov subspacemethods (7)–(12), (15) for solving themulti-frequency optical response
problem (4) are fully independent of the source time component α(t).

In other words, if the problem (4) has to be solved for many different α(t), the matrices Vm and either Hm or H̃m can be
computed, at each restart, once and used for all α(t). Only the small projected problem (12) has to be solved, at each restart and
for each new α(t), again.

Proof. Observe that, as Corollary 1 states, the vector vm+1 in both the regular and SaI Krylovmethods is independent of α(t).
Hence, so is the vector ĝ . Therefore, the second restart starts with r0(t) := α̂(t )̂g , where only α̂(t) depends on α(t). □

Note that we have to implement this restarting algorithm in such a way that the first restart is made for all the functions
α(t), then the second restart for all the functions α̂(t), etc. Otherwise (i.e., if first all the restarts were made for the first α(t),
then all the restarts for the second α(t), etc.), we would need to keep all Krylov bases from all the restarts. The algorithm
involves sampling and storing, for each α(t), the scalar functions α̂(t) at the end of each restart. We outline the algorithm in
Fig. 1.

3.4. Using the periodicity of the source function

In this sectionwe discuss twoways tomake the numerical solution of (4)more efficient by exploiting the time periodicity
of the source function α(t)g .

3.4.1. Krylov subspace methods with asymptotic correction
Recall that the eigenvalues of A have nonnegative real part and the time interval of interest [0, T ] is large in the sense

that the output light has reached a time-periodic ‘‘steady’’ state at time T . Therefore, we may hope to improve the Krylov
subspace approximations by splitting off this time-periodic part of the solution.
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Corollary 3. The solution y(t) to the problem (4) can be written as

y(t) = ỹ(t) − ŷ(t), ỹ(t) = Im(ei2πωtzstat), ŷ(t) = e−tAIm zstat, (16)

where zstat = (A + i2πωI)−1g and Im z denotes the imaginary part of a vector z ∈ Cn.

Proof. Since the source term is α(t)g , with α(t) = sin(2πωt) (cf. (4), (2)), the variation of constants formula (see e.g. [50])
allows us to write the exact solution of (4) as

y(t) = e−tAv  
=0

+

∫ t

0
e(s−t)A sin(2πωs)g ds,

where the first term drops out because v = 0, cf. (3). Let us consider a function

z(t) =

∫ t

0
e(s−t)Aei2πωsg ds, i2 = −1,

introduced in such a way that y(t) = Im z(t). This function can be brought to the form

z(t) = e−tA
[∫ t

0
es(A+i2πωI) ds

]
g = e−tA (A + i2πωI)−1

[
es(A+i2πωI)

]⏐⏐⏐t
0
g

= e−tA(A + i2πωI)−1
[
et(A+i2πωI)

− I
]
g = e−tA

[
et(A+i2πωI)

− I
]
(A + i2πωI)−1g

=

[
ei2πωt

− e−tA
]
(A + i2πωI)−1g = ei2πωtzstat − e−tAzstat.

Hence, we arrive at (16). □

Note that the first term ỹ(t) in (16) can be identified as the time-periodic part of the solution, while the second one ŷ(t)
solves a homogeneous initial-value problem

ŷ(t)′ = −Ây, ŷ(0) = Im zstat. (17)

Furthermore, we note that ỹ(t) is easy to compute and that solving the homogeneous problem (17) is in general an easier
task than solving an initial value problem for the inhomogeneous ODE system (4). Indeed, the former problem is equivalent
to evaluating the matrix exponential action which is, in general, cheaper than solving an ODE system [51]. This is why
evaluating y := eAb for a given vector b is often a subtask in modern time integrators [52]. Moreover, the Krylov subspace
methods are known to work well for problems of the type (17), and this has been used in the literature, see e.g. [53].

Another argument in favor of solving (4) by applying the splitting (16) is that we hope that ŷ(t) should decay asymptoti-
cally and, hence, the solution y(t) for large times should bewell approximated by ỹ(t). This hope is confirmed in practice (see
Section 4). The Krylov subspace method applied to solve (17) can easily be restarted in time and at every restart the norm
of the initial value vector is expected to be smaller. Hence, the residual should be smaller and the Krylov subspace methods
require less steps to converge.

To get the solutions for the other α(t) we first note that zstat can be found simultaneously for many frequencies ω, see
e.g. [27, Section 4.3.1]. We do not discuss this further in this paper because, as compared to other costs, solving a system
for zstat is very cheap anyway. Furthermore, assume a solution ŷω(t) is found for a certain frequency ω. Usually, a certain
frequency range should be scanned which means that the next frequency of interest ωnext is rather close to ω. We first
compute ỹ(t) for the new value ωnext. Note that we can find ŷωnext (t) as ŷωnext (t) = ŷω(t) + w(t), where w(t) solves the
problem

w′(t) = −Aw(t), w(0) = ŷωnext (0) − ŷω(0). (18)

The Krylov subspace methods applied to this problem is likely to require less iterations than for solving (17) provided that
∥̂yωnext (0) − ŷω(0)∥ < ∥̂yωnext (0)∥.

The algorithm for the Krylov subspace method with asymptotic splitting is outlined in Fig. 2. It is important to note that
solution of the homogeneous ODE systems (17) and (18) at steps 2 and 4, respectively, can be carried out with any restarting
in time and in Krylov dimension. This freedom is used by us to obtain an efficient time integrator in Section 4.

3.4.2. Splitting off the source term
The second approach we consider here to exploit the time periodicity of the source function α(t)g in (4) is as follows.

We solve the problem (4) successfully on subintervals [0, ∆T ], [∆T , 2∆], . . . (in other words, we apply restarting in time). To
solve (4) on each subinterval [(k − 1)∆T , k∆T ], k = 1, 2, . . ., we split the problem into two subproblems:{

w′

1(t) = −Aw1,

w1(0) = y((k − 1)∆T ),

{
w′

2(t) = −Aw2 + α(t)g,

w2(0) = 0,
(19)
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Fig. 2. Krylov subspace method based on the asymptotic splitting (16).

Fig. 3. The spatial domain is a waveguide with 750 randomly positioned infinite cylinders.

so that the solution for t = k∆T is determined as y(k∆T ) = w1(k∆T )+w2(k∆T ). Note that the second problem has the same
solution for every subinterval if α(t) is periodic (which is the case for our problem) and we choose ∆T to be a multiple the
time period. Thus the problem for w2(t) has to be solved for the first subinterval only. For the other subintervals, it suffices
only to solve the problem for w1(t). This approach seems profitable because we again only have to solve a homogeneous
problem, i.e., the matrix exponential action has to be computed.

4. Numerical experiments

4.1. Test problem and implementation details

Here we briefly discuss some implementation aspects important for successful application of Krylov subspace methods.
In all the experiments we use the SaI version of the Krylov subspace method. The regular Krylov subspace method appears
to be inefficient for this problem as too many Krylov iterations are needed for its convergence.

All the numerical experiments presented in this paper are carried out in Matlab on Linux PC with 8 CPUs and 32 Gb of
memory. To solve the linear systemswith thematrices (I+ τ

2A)
−1 in the ITR scheme and (I+γA)−1 in the SaI Krylovmethod,

Matlab’s sparse direct LU factorization (based on the UMFPACK [32]) is used. The factorization can be carried out efficiently
because the problem is two-dimensional. The factorization is computed once and used every time the action of the inverse
matrices is needed.

We consider the test case where the domain is

(x, y) ∈ [−3, 33] × [0, 10],

and at y = 0 and y = 10 the perfectly conducting boundary conditions are posed. At x = 0 and x = 30 the PML boundary
conditions are posed, with the PML regions being x ∈ [−3, −2] and x ∈ [32, 33]. The values of σx grow in the PML regions
from 0 to σmax = 20 quadratically. The final time is set to be T = 500.

The region [0, 30] × [0, 10] contains 750 cylinders of radius 0.1 which are scattered randomly with a minimum distance
0.2 to the domain boundaries and 0.25 from each other. The electric permittivity values are ϵr = 1 inside the cylinders and
ϵr = 2.25 in the rest of the domain (see Fig. 3).

The vector g in the source function α(t)g is zero everywhere in the domain except at the line x = −2, y ∈ [0, 10] where
it is 1 for y ∈ [1, 9] and it decays linearly from 1 to 0 for y ∈ [0, 1] and y ∈ [9, 10]. The time component α(t) of the source
function is defined as α(t) = sin 2πωt with ω ∈ [0.85, 1.15].

The highest resolution which can be used for this domain size is 64 grid points per unit length (4 498 307, which means
that every cylinder is represented by approximately 12 × 12 grid points). Although this rather rough resolution is sufficient
for simulation purposes, to have consistent results for all mesh resolutions we regularize the values of ϵr by applying a
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Table 1
The residual norm ∥rm(T )∥ (as defined by (14)) for different values of γ with
resolution 16 and ω = 1 and m = 400 iterations.

γ

T Residual norm

0.1a 1.63 × 100

0.05 1.60 × 100

0.025a 1.47 × 100

0.01 1.54 × 100

0.005 1.36 × 100

0.0025 1.39 × 100

0.001a 1.10 × 100

0.0005a 9.15 × 10−1

0.00025b 7.60 × 10−5

a Means that some spurious eigenvalues have been detected and corrected.
b Means that the value of γ is unacceptable as there are toomany or too large
spurious eigenvalues.

standard homogenization procedure as follows. Let (ϵ0
r )i,j represent the original piecewise constant values of ϵr at the mesh

points (i, j) for themesh resolution 256 points per unit length (this resolution is too high to be used for thewhole simulation).
Then, we update

(ϵk+1
r )i,j =

1
2
(ϵk

r )i,j +
1
2
(ϵk

r )i−1,j + (ϵk
r )i,j−1 + (ϵk

r )i,j+1 + (ϵk
r )i+1,j

4
iteratively for k = 0, 1, 2, . . . until the iterations stagnate (at k ≈ 200). The resulting values of ϵr are then interpolated
onto the coarser meshes used in simulations. Similar homogenization procedures are also employed in FDTD codes, such as
MEEP [54].

The matrix Hm produced by the regular Krylov method is a Galerkin projection of the matrix A, which means that
Hm = V T

mAVm and the field of values of Hm is a subset of the field of values of A. However, for the SaI Krylov method
the matrix Hm results from the inverse SaI transformation (11) and therefore can have spurious eigenvalues. This can be
especially pronounced for the matrices Awith purely imaginary eigenvalues (or eigenvalues with very small real part), as is
the case for our problem (4), see e.g. [25]. Indeed, if A has a purely imaginary eigenvalue λ = iy, y ∈ R, then H̃m can have
eigenvalues approximating λ̃ = (1 + γ λ)−1

= (1 + iγ y)−1. The inverse SaI transformation of this approximate λ̃ may have
a small real part of a negative sign, especially for large γ y. In practice, this spurious eigenvalues with a small real part of the
wrong sign can be replaced by the eigenvalues with zero real part. More precisely, once Hm is computed according to (11),
we compute its Schur decomposition Hm = QTQ ∗ and replace the small negative diagonal entries in T (if any) by zero. After
that, we set Hm = QTQ ∗ where T is now the corrected matrix.

We choose the parameter γ in the SaI Krylov subspace method by making cheap trial runs on a coarse mesh (in this case
with resolution 16 points per unit length) and using the chosen γ for all the meshes [25]. This is possible because the SaI
methods usually exhibit a mesh independent convergence [20,25,40]. We also look at the number and size of the spurious
eigenvalues in the back SaI transformed matrix Hm. Typically we see that too many wrong eigenvalues can appear for large
γ , so that γ should be chosen not too large. Table 1 shows the data of the test runs carried out to choose γ . Based on the
data, for this particular case, we set γ := 0.0005T = 0.25.

To solve the projected ODE system (12), we use one of the standard Matlab’s built-in stiff ODE solvers. It is important
to use a stiff solver due to the PML boundary conditions and because the inverse SaI transformation (11) can yield large
eigenvalues in Hm. In case a homogeneous projected ODE system is solved, i.e., u′(t) = −Hmu(t), its solution is computed
with the help of Matlab’s matrix exponential function expm (see e.g. [55]).

4.2. Numerical results and discussion

We now compare the presented methods for the highest grid size possible on the PC we have, namely 64 grid points per
unit length. On this mesh the size of the system (4) to be solved is n = 4 498 307. Since the spatial error is expected to be of
order (1/64)2, we should aim at the temporal error of the same order. Therefore, we set the residual tolerance in the Krylov
methods to 10−4. Recall that for the ITR method there is no residual available and, hence, its temporal error cannot be easily
controlled. Due to wave character of the problem, we expect that the time step τ in ITR should be at least of the same order
as the spatial grid step, i.e., approximately 1/64.

To check the actual accuracy achieved by themethods under comparison, we report the relative temporal error computed
with respect to a reference solution yref(t), i.e., ∥y(T )−yref(T )∥/∥yref(T )∥. The reference solution is computed by the standard
FDTD method ITR with a tiny time step size. Thus, this reference solution is expected to have the same spatial error as the
methods to be compared. Hence, y(T ) − yref(T ) can effectively be seen as the temporal error.

We start with examining the performance of the ITR scheme, see Table 2. Next, Table 3 shows the results for the Krylov
subspace method (7)–(12), (15) with restarting in dimension, as presented in Section 3.3. In the table, we also show the
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Table 2
Performance of the ITR scheme.

τ Relative error CPU time

τ = ∆x = 1/64 4.12 × 10−1 1.84 × 104

τ = ∆x/2 1.07 × 10−1 3.74 × 104

τ = ∆x/8 6.33 × 10−3 1.32 × 105

Table 3
Results for the Krylov subspace method (7)–(12), (15) restarted in dimension every mmax = 400 Krylov steps.

Resolution #restarts Residual norm Relative error Total CPU time CPU time for projected ODE

16 14 4.88 × 10−5 – 2334.5 1252.0
64 12 1.53 × 10−5 5.76 × 10−3 3.09 × 104 6.21 × 103

Table 4
The performance of the two Krylov subspace solvers from Section 3.4.1.

Method Relative error CPU time

Time-periodic asymptotic solution ỹ(t) 1.60 × 10−2 4.95 × 101

Splitting ỹ(t) + ŷ(t), cf. (16) 6.39 × 10−3 2.53 × 104

Splitting ỹ(t) + ŷ(t), next ωnext = ω + 0.001 – 9.75 × 103

Splitting w1(t) + w2(t), cf. (19) 7.08 × 10−3 4.01 × 104

Fig. 4. Left plot: ∥̂y(t)∥ versus t . Right plot: corresponding CPU times versus restarts in time.

results for the much coarser spatial mesh to demonstrate that the convergence of the method does not deteriorate as the
mesh gets finer. Due to the independency of the method on the source time component α(t) (cf. Corollary 2), the CPU time
required by the method for any other frequency from the range of interest is the CPU time needed for the projected ODE
system, i.e., 6.21×103 s. Thus, for the second and subsequent frequencies, the gainwe obtain with respect to the ITR scheme
is a factor of 1.32 × 105/6.21 × 103

≈ 20. A drawback of this method is that the used restart value mmax = 400 is very
large, a larger restart value would hardly be possible due to computer memory limitations. Formmax = 200 no convergence
is observed.

We now present the results for the two methods based on the splittings (16) and (19), respectively. In this methods, we
are free to use both restarting in time and in space. By making cheap trial runs on coarse meshes, we choose the subinterval
length for restart in time to be 1. After that, the parameter γ is chosen as explained above, resulting in the value γ = 0.01.
With these parameters, the Krylov subspace dimension has not exceeded 25 throughout restarts.

The results are given in Table 4. First of all, we demonstrate there that the time-periodic asymptotic solution ỹ(t) is a good
approximation to the solution y(t), it is even more accurate than ITR with the time step τ = ∆x. However, the accuracy of
this solution is not of the order of the spatial error, which may not be enough. Comparing the results for the methods based
on the splittings (16) and (19), we see that splitting (16) outperforms the other splitting. For both splittings a homogeneous
problem of the type (17) has to be solved. The difference in performance is because the Krylov subspacemethod significantly
profits from the fact that ŷ(t) gets smaller in norm as time grows. Indeed, a small in norm initial value means a small initial
residual (cf. (5), (6) with g = 0 and a small in norm v) and, hence, less steps to satisfy the required tolerance, see Fig. 4. For
the same reason, combination of this splitting with (18) turns out to be successful as well.

As shown, themethod based on the splitting of the time-periodic asymptotic solution seems very promising: a significant
gain factor (∼13) with respect to the ITR method is achieved without utilizing a lot of memory.
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Table 5
Results for the most promising Krylov subspace methods and for the reference method ITR (gathered from Tables 2–4).

Method Error CPU time Gain factor Notes

ITR, τ = ∆x/8 6.33 × 10−3 1.32 × 105 1 Reference method
Krylov, splitting (16) 6.39 × 10−3 2.53 × 104 5.22
Krylov, splitting (16), ωnext – 9.75 × 103 13.52 ω − ωnext = 0.001
Krylov, restarts in dimension 5.76 × 10−3 3.09 × 104 4.27 High memory
Krylov, restarts in dimension, ωnext – 6.21 × 103 21.26 Requirements

Finally, in Table 5 we collect the results for the most promising methods and for the reference method ITR (run with the
time step providing the required time accuracy O(∆x)2). As shown for a single frequency, the Krylov subspacemethod based
on the time-periodic asymptotic splitting is the fastest and provides a gain factor of 5.2with respect to the referencemethod.
At other frequencies, its gain factor of 13.5 is lower that the gain factor of the Krylov subspace method with restarting in
dimension (21.3).

5. Conclusions

Standard Krylov subspacemethods turn out to be inefficient in solvingmulti-frequency optical response from a scattering
medium due to the growth of Krylov dimension. We overcome this inefficiency through two restarting strategies to restrict
the Krylov dimension. The first approach is to restart in time, i.e., to use Krylov subspace methods on successive shorter
subintervals. In this approach the invariance of the Krylov subspace on the time component α(t) is lost and we would need
to use a block Krylov subspace. This approach is worked out and demonstrated to be inefficient in [27] due to the growth of
the block size.

The other restarting approach we consider is the residual based restarting in Krylov dimension. This approach is shown
to lead to a method where the large scale part of the computational work does not depend on the time component α(t). As
numerical experiments demonstrate, the newmethodworks successfully only for very large Krylov dimensions. In the tests,
this method appears to be the fastest, at the cost of high memory consumption.

To avoid the high memory requirements, we consider two other approaches based on the splitting. In the first one, the
solution is split into an easy-to-compute time-periodic asymptotic part and the remaining part which decays with time. The
Krylov subspace methods are demonstrated to be able to compute this decaying component very efficiently, thus providing
a rigorous numerical solution to the whole problem. In the second approach, the periodicity of the source term is exploited.
The problem is solved successfully on time subintervals and, on each subinterval, it is split into a homogeneous ODE system
(i.e., with zero source term) and an inhomogeneous ODE whose solution is the same for all subintervals. The first, time-
periodic asymptotic splitting appears to be more efficient and works well for multiple frequencies.

Thus, Krylov subspace exponential integrators seem to be a promising computational tool for modeling multi-frequency
optical response with monochromatic sources.
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